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Abstract. In this work a feed-forward NN based NAR model 
for forecasting time series is presented. The learning rule 
used to adjust the NN weights is based on the Levenberg-
Marquardt method. In function of the long or short term 
stochastic dependence of the time series, we propose an on-
line heuristic law to set the training process and to modify 
the NN topology. The approach is tested over five time 
series obtained from samples of the Mackey-Glass delay 
differential equations and from monthly cumulative rainfall. 
Three sets of parameters for MG solution were used, 
whereas the monthly cumulative rainfall belongs to two 
different sites and times period, La Perla 1962-1971 and 
Santa Francisca 200-2010, both located at Córdoba, 
Argentina. The approach performance presented is shown 
by forecasting the 18 future values from each time series 
simulated by a Monte Carlo of 500 trials with fractional 
Gaussian noise to specify the variance. 
Keywords. Neural networks, time series forecast, Hurst’s 
parameter, Mackey-Glass. 
 
Resumen. Se presenta un modelo auto-regresivo no lineal 
(ARN) basado en redes neuronales para el pronóstico de 
series temporales. La regla de aprendizaje para ajustar los 
parámetros de la red neuronal (RN) está basado en el 
método Levenberg-Marquardt en función de la 
dependencia estocástica de la serie temporal, proponemos 
una ley heurística que ajusta el proceso de aprendizaje y 
modifica la topología de la RN. Esta propuesta es 
experimentada sobre cinco series temporales. Tres son 
obtenidas de la ecuación de Mackey-Glass (MG) en un 
intervalo de tiempo. Las dos restantes son series históricas 
de lluvia acumulada mensualmente pertenecientes a dos 
lugares y tiempos diferentes, La Perla 1962-1971 y Santa 
Francisca 2000-2010, Córdoba, Argentina. El desempeño 
del esquema se muestra a través del pronóstico de 18 

valores de cada serie temporal, donde el pronóstico fue 
simulado mediante Monte Carlo con de 500 realizaciones 
con ruido Gaussiano fraccionario para especificar la 
varianza. 
Palabras Clave: Redes neuronales, pronóstico de series 
temporales, parámetro de Hurst, ecuación Mackey-Glass. 

1 Introduction 

In order to use and model time series useful for 
control problems from agricultural activities such as 
the availability of estimated scenarios for water 
predictability (Liu and Lee, 1999 Masulli et al, 
2001), seedling growth (Pucheta et al., 2007a; Guo 
et al., 2009) and decision-making , natural 
phenomena prediction is a challenging topic. In this 
work, the proposed approach is based on the 
classical NAR filter using time-lagged feed-forward 
networks, in which the data from the MG 
benchmark equation and Monthly Cumulative 
Rainfall time series are used to forecast the next 18 
values. These forecasted data are simulated by a 
Monte Carlo method (Bishop, 2006). The number 
of filter parameters is put in function of the 
roughness of the time series, i.e. the error between 
the smoothness of the time series data and the 
forecasted modifies the number of the filter 
parameters. 
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1.1. The Neural Network Approach 

Motivations that have led for this study follows the 
closed-loop control scheme (Pucheta et al, 2007a). 
The controller considers future meteorological 
conditions for designing the control law as shown 
Fig.1. In that sense, the controller takes into 
consideration the actual state of the crop by a state 
observer and the meteorological variables, referred 
by x(k) and Ro, respectively. However, in this paper 

only the controller’s portion concerning with the 
prediction system is presented by using a benchmark 
and rainfall time series. 
 

 PC-BASED SYSTEM 

 

CONTROLLER 

 

CULTIVATION u(x,k,{Ro}) 

x(k) 
 

STATE 

OBSERVER 
CHARACTERISTICS 

Ro 
 

 
Fig. 1. Closed-loop PC-based control approach 

 

The main contribution of this work is on the learning 
process, which employs the Levenberg-Marquardt 
rule and considers the long or short term stochastic 
dependence of passed values of the time series to 
adjust at each time-stage the number of patterns, the 
number of iterations, and the length of the tapped-
delay line, in function of the Hurst’s value, H of the 
time series. According to the stochastic 
characteristics of each series, H can be greater or 
smaller than 0.5, which means that each series tends 
to present long or short term dependence, 
respectively. In order to adjust the design parameters 
and show the performance of the proposed prediction 
model, solutions for the MG equation and Rainfall 
series are used. The NN-based nonlinear filter is 
applied to the time series obtained from MG and 
Monthly Cumulative Rainfall to forecast the next 18 
values. 

1.2. Samples of MG equation 

Samples of MG equation are used to model natural 
phenomena and have been implemented by different 
authors to perform comparisons between different 
techniques for forecasting and regression models 
(Velásquez Henao and Dyna Red, 2004). This paper 

propose an algorithm to predict values of time 
series taken from the solution of the MG equation 
(Glass and Mackey, 1988) and Rainfall time series 
from La Perla (Pucheta et al, 2009a) and Santa 
Francisca, South of Cordoba. 

The MG equation is explained by the time delay 
differential equation defined as, 

 
(1) 

where α, β, and c are parameters and τ is the delay 
time. According as τ increases, the solution turns 

from periodic to chaotic. Equation (1) is solved by a 
standard fourth order Runge-Kutta integration step, 
and the series to forecast is formed by sampling 
values with a given time interval. 

Thus, samples of MG time series with a 
random-like behavior is obtained, and the long-term 
behavior changes thoroughly by changing the initial 
conditions. Furthermore, by setting the parameter β 

between 0.1 and 0.9 the stochastic dependence of 
the deterministic time series obtained varies 
according to its roughness. 

1.3.  fBm overview 

Due to the random process of the time series, it is 
proposed to use the Hurst’s parameter in the 
learning process to modify on-line the number of 
patterns, the number of iterations, and the number 
of filter inputs. This H tells us about the roughness 
of a signal, and also to determine its stochastic 
dependence. The definition of the Hurst's 
parameter appears in the Brownian motion from 
generalize the integral to a fractional one. The 
Fractional Brownian Motion (fBm) is defined in the 
pioneering work by Mandelbrot (Mandelbrot, 1983) 
through its stochastic representation 

 

(2) 

where, (·) represents the Gamma function 

 
(3) 

and 0<H<1 is called the Hurst parameter. The 
integrator B is a stochastic process, ordinary 
Brownian motion. Note, that B is recovered by 
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taking H=1/2 in (2). Here, it is assumed that B is 

defined on some probability space (, F, P), where 

, F and P are the sample space, the sigma algebra 
(event space) and the probability measure 
respectively. Thus, a fBm is a continuous-time 
Gaussian process depending on the so-called Hurst 
parameter 0<H<1. The ordinary Brownian motion is 
generalized to H=0.5, and whose derivative is the 
white noise. 

 
Fig. 2. Three sample path from fBm 

 

The fBm is self-similar in distribution and the variance 
of the increments is defined by 

 
(4) 

where, v is a positive constant. 

This special form of the variance increments 
suggests various ways to estimate the parameter H. 
In fact, there are different methods for computing the 
parameter H associated to Brownian motion (Bardet 
et al, 2003; Dieker, 2004; Istas and Lang, 1994). In 
this paper, the algorithm uses a wavelet-based 
method for estimating H from a trace path of the fBm 
with parameter H (Abry et al, 2003; Dieker, 2004; 
Flandrin, 1992). Three trace paths from fBm with 
different values of H are shown in Fig. 2., where the 
difference in the velocity and the amount of its 
increments can be noted. 

2 Problem statement 

The classical prediction problem may be formulated 
as follow. Given past values of a process that are 
uniformly spaced in time, as shown by x(n-T), x(n-2T), 

. . . , x(n-mT), where T is the sampling period and m 

is the prediction order. It is desired to predict the 
present value x(n) of such process. Therefore, 

obtain the best prediction (in some sense) of the 
present values from a random (or pseudo-random) 
time series is desired. The predictor system may be 
implemented using either an autoregressive model-
based nonlinear adaptive. The NNs are used as a 
nonlinear model building; in the sense that smaller 
the prediction error is in a statistical sense, the 
better the NN serves as model of the underlying 
physical process responsible for generating the 
data. In this work, time lagged feed-forward 
networks are used. 

The present value of the time series is used as 
the desired response for the adaptive filter, and the 
past values of the signal supply as input of the 
adaptive filter. Then, the adaptive filter output will 
be the one-step prediction signal. In  

Fig.3 the block diagram of the nonlinear 
prediction scheme based on a NN filter is shown. 
Here, a prediction device is designed such that 
starting from a given sequence {xn} at time n 

corresponding to a time series it can be obtained 
the best prediction {xe} for the following 18 values 

sequence. Hence, it is proposed a predictor filter 
with an input vector lx, which is obtained by 
applying the delay operator, Z

-1
, to the sequence 

{xn}. Then, the filter output will generate xe as the 

next value, that will be equal to the present value 
xn. So, the prediction error at time k can be 

evaluated as 

 
(5) 

which is used for the learning rule to adjust the NN 
weights. 

The coefficients of the nonlinear filter are 
adjusted on-line in the learning process, by 
considering a criterion that modifies at each pass of 
the time series the number of patterns, the number 
of iterations and the length of the tapped-delay line, 
in function of the Hurst’s value H calculated from 
the time series. According to the stochastic 
behavior of the series, H can be greater or smaller 
than 0.5, which means that the series tends to 
present long or short term dependence, 
respectively (Pucheta et al, 2007b). 
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Fig.3. Block diagram of the nonlinear prediction 

 

3 PROPOSED APPROACH 

3.1NN-Based NAR Model 

Some results had been obtained from a linear 
autoregressive approach, which are detailed on 
(Pucheta et al, 2009a). These results were promising 
and deserve to be improved by more sophisticated 
filters. Here, a NN-based NAR filter model (Haykin, 
1999; Mozer, 1993; Zhang et al, 1998) is proposed. 
The NN used is a time lagged feed-forward networks 
type. The NN topology consists of lx inputs, one 
hidden layer of Ho neurons, and one output neuron as 
shown Fig..4. The learning rule used in the learning 
process is based on the Levenberg-Marquardt 
method (Bishop, 1995). 
 

 
 

Fig. 4. Neural Network-based nonlinear predictor filter. The 
one-step delay operator is denoted by Z 

 

However, if the time series is smoother or rougher 
then the tuning algorithm may change in order to fit 
the time series. So, the learning rule modifies the 

number of patterns and the number of iterations at 
each time-stage according to the Hurst’s parameter 
H, which gives short or long term dependence of 
the sequence {xn}. From a practical standpoint, it 

gives the roughness of the time series. 
In order to predict the sequence {xe} one-step 

ahead, the first delay is taken from the tapped-line 
xn and used as input. Therefore, the output 

prediction can be denoted by 

 
(6) 

where, Fp is the nonlinear predictor filter operator, 
and xe(n+1) the output prediction at n+1. 

3.2 Proposed Learning Process 

The NN’s weights are tuned by means of the 
Levenberg-Marquardt rule, which considers the 
long or short term stochastic dependence of the 
time series measured by the Hurst’s parameter H. 
The proposed learning approach consists on 
changing the number of patterns, the filter’s length 
and the number of iterations in function of the 
parameter H for each corresponding time series. 
The learning process is performed using a batch 
model. In this case the weight updating is 
performed after the presentation of all training 
examples, which forms an epoch. The pairs of the 
used input-output patterns are 

 
(7) 

where, xi and yi are the corresponding input and 
output pattern respectively, and Np is the number of 

input-output patterns presented at each epoch. 
Here, the input vector is define as 

 
(8) 

and its corresponding output vector as 

 
(9) 

Furthermore, the index i is within the range of Np 

given by 

 
(10) 

where lx is the dimension of the input vector. 

In addition, through each epoch the number of 
iterations performed it is given by 
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(11) 

The proposed criterion to modify the pair (it,Np) is 

given by the statistical dependence of the time series 
{xn}, supposing that is a fBm. The dependence is 
evaluated by the Hurst’s parameter H, which is 

computed using a wavelet-based method (Abry et al, 
2003; Flandrin, 1992). 

Thus, a heuristic adjustment for the pair (it,Np) in 

function of H according to the membership functions 
shown in  

Fig.Fig.5 is proposed. 

 
 

Fig.5. Heuristic adjustment of (it,Np) in terms of H after each 
epoch 

 

Finally, after each pass the number of inputs of the 
nonlinear filter is tuned —that is the length of tapped-
delay line, according to the following heuristic 
criterion. After the training process is completed, both 
sequences —{xn} and {{xn},{xe}}, should have the 
same H parameter. If the error between H({xn}) and 
H({{xn},{xe}}) is grater than a threshold parameter θ 
the value of lx is increased (or decreased), according 

to lx 1. Explicitly, 

 
(12) 

Here, the threshold θ was set about 1%. 

4 Main results 

4.1 Generations of the data series from MG 
equations and cumulative rainfall 

Data time series are obtained from the MG equations 
(1) with the parameters shown in Table 1, by fixing 

=100 and α=20. This collection of coefficient was 

chosen for generating time series whose H 
parameters varies between 0 and 1. 

In addition, two time series extracted from 
meteorological data are used to forecast. Such 
data corresponds to monthly cumulative rainfall 
data measured at La Perla (-31.4309, -64.3322) 
and Santa Francisca (-31.8670, -64.3655) 
Córdoba, Argentina. The criterion for selecting 
these particular time series was the roughness, so 
the observation time for each time series does not 
match. Note that the observation period of La Perla 
time series comprises from January 1962 to 
December 1971, whereas the associated to Santa 
Francisca comprises from January 2000 to May 
2010. 

 
Table 1. Parameters for generating the times series 

 

Time 

Series 

No. 

Type Characteristic H 

1 MG β =0.32 0.96 

2 MG β =0.8 0.47 

3 MG β =0.85 0.262 

4 Meteorological La Perla 0.1353 

5 Meteorological 
Santa 

Francisca 
0.0205 

4.2 Set-up of Model  

The initial conditions for the filter and learning 
algorithm are shown in Table 2. Note that the first 
number of hidden neurons and iteration are set in 
function of the input number. These conditions of 
the learning algorithm were used for forecasting the 
time series, whose sizes have a length of 102 
values each. 
 

Table 2. Initial condition of the parameters 

 

Variable Initial Condition 

lx 7 

Ho 9 

it 105 

H 0.5 

 



428 Julián A. Pucheta, Cristian M. Rodríguez Rivero, Martín R. Herrera et al. 

Computación y Sistemas Vol. 14 No. 4, 2011 pp 423-435 
ISSN 1405-5546 

4.3 Measure of the Performance 

In order to test the proposed design procedure of the 
NN -based nonlinear predictor, an experiment with 
time series obtained from the MG solution and 
cumulative Rainfall time series was performed. 

The performance of the filter is evaluated using 
the Symmetric Mean Absolute Percent Error SMAPE) 
proposed in the most of metric evaluation, defined by 

 

(13) 

where, t is the time observation, n is the test set 
size, s each time series, Xt  and Ft are the actual 
and the forecast time series values at time t 
respectively. The SMAPE of each series s 
calculates the symmetric absolute error in percent 
between the actual Xt and its corresponding 
forecast Ft value, across all observations t of the 
test set of size n for each time series s. 

 

 
(a) 

 
       (b) 

 
(c) 

 
       (d) 

 
Fig.6. Forecast for MG time series No 1 from Table 1 
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4.4 Forecasting Results 

Each time series are composed either by sampling 
the MG solutions or by performing the monthly 
cumulative rainfall from two geographical sites. 
However, there are two classes of data sets  

employed. One is used for the algorithm in order to 
give the forecast one step ahead used to compare 
whether the forecast is acceptable or not in which 
the 18 last values can be used to validate the 
performance of the prediction system. 
 

 

  
(a) (b) 

 

  
(c) (d) 

 
Fig.7. Forecast for MG time series No 2 from Table 1 
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The Monte Carlo method was employed to forecast 
the next 18 values with an associated variance. 
Here it was performed an ensemble of 500 trials 
with a fractional Gaussian noise sequence of zero  
mean and variance of 0.11.  

The fractional noise was generated by the Hosking 
method (Dieker, 2004) with the H parameter 
estimated from the data time series. 

 

 

 

 

 

The following figures yield the results of the mean 
and the variance of 500 trials of the forecasted 18 
values. Such outcomes for one (30%) and two 
(69%) sigma are shown in Fig. 6, Fig. 7, Fig. 8, Fig. 
10, and Fig. 11 for each case detailed in Table 1, 
respectively. Each figure shows the performance of 

an invariant NN predictor filter and the one of the H 
dependent filter proposed here. In  
Fig.10.a the estimated H for the forecasted time 
series results negative. This given value is 
meaningless because of the fact that H varies 
between 0 and 1 and the forecasted time series  

 
(a)  

(b) 

 
(c) 

 
(d) 

Fig.8. Forecast for MG time series No 3 from Table 1 
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results too rough for the estimation algorithm (Abry 
et al, 2003; Flandrin, 1992). In each figure, the 
legend ―Forecasted‖ denotes the values obtained 
by Eq. (6), the legend ―Data‖ denotes the available 
data set, and the legend ―Real‖ denotes de actual 
values (not available experimentally) used here for 
verification purposes only. The obtained time series 
has a mean value, denoted at the foot of the figure 
by ―Forecasted Mean‖, whereas the ―Real Mean‖ 
although it is not available at time 102. This 
procedure is repeated 500 times for each time 
series. 

4.5 Comparative Results 

The performance of the stochastic NN-based 
predictor filter is evaluated through the SMAPE 
index —Eq. (13), shown in Table 3 along the time 
series from MG solutions and Monthly Cumulative 
Rainfall time series. The comparison between both 
the deterministic approach (Pucheta et al, 2009b) 
and the present forecasted time series is shown in 
Fig. 9. The SMAPE index for each time series is 
obtained by a deterministic NN-based filter, which 
uses the Levenberg–Marquardt algorithm with fixed 
parameters (it, Np). This result gotten through the 
predictor filter, an ensemble of 500 trials were 
performed between five sets of time sires in order 
to give the mean value of the times series, in which 

it is defined an upper and bottom range of 
percentage of possibility where the predicted value 
is validated as useful value. In addition, the figures 
of the SMAPE obtained by the stochastic NN-
based filter proposed here are also shown in Fig. 9. 
Thus, the legend ―Traditional‖ refers to the first filter 
and the legend ―Modified‖ refers to the second one. 

 

 
Fig.9. The SMAPE index applied over the five time 

series, by each tuning algorithm 

 

 
Table 3. Figures obtained by the proposed approach and the traditional algorithm 

 

 Modified Traditional 

Series 

No. H 

Real 

mean He 

Mean 

Forecasted SMAPE He 

Mean 

Forecasted SMAPE 

1 0.9621 0.214 0.857 0.184 3.388 10
-15

 0.8677 4.679 0.7405 

2 0.47 0.152 0.339 0.18 1.0411 10
-5

 0.3607 3.505 1.4598 10
-7

 

3 0.262 0.15 0.258 0.123 2.34 10
-7

 0.2456 1.937 1.308 10
-12

 

4 0.13538 50.84 0.139 46.28 4 10
-5

 -0.108 104.52 0.0655 

5 0.02055 65.21 0.088 80.7 9.1 10
-7

 0.073412 63.633 0.0099 

 

 

In Fig. 9 the value of SMAPEs is indicated for both 
filters. It can be noted the improvement since the 
SMAPE index diminishes from 0.16318 to 
0.000010311 which means an improvement of 
fourth order, averaging over the five time series. 

 
 

5 Discussion 
 

The assessment of the experimental results has 
been obtained by comparing the performance of 
the proposed filter against the classic filter, both  
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based on NN. Although the difference between 
both filters only resides in the adjustment algorithm, 
the coefficients each filter has, they performed 
different behaviors. In the five analyzed cases, the 
generation of 18 future values was made by each 
algorithm. The same initial parameters were used 
for each algorithm, although such parameters and 
filter structure are changed by the proposed 
algorithm, they are not modified by the classic 
algorithm. In the adjustment algorithm for the 
proposed filter, the coefficients and the structure of 
the filter are tuned by considering their stochastic 
dependency. It can be noted that in each of the 
figures — Fig. 6 to  

Fig.11— the computed value of the Hurst 
parameter is denoted by He or H when it is taken 
either from the Forecasted time series or from the 
Data series, respectively, since the Real (future 
time series) are unknown. Index SMAPE is 
computed between the complete Real series (it 
includes the series Data) and the Forecasted one, 
as indicates the Ec. (13) for each filter. Note that 
the forecast improvement is not over any given 
time series, which results from the use of a 
stochastic characteristic for generates a 
deterministic result, such as a prediction. 
 
 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig.10. Forecast for Monthly cumulative rainfall time series No 4 from Table 1 
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6 Conclusions 

In this work a feed-forward neural networks based 
nonlinear autoregressive (NAR) model for 
forecasting time series was presented. In addition, 
during forecasting stage the Monte Carlo simulation 
method with a fractional Gaussian noise was 
implemented. The learning rule proposed to adjust 
the NN’s weights is based on the Levenberg-
Marquardt method. Furthermore, in function of the 
long or short term stochastic dependence of the 
time series assessed by the Hurst parameter H, an 
heuristic adaptive law was proposed to update the 

NN topology at each time-stage, which is the 
number of input taps, the number of patterns and 
the number of iterations. The main result shows a 
good performance of the predictor system applied 
to time series from several benchmark of MG 
equations and Monthly Cumulative Rainfall time 
series, due to similar roughness between the 
original and the stochastic forecasted time series, 
evaluated by H and He, respectively. This fact 
encourages us to apply the proposed approach to 
meteorological time series when observations are 
taken from a single standpoint. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
Fig.11. Forecast for Monthly cumulative rainfall time series No 5 from Table
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