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Abstract 
In this note we present a novel stability analysis method for DC to DC series resonant converters which relies on 
the phase plane technique. This method gives more insight into the rationale behind the stability conditions 
because these are obtained from geometrical considerations instead of eigenvalues of linear discrete time 
approximations as presented in previous works. The proposed method allows to understand easily how the 
performance is affected as the location of the operating point changes on the phase plane which is not an easy task 
when previously proposed methods are used. We show how to use numerical computations, based on this stability 
analysis method, to determine graphically the region of the phase plane where asymptotically stable closed 
trajectories exist. Further, a nice geometrical condition is formulated to achieve the fastest convergence rate to the 
closed trajectory under study. 
Keywords: Stability, Control of series resonant converters, Phase plane analysis. 

 
Resumen 
En este trabajo se presenta un nuevo método para el análisis de estabilidad de convertidores resonantes serie de 
CD a CD que se basa en al descripción del convertidor en el plano de fase. Este método facilita la comprensión del 
problema y de las condiciones que establecen su solución porque éstas son obtenidas a partir de consideraciones 
puramente geométricas en lugar de los eigenvalores de aproximaciones lineales en tiempo discreto como ha sido 
reportado en trabajos previos. Este método también facilita comprender como el desempeño del convertidor es 
afectado al cambiar la ubicación en el plano de fase del punto de operación, lo cual no es sencillo de determinar 
usando los métodos propuestos previamente. Se muestra como se pueden hacer cálculos numéricos, basados en 
este método, para determinar de manera gráfica la región del plano de fase donde existen trayectorias cerradas 
asintóticamente estables. También se establece una condición geométrica para obtener la tasa de convergencia más 
rápida a la trayectoria cerrada bajo estudio. 
Palabras clave: Estabilidad, Control de convertidores resonantes serie, Análisis en el plano de fase. 

 
1 Introduction 

 
The phase plane technique has shown to be a powerful tool for analysis and design of DC to DC series resonant 
converters since it was introduced by Oruganti and Lee (1985). Based on these ideas an optimal trajectory controller 
was presented by Oruganti and Lee (1985) and Oruganti et al. (1988) which transfers the converter from one 
operating point to another in a minimal interval of time. Further, two innovative controllers were presented by Kim 
et al. (1991) and Kim and Youn (1991) which define, respectively, a line and an ellipse on the phase plane as the 
switching condition used to decide when to turn off the power switches and start conducting the antiparallel diodes. 
Local stability of the operating point is established, in both of these controllers, through the eigenvalues of the linear 
discrete time approximation of the converter dynamical equations. It is also shown that the eigenvalue locations are 
functions of the slope of the line used as the switching condition (Kim et al., 1991) and a parameter related to the 
shape factor of the ellipse used by Kim and Youn (1991). We stress that such shape factor determines the slope of 
the line tangent to the ellipse at the operating point. Further, it is found that zero eigenvalues is the condition to 
obtain the optimal behaviour introduced by Oruganti and Lee (1985) and Oruganti et al. (1988). However, an 
important drawback of this approach is the fact that a linear approximation does not give a clear idea about the 
region of the plane where stability is ensured. Further, this approach may result in a tedious procedure which is 
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preferred to be avoided by some authors. For instance, a line is also used by Rosseto (1996) as the switching 
condition, which means that the methodology introduced by Kim et al. (1991) can be used in this case, however it is 
preferred to use simulations in order to study the performance of the proposed controller. Moreover, because of 
similar reasons, the approach introduced by Kim et al. (1991) and Kim and Youn (1991) does not provide an easy 
manner to understand how the performance is affected as the location of the operating point changes on the phase 
plane. In the present note we introduce a new stability analysis method for DC to DC series resonant converters 
which does not require any linear discrete time approximation but just relies on geometrical considerations providing 
a clearer rationale behind the stability result. The only required knowledge about the converter dynamics is the well 
known fact that evolution is described by circles centered at specific points determined by the DC power supply and 
the output voltage (Oruganti and Lee, 1985; Oruganti et al., 1988; Kim et al., 1991; Kim and Youn, 1991; Rosseto, 
1996). The stability analysis method introduced in this note has the following advantages, which represent our main 
contribution: 1) it allows to develop a graphical method to determine the region of the phase plane where 
asymptotically stable closed trajectories exist, 2) it allows to formulate a nice geometrical condition to obtain the 
performance described by Kim et al. (1991) and Kim and Youn (1991) in terms of zero eigenvalues which 
corresponds to the optimal behaviour introduced by Oruganti and Lee (1985) and Oruganti et al. (1988), 3) it is a 
simple and clear tool to understand how performance is affected as the location of the operating point changes on the 
phase plane and 4) it is useful to study the stability and the performance of several previously proposed controllers 
which also define lines as the switching conditions such as the classical capacitor-voltage controller and controller 
introduced by Sira-Ramírez and Silva-Ortigoza (2002). This note is organized as follows. In section 2 we recall some 
important features of the converter evolution on the phase plane. In section 3 we develop our stability analysis 
method whereas some relations are introduced in section 4 which are useful to use our method together with 
numerical computations. Some application examples are presented in section 5 and some concluding remarks are 
given in section 6. Finally, along this note we use symbols |⋅| and ||⋅||, respectively, to represent the absolute value 
function and the Euclidean norm of a vector.  

 
2 Phase plane evolution 

 
The simplified circuit of a DC to DC series resonant converter is shown in fig. 1, where Q1, Q2, Q3, Q4 represent 
power switches, D1, D2, D3, D4 represent antiparallel diodes, L and C are, respectively, the resonant inductance and 
the resonant capacitance, C0  is the output filter capacitance, R is the load resistance, v and i are, respectively, the 
resonant voltage and the resonant electric current, v0  is the output voltage and ε is the constant voltage of the DC 
power supply. The following normalized variables are equivalent to those used by Oruganti and Lee (1985), Kim et 
al. (1991), Kim and Youn (1991), Rosseto  (1996): 

 

LC
tvzvzi

C
Lz ==== τ

εεε
,1,1,1

0321     (1) 

 
where t represents time in seconds. The normalized model of a DC to DC series resonant converter is given as 
(Stankovic, 1999; Sira-Ramírez and Silva-Ortigoza, 2002): 

 
( ) uzsignzzz +−−= 1321&      (2) 

12 zz =&        (3) 

313 zQzz −=&α       (4) 
 

where, with some abuse of notation, the “⋅“ represents the derivative with respect to the normalized time τ. Variable 
u is the normalized input restricted to take only two values {-1,+1}. We define parameters LCRQ /1 =−  and 
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CC /0=α . Note that Q is the so called quality factor of the converter. Similarly to several previous works (Oruganti 
and Lee, 1985; Kim et al., 1991; Kim and Youn, 1991; Rosseto, 1996) we consider the following assumptions: 

A1. CC /0=α  is large, i.e. the output voltage dynamics (4) is very slow compared to the resonant dynamics 
(2), (3). This means that the output voltage, z3, can be considered to remain constant during several oscillations of the 
resonant variables z1, z2. 

A2. The quality factor is large, i. e. we assume lossless operation. 
 
 

 
 

Fig. 1. A DC to DC series resonant converter 
 

Hence, using assumptions A1, A2 and (1) we find that the converter dynamics (2), (3), (4) can be represented by 
the piecewise linear system: 
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which is also used by Oruganti and Lee (1985), Kim et al. (1991), Kim and Youn (1991), Rosseto (1996), and it is 
defined in the following four regions: 

 
1. D1, D3 conduct: ve=1+z3, u=+1. 
2. Q1, Q3 conduct: ve =1- z3, u=+1.  
3. D2, D4 conduct: ve =-(1+ z3), u=-1.  
4. Q2, Q4 conduct: ve =-(1- z3), u=-1. 

 
Solution of (5) shows that the resonant variables evolution is described in the z1-z2 plane by concentric circles 

whose centers are defined in each region at points given as (z2,z1)=(ve,0) (Oruganti and Lee, 1985; Kim et al., 1991; 
Kim and Youn, 1991; Rosseto, 1996). Finally, let us recall a result presented by Oruganti and Lee (1985) for above 
resonance operation. Given any output voltage in the range 0< z3< 1 a closed trajectory exists for each frequency, 
load current and tank energy level. Further, the switching boundary between power switch conduction and 
antiparallel diode conduction is defined by: 
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where “+” stands on the first quadrant whereas “-” stands on the third quadrant. Moreover, these curves either i) 
become the (vertical) z1 axis as z3 approaches to zero or ii) become the (horizontal) z2 axis as z3 approaches to unity. 
 
3 A new stability analysis method 

 
Consider the following switching rule for above resonance operation. Q1, Q3 are turned on when z1 becomes positive, 
Q2, Q4 are turned on when z1 becomes negative, D2, D4 start conducting when the line h1: z1=m z2+V defined on the 
first quadrant, is hit and D1, D3 start conducting when the line h3: z1=m  z2 -V, defined on the third quadrant, is hit. 
We stress that V>0 and m are constants. In fig. 2 a steady state closed trajectory Γ ' is shown. Consider the set of 
initial conditions given as the infinitesimal segment dx(k) on the -z2 axis. Let dy represent the segment on the axis +z2 
which is hit after the phase flow starting at dx(k) abandons h1' and let dx(k+1) be the segment hit on the axis –z2 once 
an oscillation is completed. Note that these segments are oriented outwards the closed trajectory Γ '. Recall that 
system evolution is described by circles centered at (z2,z1)=(ve ,0). This implies that the width of the phase flow, 
dx(k), remains constant until h1' is reached and the phase flow width dy remains constant since h1' is abandoned until 
axis +z2 is hit. We obtain similar conclusions for the phase flow on the third and fourth quadrants. BB1Q and B1DB  are 
the directions of the middle line of the phase flow when h1' is reached and when h1' is abandoned, respectively, 
whereas Op represents the operating point on either h1' or h3'. In fig. 3 a steady state closed trajectory Γ is shown 
when different switching conditions h1 and h3 are used. In fig. 4 we show a detail of the conditions at line h1 for the 
case of fig. 3. We stress that da represents a vector perpendicular to line h1 and da=||da|| represents the length of the 
segment of h1 which is hit by dx(k). Using geometric considerations we realize that dx(k) and dy are related through: 
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as long as dx(k) and dy are small. Subindex “1” means that switching occurs on the first quadrant. From figs. 3 and 4 
we realize that . From fig. 5 we can see several interesting facts (we assume that -9011 θδ > 0< θ1<+900): 
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Fig. 2. Phase flow for the overdamped case 
 

where “ 0 ” means degrees. It is not difficult to realize that a similar situation as that shown in fig. 4 also holds at h3. 
We obtain a similar expression to (7) for this case: 
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Identical conditions to C1-C4 are also valid for δ3 and θ3. Thus, use of (7) and (8) yields: 
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It is not difficult to show that all these results are also valid for the case of fig. 2. Now, let us extend these 

results to the case of finite segments on the horizontal axis. Suppose that points a and b in fig. 3 define a finite 
segment of line, E. This means that the length of E is not an infinitesimal dx(k) any more but a finite number S1. We 
still refer to fig. 3 instead of introducing a new figure because of space limitations. We realize that c and a define the 
finite segment, I, obtained on the –z2 axis once the phase flow starting at E completes an oscillation. We recall that 
circles and lines are continuous functions and that composition of continuous functions is also continuous. Hence, 
given lines h1, h3 defined on the first and third quadrants angles δ1, θ1, δ3, θ3 can be expressed as continuous 
functions of points on E. Further, we know that the image of a connected set obtained through a continuous function 
is also connected, i.e. I is connected because E is connected. Let S2 be the length of I, i.e.: 

 

∫ >+=
c

a
kdxS 0)1(2       (10) 

ISSN 1405-5546 
 
 



A New Stability Analysis Method for DC to DC Series Resonant Converters   19 

On the other hand, using the above reasoning, we know that we can use (9) to write (10) in terms of the segment 
E as: 

∫∫ =<+=
b

a

c

a
SkdxkdxS 12 )()1(     (11) 

if 1
cos
cos

cos
cos

3
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δ

θ
δ  for all points belonging to the segment of line E. This ensures convergence to the closed 

trajectory Γ  as the discrete time, k, grows. It is straightforward to show that these results are also valid for the case of 
fig. 2 as well as for the case when the phase flow evolves inside the area contained by the closed trajectories Γ or Γ '. 
We summarize our findings as follows.  

 

 
Fig. 3. Phase flow for the underdamped case 

 
Proposition 1. The closed trajectories Γ ' and Γ shown in figs. 2 and 3 are locally asymptotically stable if 
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δ  and -900< θ i<+900 stands for subindex “1” and “3”, for all points in a connected segment of line on 

the -z2 axis containing point a. 
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Fig. 4. Phase flow at the switching condition 
 

 
 

Fig. 5. Relationship between cosδ1  and cosθ1 as both δ1 and θ1 change. We stress that δ1>θ1

 
We stress that given a point on h1 it is possible to use the fact that the converter evolution is described by 

concentric circles (see section 2) to easily find the corresponding point on h3. On the other hand, from figs. 2 and 3 
we realize that C2 and C3 correspond, respectively, to the overdamped and underdamped responses reported by  Kim 
et al. (1991). Note that according to (11) the closer is 
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θ
δ  to zero the faster convergence to the closed 

trajectory is obtained. This means that the case of zero eigenvalues reported by Kim et al. (1991), is obtained if C4 is 
true. We recall that this is equivalent to the optimal behaviour reported by Oruganti and Lee (1985) and Oruganti et 
al. (1988). Further, note that C4 means that the switching condition h1 is perpendicular to the line passing through (-
1-z3,0) and the point reached on h1 by the phase flow, i.e. the switching condition is parallel to BB1D. 

Finally, we stress that, contrary to figs. 2 and 3, the phase flow starting at a point b located outside the closed 
trajectory may arrive to a point c located inside the closed trajectory in the case when C4 is true at a point pO  not 
corresponding to the operating point Op. Although this means that the integration limits used in (11) may require to 
be changed in order to keep positive both lengths S1 and S2, however it is not difficult to realize that it is still 
sufficient to satisfy 1

cos
cos

cos
cos
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3

3 <
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θ
δ for all points belonging to the segment of line under study in order to achieve 

S2<S1. This and the connectedness of both E and I ensure convergence to the closed trajectory as k grows. Thus, 
proposition 1 is also valid in this case. 
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4 Numerical computations 
 

We stress that the switching condition on the first quadrant, h1, can be regarded as the function: 
 

21 zmzV −=       (12) 
 
The time derivative of V along the trajectories of (5) is given as the dot product of two vectors: 
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We recall that the gradient vector 
z
V

∂
∂

 is perpendicular to h1 whereas z& represents the phase flow. Thus, using 

figs. 2, 3 and (5), (12), (13) we obtain: 
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just before h1 be hit and: 
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just after h1 be abandoned. Use of (14), (15) and the Euclidean norms of the vectors involved yields: 
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In the next section we present an application example of (16) to determine a region on the phase plane where 

asymptotically stable closed trajectories exist. 
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5 Some application examples 
 
● Controller presented by Kim et al. (1991). In fig. 6 we present graphically the application of our stability analysis 
method to the steady state condition defined as z3=0.5 and power switch conducting angle equal to 1000. We can use 
(6) to compute numerically that the operating point Op is located at (z2,z1)=(0.899,2.263). On the other hand, we 
stress that parameter sn defined by Kim et al. (1991) is related to lines h1 and h3 through m=-1/sn. We use the notation 
h1, h1', h1'', to define three different switching conditions. We know that the fastest convergence rate is obtained 
when δ1=+900, i.e. when h1' is tangent to the phase flow BB1D. We also know that B1DB   is perpendicular to a line 
passing through (z2,z1)=(-1-z3,0) and Op. Thus, it is not difficult to obtain that m=-1.06 in this case. This corresponds 
to sn=0.943 obtained by Kim et al. (1991) as the zero eigenvalues case. On the other hand, the stability range lays 
between h1'' and h1. The corresponding slopes can be computed as follows. Direction of BB1Q is perpendicular to a line 
passing through (z2,z1)=(1-z3,0) and Op whereas direction of B1DB  has already been obtained in the previous step. We 
stress that the switching boundary (6) is symmetric with respect to first and third quadrants. This and the fact that we 
are studying the stability of an operating point allow us to establish stability using C1 instead of proposition 1. Thus, 
according to C1, αm =+900 is on the stability limit. Let h1 correspond to this case. We compute the slope of h1 as the 
tangent function of the middle direction between BB1Q and B1DB   (αm  is measured from a direction perpendicular to h1), 
i.e. m=-0.5392 which corresponds to sn=1.854 reported by Kim et al. (1991). Finally, according to C1 the stability 
range limits h1'' and h1 are perpendicular, hence, the slope of h1'' is computed as m=-1/(-0.5392)=1.854, which 
corresponds to sn =-0.54 reported by Kim et al. (1991). We stress that we have obtained results which are very close 
to those presented by Kim et al. (1991) but using, in our case, a much simpler procedure. On the other hand, in fig. 6 
we can also see that use of a circle, e, instead of a line as the switching condition is not a good choice because the 
line tangent to this circle at the operating point, Op , has -0.397 as slope, i.e. it is outside the stability range because it 
is not steeper than h1. Further, although an ellipse having its main axis on the vertical direction can be used instead of 
a circle, however better results than those obtained using a line are not expected because slopes of lines tangent to 
such ellipse go to zero, i.e. they abandon the stability range, for points closer to the +z1 axis. We can use these 
arguments to explain why an ellipse is not used by Kim et al. (1991). On the other hand, straightforward application 
of our method to the case study presented by Kim and Youn (1991) yields results which are, again, very close to 
those obtained by Kim and Youn (1991). This analysis is not presented here because of space limitations. 

 

 
 

Fig. 6. Application to the steady state presented by Kim et al. (1991). 
Scale of this drawing is not exact and it is used only for illustration of ideas 
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In fig. 7 we show how the mean angle αm changes as a function of location on the phase plane. From this figure 
we can analyze the stability conditions for a given specific slope m by recalling that, in steady state, the switching 
condition is hit close to the z2 axis as the output voltage is close to unity whereas output voltages close to zero 
correspond to a switching condition which is hit, in steady state, close to the z1 axis (see the paragraph after (6) in 
section 2). 

 

 
 

Fig. 7. a) Direction of BB1Q and B1DB  on the phase plane. From this plot it is easy to find the middle direction between these phase 
flows and, from this, to compute the mean angle αm. Three different possibilities for m are studied, b), c), d) 

 
● m=-1 proposed by Rosseto (1996). We realize that: 1) on the +z1 axis αm has small variations located between 
approximately +450 and a number less than +900, 2) αm>+900 on the +z2 axis for z2>1-z3. Using C1 to analyse these 
cases we conclude that stability is expected for output voltages far from unity whereas stability is not ensured for 
output voltages close to unity. Further, using C4 we also conclude that the fastest convergence to the steady state, 
δ1=+900, will always occur for some output voltage far from unity. This agrees with the simulation and experimental 
results presented by Rosseto (1996). On the other hand, given some z2 and z3 we can use (6) to compute z1, i.e. these 
values represent an operating point on the phase plane where a closed trajectory exists. Now, we can use (12) to 
compute V. All of these values can be used in (16) to verify if 1

cos
cos

1

1 <
θ
δ . Note that this condition is equivalen to 

1
coscos
coscos

31

31 <
θθ
δδ  in proposition 1, because closed trajectories are symmetric on the first and third quadrants. We can 

repeat this procedure for several points on the phase plane to determine the region on the phase plane where 
operating points (on h1) corresponding to asymptotically stable closed trajectories exist. This region is represented by 
the shadowed region in fig. 8 where lines used to shadow such region represent the switching boundaries (6) for 
different values of z3. We stress that although this analysis might be also done using the eigenvalues based criterion 

Computación y Sistemas Vol. 11 No. 1, 2007, pp 14-25 
ISSN 1405-5546 

 



24   Victor Hernández Guzmán 
 

Computación y Sistemas Vol. 11 No. 1, 2007, pp 14-25 

introduced by Kim et al. (1991) however a much larger amount of computations are required. The previous analysis 
is also usefull, for instance, when a PI controller is used to adjust V as proposed by Rosseto (1996) where, however, 
no stability analysis is presented for such control strategy. We stress that use of assumption A1 allows to ensure that, 
in spite of continuous changes on z3 and V, the resonant variables z1 and z2 are always close to some closed trajectory 
on h1 and, hence, the local stability result obtained previously by using (6), (16), which is valid on the shadowed 
region shown in fig. 8, is usefull to ensure estability of the whole PI control strategy. 

 

 
 

Fig. 8. Operating points on h1 (shadowed region) where asymptotically stable closed trajectories exist 
  

● m=- ∞ or capacitor-voltage control. We realize that: 1) on the +z1 axis αm has small variations located between +00 
and a number around +450, 2) δ1=θ1 and αm=+900 on the +z2 axis for z2>1- z3 and 3) αm changes from +900 to +00 as 
the output voltage z3 changes from unity to zero. According to 1) and fig. 5 we conclude that 

31

31

coscos
coscos

θθ
δδ  is far from 

zero for output voltages close to zero, i.e. slow system responses are expected. From fig. 7 we realize that αm grows 
for points far from the +z1 axis, i.e. the response improves as higher output voltages are used as stated by Oruganti 
and Lee (1985). However, according to 2) slow responses are expected again for output voltages close to unity.  

 
● m>0 proposed by Sira-Ramirez and Silva-Ortigoza (2002). We realize that: 1) αm may be negative on the +z1 axis 
if m is small, 2) αm<+900 on the +z2 axis for z2>1- z3 and 3) δ1<+900 always. Because of 3) the fastest response 
condition C4 is never achieved and, hence, only slow responses are expected which agrees with the experimental 
results reported by Sira-Ramirez and Silva-Ortigoza (2002). On the other hand, 2) means that the transient 
performance is improved with respect to the m=-∞ case for output voltages close to unity. Finally, according to 1) 
instability may be expected for output voltages close to zero, however this is avoided by Sira-Ramirez and Silva-
Ortigoza (2002) by defining both h1 and h3 passing through the origin, i.e. m →+∞ as z3→ 0. 

 
6 Conclusions 
 
In this note we introduce a novel stability analysis method for DC to DC series resonant converters. This method 
provides a graphical tool to determine a region on the phase plane where asymptotically stable closed trajectories 
exist. A new nice geometrical condition is also formulated to obtain the fastest convergence rate reported previously 
by several authors. This method allows to understand clearly how performance is affected as the location of the 
operating point changes on the phase plane. The main reason for this is that it is based on simple geometrical 
considerations. This method represents a new approach for the stability and performance analysis of several 
controllers presented in the past: conclusions obtained with our method are in accordance with simulation and 
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experimental results reported previously in the literature. We find that use of our method has several advantages 
when applied to several cases of study reported previously: 1) analysis is much simpler, 2) more insight into the 
problem is provided, 3) information is easily obtained about how performance is affected when the operating point 
changes. 
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