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Abstract 
In this paper we present the development of a method that combines the evolutionary robotics approach with 
action selection. A collection task is set in an arena where a Khepera robot has to collect cylinders that simulate 
food. Furthermore, two basic motivations, labeled as ‘fear’ and ‘hunger’, both affect the selection of the 
behavioral repertoire. In this paper we propose an initial evolutionary stage where behavioral modules are 
designed as separate selectable modules. Next, we use evolution for optimizing the motivated selection network 
employed for behavioral switching. Finally, we compare evolved selection with hand-coded selection, which 
offers some interesting results that support the use of a hybrid approach in the development of behavior-based 
robotics. 
Keywords: Action Selection, Evolutionary Robotics, Behavior-Based Robotics, Bioinspired Algorithms. 
 
Resumen 
En este artículo se presenta el desarrollo de un método que combina el enfoque de robótica evolutiva con el de 
selección de acción. De manera que en una arena se implementa una tarea de recolección para el robot Khepera 
que debe recoger cilindros simulando comida. Existen dos motivaciones denominadas ‘miedo’y ‘hambre’ que 
afectan la selección de módulos conductuales. En este artículo se propone una etapa inicial evolutiva donde se 
diseñan estos módulos conductuales para que puedan ser elegibles usando selección de acción. Posteriormente se 
emplea evolución para optimizar la red de selección de acción. Finalmente, se comparan el ajuste de selección 
obtenido mediante evolución artificial y mediante un diseñador humano, favoreciendo el uso de un enfoque 
híbrido en el desarrollo de robótica basada en el comportamiento. 
Palabras clave: Selección de Acción, Robótica Evolutiva, Robótica Basada en el Comportamiento, Algoritmos 
Bioinspirados. 

 
1 Introduction 
 
The problem of action selection is identified in ethology as the behavior switching problem. Amongst a behavioral 
repertoire mostly one behavioral module has to be selected until completion or its execution proves ineffective. In 
robotics this approach has been widely employed in the behavior-based approach [Arkin, 1998] where an action 
selection mechanism (ASM) is used to arbitrate between several behavioral modules. Initially, the behavioral 
modules are developed as separate components that can be integrated by the use of a selector. In this work, these 
modules can be implemented as neural networks, programming routines, or a mixture of both. As for the tuning of 
behavior, depending on the chosen implementation this can be developed as hand-coded modules, or optimized by 
the use of artificial evolution. An important feature of action selection is the emergence of opportunistic behavior 
[Brooks, 1989] that is not coded in these behavioral modules. We aim to achieve this through the interaction of the 
ASM with the behavioral modules. In our previous work we have employed hand-coded selection to produce regular 
patterns of behavior [Montes Gonzalez, et al., 2006]; furthermore we have used co-evolution to optimize both 
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behavior and selection which produce non-regular patterns of behavior [Montes-Gonzalez, 2007]. Additionally, 
instability in the system was avoided by the execution of selection in a non-motivated environment. Here, we show 
how motivated behavior can be optimized by the use artificial evolution. Then, we compare our findings with 
motivated hand-coded selection. 
 
1.1 Action Selection in the Vertebrate Brain 
The action selection problem is related to decision-making whenever a module takes control of the available 
actuators until is completed or proves ineffective. In the vertebrate brain, at specific loci, specialized centers of 
selection can be identified. One of them is the basal ganglia, and recent works support the idea of these nuclei 
playing an important role in action selection [Prescott, et al., 2006]. The basal ganglia act as a relay station in the 
planning and the execution of movements (behavior); hence gathering information from the cortex and motor cortex. 
The basal ganglia are able to mediate cognitive and muscular processes. Not only serves the basal ganglia as an 
important center of action selection also in cooperation with the cerebellum and the sensory cerebrum; all of them 
are able to veto muscular contraction by denying the motor areas sufficient activation.  In turn, these individual 
motor elements form more complex patterns, which can be thought as essential elements in the development of 
intelligence [Bares and Rektor, 2001]. The development of intrinsic basal ganglia circuitry with evolvable behavioral 
modules has already been implemented in a Khepera robot [Montes, et al., 2007]. Cooperative individuals not only 
require a society interaction, but the existence of an internal mechanism (e.g. the computational model of the basal 
ganglia) that is able to mediate amongst various sensory processes. Therefore, individuals need to build up unified 
internal perceptions based on their available sensory capabilities in order to produce specialized behavior. As a 
consequence sensory processes need to be augmented when possible. The work of Montes et al. (2008) shows how 
non-standard avoidance can be achieved by extending sensory information through an evolutionary refinement. 
 
1.2 Evolutionary Robotics 
Evolutionary robotics employs a quasi-optimal approach to develop autonomous controllers for different kinds of 
robots. The use of genetic algorithms and neural networks are natural candidates, as the preferred methodology, for 
developing single evolved neural controllers. These controllers are the result of testing populations of adapted 
individuals during a refinement process through series of computer-program iterations. Next, pairs or groups of 
individuals can be evolved together. Following this approach a change in the evolution of one individual can be 
affected by the change of other related individuals in the group [Lapchin and Guillemaud, 2005]. The latter approach 
has been identified, as its biological counterpart, as co-evolution that can be cooperative or competitive. A 
cooperative strategy can be developed to achieve a common task (e.g. pushing objects, solving a common task), 
whereas in a competitive strategy individuals have to struggle to assimilate some scarce resources (e.g. prey and 
predator, securing of food stashes). In biology diffuse co-evolution has been referred to species evolving in response 
to a number of other species, which in turn are also evolving in response to a set of species [Ridley, 2003]. 
 
2 Evolution and the Design of Behavior 
 
The evolution of the behavior was carried out with a hybrid approach following the evolutionary approach [Nolfi and 
Floreano, 2000; Santos and Duro, 2005]. Initially modules were evolved in the Webots robot simulator [Cyberbotics, 
2010], and later on the modules were further evolved in the real Khepera robot [Mondana et al., 1993]. This robot 
has been equipped with a ring of eight infrared sensors distributed around the body of the robot and two DC motors 
control the movement of the wheels. A foraging task was set in a square walled arena where the robot has to collect 
simulated ‘food’ in the form of wooden cylinders. Thus, we employ the gripper turret attachment for the Khepera, 
this small arm has two degrees of freedom with encoders for determining the arm position and two sensors in the 
gripper claw for detecting the presence and the resistivity of a collected item. In Figure 1 the Khepera robot is shown 
in a short-walled arena where has to collect blue and red cylinders (color does not make any difference because the 
camera is not used in these experiments), for this purpose the robot has been equipped with a gripper turret attached 
to the robot base. Robot behavior can be identified as belonging to two different kinds, some related to travelling the 
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arena and the other related to handling objects with the gripper. The behavioral repertoire is as follows, cylinder-seek 
locates and positions the robot body in front of a cylinder in order to activate cylinder-pickup which moves the robot 
backwards to safely lower the robot arm and then pickup a cylinder; wall-seek travels the arena searching for the 
closest wall, and then corner-seek runs parallel to a wall until the robot finds a corner; finally cylinder-deposit lowers 
the robot arm, opens the gripper and returns the arm to an upper position.  
 

 
Fig. 1. The Khepera robot set in a short-walled arena 

 
2.1 Exploration Behavior 
In our Experiments we use only the infrared sensors of the Khepera robot to transverse the arena. Thus, we chose to 
implement exploration behavior as neural controllers. Behavioral modules implemented in such way correspond to 
wall-seek, corner-seek and cylinder-seek. They use a fully connected feedforward multilayer-perceptron neural 
network with no recurrent connections. The topology of the neural network is six neurons in the input layer, four 
neurons in the hidden layer, and two in the output layer. The sigmoid transfer function is used at the hidden and the 
output neurons. The infrared output from the Khepera, ranging from 0 to 1023 from the six frontmost sensors forms 
the input to the neural neural network. Then, the output of the neural network is scaled to the ±20 values required for 
driving the DC motors at full speed. Next, a genetic algorithm with selection, crossover and mutation operators was 
applied to the neural network and the desired behavior for each individual module was shaped using different fitness 
functions (Eqs. 1-3).  

The weights of each neural network are directly encoded into a vector w of 32 elements, the weights were 
initialized with random values ranging from 1 < wi < 1 for all elements. Thus, a single vector representation is used 
to define each of the individuals in the population. The initial population, G0, consists of n=100 neural controllers. 
Selection is made using elitism to replicate the two best individuals from one generation to the next. Then, a 
tournament allows random parents to be chosen from (n/2)-1 competitions. The most fitted parents are bred in pairs 
with a random crossover point generated with a probability of 0.5. Each individual in the new population is then 
affected with a mutation probability of 0.01. The fitness is scored by running each individual in the simulator for 
about 25 seconds using the fast-speed mode of the Webots simulator. The initial location and orientation of the 
individuals are randomized across trials.  

The behavior for locating a wall (wall-seek) can be seen as a form of obstacle-avoidance due to the fact that the 
arena has to be explored avoiding cylinders. Then, the behavior is completed when the robot is in front of a wall. The 
fitness formula for this behavioral module was 
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where for iteration i: ls is the linear speed in both wheels (the absolute value of the sum of the left and right speeds), 
ds is the differential speed on both wheels (a measurement of the angular speed), and max_ir is the highest infrared 
normalized-value. A formula such as this favors the evolution of fast individuals that run in a straight line while 
avoiding obstacles. 

The behavioral module for running parallel to a wall makes the robot move in a straight line aside a located 
wall; though any obstacles blocking a straight path to the nearest corner have to be first avoided. The module is 
stopped when a corner is detected.  The fitness formula employed for the behavior corner_seek was 
   

 2)(*12 tghcfcf =
 

(2) 
 

 
This formula employs a thigmotaxis factor (tgh), which accounts for the tendency to remain next to walls and is 
calculated as the fraction of the test period for which an individual is close to any of the walls in the arena. This 
formula therefore evolves individuals that avoid obstacles while traveling parallel to the arena walls.  

The cylinder-seek behavior explores the arena avoiding walls until it locates a cylinder set in the middle of the 
arena. If a cylinder is located (detected by the two frontmost pair of infrared sensors), then the robot stops to let the 
gripping-behavior handle cylinder collection. The formula for a behavioral module such as this was 
 

 
 cfrontKcnearKcfcf **13 21 ++=

  
(3) 

 
 
In this formula avoidance is displayed for travelling the arena. The constants K1 and K2, with K1 < K2, are employed 
for rewarding the robot when a cylinder is detected around the ring of infrared sensors assuming that a cylinder is 
near (cnear). However, the robot is most rewarded when aligns its frontal part with a nearby cylinder (cfront).  
  
2.2 Gripper-Handling Behavior 
The previous behavioral modules can be considered as timed sequences of action triggered by an initial sensory 
stimulus. However, behavior related to handling the gripper should be modeled as a sequence of particular actions 
executed always in the same order and with the same duration. Thus, behavior modeled in this way can be thought as 
fixed action patterns [McFarland, 1993]. For instance, cylinder-pickup requires the gripper claw to be opened, and 
then the robot move backwards to create free space in front of the body, the gripper closed, and the arm moved back 
into the upright position. Cylinder-deposit requires a fixed sequence of lowering the arm, opening the gripper, and 
then raising the arm. Therefore, these two behavioral modules were implemented as algorithmic routines following 
the aforementioned action sequences.  
 
3 Motivated Action Selection Mechanism 
 
In writing different models have been proposed to design systems, which are able to exhibit a variety of behavior and 
to arbitrate between them [e.g. Brooks, 1986; Maes 1989; Arkin, 1998]. Nevertheless, these models based on explicit 
design do not seem to be scalable enough for developing systems capable of displaying a large variety of behavioral 
patterns that cope with task/environmental variations. In previous research we have proved that a computational 
model of the intrinsic circuitry of the vertebrate basal ganglia [Prescott et al., 1999] produces action selection when 
embedded in a robot control system [Montes Gonzalez et al., 2000; Prescott et al., 2006]. The motivated robot basal 
ganglia model has been set in a similar environment to the one described using hand-coded [Prescott et al., 2006] and 
evolved behavioral patterns [Montes-Gonzalez, et al., 2007]. The importance of the basal ganglia in natural action 
selection becomes evident when we observe that these nuclei are an archaic feature common to all vertebrate animals 
[Prescott et al., 1999]. However, we have also worked in an alternative selection model named CASSF [Montes-
Gonzalez and Marín-Hernández, 2004] that shares common features with the robot basal ganglia model. Both are 
centralized and both produce motor selection based on building perceptual information from raw sensory input.  



 A Hybrid Approach in the Development of Behavior Based Robotics  389 

Computación y Sistemas Vol. 13 No. 4, 2010, pp 385-397 
ISSN 1405-5546 

 

 
Fig. 2. CASSF produces Action Selection by converting sensory input into perceptual variables; next salience is 

calculated and then motor output is sent to the motors 
 

One of the main features of CASSF (Central Action Model with Sensor Fusion) is that is modular and able to 
cope with the variations of a dynamic environment. However, in this study we have extended CASSF to include 
internal motivations for the calculation of motor selection. In addition, CASSF is an effective action selection 
mechanism [Montes-Gonzalez, et al., 2006] that is centralized and presents sufficient persistence to complete a task. 
The implementation of tasks such as foraging can be carried out by determining a set of behavioral patterns that can 
be integrated in time to complete such a task.  Furthermore, selection parameters of this model have been optimized 
by the use of evolution. The adjustment of selection parameters and behavior has been optimized by co-evolution in 
CASSF as described in [Montes-Gonzalez, 2007]. In this model perceptual variables (ei) form the input to the 
decision neural network. The output of the selected behavior with the highest salience (si) is gated to the motors of 
the Khepera. The busy-status signal (c1) from behavior B1 to the output neuron O1 should be taken into account. The 
behavioral repertoire (B1 - Bn) is extended by preserving similar connections for each of the additional behavioral 
modules. Motivations (mi) are added as inputs (Ii) to the decision network (Figure 2). 

The foraging activity for our behavioral setup has been modeled loosely based on observations of hungry rats 
placed in a box containing a central small dish of food. These animals, even when deprived from food for twenty 
four hours, will be fearful and exhibit preference of staying next to walls and corners. Later on, they will go across 
the arena to collect food from the dish that is then consumed in a corner. The urgency to be selected (salience) of 
each of the behavioral modules is tuned to provide appropriate behavioral selections that simulate the avoidance-
related and food-acquisition-related behavior observed in these animals. Therefore, the salience for each module 
depends on the values of a number of extrinsic and intrinsic variables. Extrinsic values are calculated as bi-polar 
perceptual variables calculated from robot raw sensory information. These perceptual variables are labeled as 
wall_detector, gripper_sensor, cylinder_detector and corner_detector. Additionally, these perceptual variables are 
also sent to each of the behavioral modules.  The information of the sensors is updated at every step of the simulation 
and the perceptual variables are recalculated depending on the presence (+1) or absence (-1) of the relevant target 
feature (e.g. a cylinder, a wall, a corner, or an object in the gripper). 
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Intrinsic variables are produced by motivational modules and are functions of recent experience and internal 
state. In our experiments these roughly model ‘fear’ (initially high and reduced when exploring the arena) and 
‘hunger’ (increases with time and reduced when ‘food’ is deposited outside the arena).  Therefore, the value for each 
of the simulated motivations is a single scalar value in the range (0-1) that can be either increased or decreased over 
time. Hunger is also reduced by a fixed amount when a cylinder is deposited in a corner of the arena. On the other 
hand, behavioral modules are also able to generate an intrinsic variable (a ‘busy signal’) that facilitates its own 
selection during critical phases of activity. The value of the busy signal is a binary value that is on when a critical 
period of activity has been reached. As a result the salience is calculated from the relevant information for each 
behavioral module composed by perceptual variables (bi-polar), its own busy-signal (binary) and extrinsic 
motivations (scalar values).  These signals constitute the input vector for the selection network and activation is 
computed at every step of the main loop.  Thus, CASSF runs within a main loop in which sensor readings are 
updated and motor commands are sent. At each time-step, salience is calculated and the competition between 
behavioral components is resolved in a winner-take-all manner.  

 

 
Fig. 3. Population fitness (Eq. 4) is plotted across one hundred generations 

 
In this paper artificial evolution is employed to adjust the weights of the decision network. The exploration 

behavioral modules were evolved as an initial stage in the evolution. A second stage consisted in evolving the 
decision network weights. However, these weights depend on the input of the context vector (ei) which is formed by 
the perceptual variables. In turn, the variables wall_detector (ew), gripper_sensor (eg), cylinder_detector (ec), and 
corner_detector (er) are encoded from readings of different sensors. These perceptual variables form the context 
vector, which is constructed as follows (e = [ew, eg, ec, er], ew, eg, ec, er ∈ {1, -1}). Then, five different behavioral 
modules return a current busy-status (ci) indicating that ongoing activities should not be interrupted. The current 
busy-status vector is c = [cs, cp, cw, ck, cd], cs, cp, cw, ck, cd ∈ {1, 0}, for cylinder-seek, cylinder-pickup, wall-seek, 
corner-seek, and cylinder-deposit respectively. The motivational vector is composed by m = [mf, mh], -1 < mi, < 1. 
The salience (si) or urgency is calculated from the input of the decision network Ii which in turn modifies the output 
Oi of the behavioral modules by allowing the most salient to win the competition. Thus, selection is evolved for five 
behavioral modules with a context vector composed of eleven elements making a selection vector chs of 55 weights 
with initial random values of chs, −Kw < chs < Kw with Kw = 0.75.  

Evolution was carried out as previously described in section 2.1. The fitness formula for the evolution of the 
weights of the decision network was  
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(4) 

 
The evolution of the weights of the selection network was nearly optimized using in the fitness formula (fc4) the 
constants K1, K2, K3 and K4 with K1 < K2 < K3 < K4 for the selection of those individuals that locate corners and walls 
in the arena (cwfactor). On the other hand, the fitness formula also rewards locating cylinders (fc2), their collection 
inside the arena (pkfactor), and their release near the outside walls (dpfactor). For each generation the highest fitness 
of one individual was obtained from the averaged fitness of five trials under similar conditions. The maximum 
fitness of all individuals was averaged as a measure of the population fitness. Individuals are more rewarded if they 
avoid obstacles, collect cylinders, and deposit cylinders close to corners. The evolution is stopped after fitness 
stabilizes over a value around 2500. In Figure 3 we present the average fitness, and its maximum individual fitness, 
for over 100 generations. 

 

 
Fig. 4. Action selection is modulated by internal motivational variables like fear and hunger 

 
4 Experiments and Results 
 
The foraging task was set in an arena with four cylinders as simulated food. Figure 4 presents the robot simulator 
window and the window for the gripper and infrared sensors. In the motivations window, the blue line corresponds to 
‘fear’ and the green line represents ‘hunger’. Next, final behavior is transferred to the real robot for further 
optimization. The use of selection with hand-coded parameters and evolved behavioral modules is shown in Figure 5 
where we notice that although four cylinders were collected only three were delivered right next to the corner. An 
individual such as this presents a regular grasping-depositing pattern (behavioral pattern selection of 1-2-3-4-5). 
Selection behavior is also summarized as elementary statistics. The labels in Table 1 are as follows: Freq shows the 
frequency in the selection of a module; Latency represents the time when the module was initially selected; the total 
duration of the module is indicated by Totdur and its percentage by TotDur%; Mean, Standard Deviation (StdDev) 
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and Standard Error (StdErr) are some simple statistics; MinDur represents the minimal time the module was selected 
and MaxDur the maximal time for the selection of the module.  

 
Fig. 5. Ethogram for a run of typical hand-coded behavior selection; modules are numbered as 1-cylinder-seek,  

2-cylinder-pickup, 3-wall-seek, 4-corner-seek, 5-cylinder-deposit and 6-no action selected 
 
 

Table 1. Hand-coded selection (Figure 5) is summarized as elementary statistics 

Behavioral Modules Freq Latency TotDur TotDur% Mean StdDev StdErr MinDur MaxDur
none 1.00 0.00 0.02 0.03 0.02 0.00 0.00 0.02 0.02
cylinder-seek 5.00 2.23 44.02 70.69 8.80 5.66 2.53 0.45 15.37
cylinder-pickup 4.00 12.81 4.09 6.56 1.02 0.53 0.26 0.25 1.39
wall-seek 5.00 0.02 2.86 4.58 0.57 0.42 0.19 0.03 1.05
corner-seek 5.00 0.05 8.91 14.30 1.78 0.99 0.44 0.02 2.26
cylinder-deposit 3.00 14.98 2.39 3.83 0.80 0.02 0.01 0.78 0.81
Total 23.00 0.00 62.28 100.00 2.71 4.13 0.86 0.02 15.37  
 

On the other hand, staged evolution of behavior and selection is shown in Figure 6 where a standard grasping-
depositing pattern is not easily observed. Because of opportunism exhibited in the collection of cylinders, artificial 
evolution optimizes the use of corner-seek that is never selected. Instead wall-seek is employed, after collection, for 
taking the cylinder to the nearest wall where the cylinder is released. It is important to notice that an additional fifth 
cylinder is picked up and released making a total of five collected cylinders (the rest are fallen attempts). As a result, 
a semi-regular behavioral pattern selection of 1-2-3-5 can be observed in this graph. We notice from elementary 
statistics in Table 2 that although cylinder-pickup was selected 11 times, cylinder-deposit was only selected 5 times. 
The latter is due to the fact that fallen attempts to collect cylinders are accounted as triggered behavior. Though, an 
already released cylinder is immediately grasped and then released again around second 30 (in Figure 6). 
Additionally, evolution avoids the use of corner-seek and that is reason for its latency to be shown as the total 
elapsed time even though selection never occurred. As the result of evolution the fitness function is shaping selection 
by the optimization of behavior in time and in the physical environment.  
 



 A Hybrid Approach in the Development of Behavior Based Robotics  393 

Computación y Sistemas Vol. 13 No. 4, 2010, pp 385-397 
ISSN 1405-5546 

 
Fig. 6. A typical run for evolved selection; the behavioral modules are numbered as 1-cylinder-seek, 2-cylinder-
pickup, 3-wall-seek, 4-corner-seek, 5-cylinder-deposit and 6-no action selected. A standard grasping-depositing 

pattern is not easily observed on this ethogram 
 

 
Table 2. Elementary statistics for evolved selection 

Behavioral Modules Freq Latency TotDur TotDur% Mean StdDev StdErr MinDur MaxDur
none 1.00 0.00 0.03 0.03 0.03 0.00 0.00 0.03 0.03
cylinder-seek 49.00 0.45 68.94 67.09 1.41 4.79 0.68 0.02 26.07
cylinder-pickup 11.00 13.62 15.60 15.18 1.42 1.74 0.53 0.02 4.27
wall-seek 44.00 0.03 13.85 13.48 0.31 0.25 0.04 0.02 0.76
corner-seek 0.00 102.76 0.00 0.00 NaN NaN NaN 0.00 0.00
cylinder-deposit 5.00 18.74 4.34 4.22 0.87 0.60 0.27 0.02 1.33
Total 110.00 0.00 102.76 100.00 0.93 3.27 0.31 0.00 26.07  

 
In our work a behavior is considered as the joint product of the robot and its internal status, environment, and 

observer. Hence, a regular grasping-depositing pattern in the foraging task should be the result of the selection of the 
behavioral modules: cylinder-seek, cylinder-pickup, wall-seek, corner-seek, and cylinder-deposit in that order. 
Collection patterns can be disrupted if for example the cylinder slips from the gripper or a corner is immediately 
found. Another cause for the disruption of a regular pattern occurs after long search periods when a cylinder is not 
promptly located. The use of motivations is also another cause for the interruption in the collection of a cylinder. For 
instance travelling for long time increases the value of hunger up to its maximum value, which makes locating a 
cylinder erratic and increasing periods of exploration (after second 50 in Figure 6). Finally, the fitness of the agent 
solving the foraging task is an additional factor that alters the order in the selection of behavior. In general a regular 
behavioral pattern is easily observed for hand-coded selection whereas for evolved selection the use of corner-seek is 
avoided in order to optimize time selection.  

In Figure 7 we present a comparison of hand-coded-selection/evolved-behavior and staged evolved-
selection/behavior. Here we notice that in average a hand-coded individual collects one cylinder whereas an evolved 
individual collects three cylinders. Furthermore, in average hand-coded selection scores 32% of the highest hand-
coded fitness; in contrast, evolved-selection scores 63% of the highest evolved fitness. In (a) we notice the first forty 
individuals failing to collect cylinders with six individuals collecting four cylinders. Whereas in (b) fifty-nine 
individuals accomplish the task of collecting four cylinders and only eleven individuals not collecting any at all. In 
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this comparison we notice that even though individuals present different fitness values, they are able to complete the 
task of collecting from one to four cylinders. Fitness is increased after long search periods, and those individuals able 
to complete the same task with lower fitness are because they have to travel less to locate cylinders. Consequently, 
‘lucky’ collectors, by chance, travel less earning fewer rewards; whereas ‘unlucky’ collectors travel more earning 
additional rewards. Consequently, in the same figure we observe an improvement on the fitness and the collection of 
cylinders of evolved selection in comparison to hand-coded selection with evolved behavior.  
 
5 Discussion and Future Work 
 
For our discussion it is important to remember that there is evidence of central selection in the vertebrate brain 
[Prescott et al., 1999], particularly at the basal ganglia buried under the cortex. It is important to notice that these 
structures receive information from several different regions of the cerebral cortex. We have based the development 
of motivated CASSF on that of the robot basal ganglia [Prescott et al., 2002]. Therefore, we have developed a hybrid 
action selection model that makes use of artificial evolution for optimizing both neural behavior and the decision 
network (ruling out the evolution of sequential behavior). In our selection model we have build an intrinsic 
perception of the world based on raw sensory information to provide pre-processed information to the decision 
network in order to produce a unified perception of the ‘extrinsic’ world. Additionally, we have let intrinsic variables 
such as simulated fear and hunger to affect the results of selection. Therefore, selection arbitrates amongst competing 
behavioral modules to allow the execution of behavior in response to a specific configuration of the world and the 
internal status of the animal robot. In order to extend our model we expect to include a component of simulated 
‘dopamine’, similar to the one reported in Montes et al. (2000), to regulate behavior through motor commands sent to 
the Khepera robot. Next, we pretend to analyze motivated behavior at ‘normal dopamine levels’ to see the elicitation 
of movement (normal selection) and abnormal selection as the result of inducing different levels of simulated 
dopamine. Furthermore, we pretend to develop a prey-predator setup where the prey employs evolvable action 
selection and the predator a pure evolvable approach both optimized by means of co-evolution to study any potential 
improvements in selection under such a competitive scheme. 
 
6 Conclusion 
 
The evolution of central action selection with neural behavior was carried out in this study. Later on, both the 
selection mechanism and neural behavior were further evolved in two separate stages and then compared to hand-
coded selection with evolved neural behavior. The experiments presented in this paper provide an insight of the 
effects of evolution when optimizing behavior that needs to be coupled within a regular pattern. For example, a 
disruption of regular selection occurs in an attempt to increase their fitness value as shown in Figure 6. On the other 
hand, the use of evolution constrains candidate solutions to those that maximize the proposed fitness function. 
Consequently, the maximum fitness is reached when evolved instead of hand-coded selection is employed (Fig. 7). 
Finally, our hybrid approach aims to reduce the number of decisions made by the human designer when evolving 
both selection and behavior.  
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Fig. 7. A comparison of one hundred individuals after the evolution of hand-coded and optimized selection  
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