
On the NP-Completeness of Computing the Commonality
Among the Objects Upon Which a Collection of Agents

Has Performed an Action

Roberto Alonso and Raúl Monroy

Department of Computer Science,
Tecnológico de Monterrey, Campus Estado de México,

Carr. lago de Guadalupe Km 3.5, Atizapán, Estado de México,
Mexico

{roberto.alonso, raulm}@itesm.mx

Abstract. We prove the NP-completeness of the
so-called Social Group Commonality (SGC) problem
which queries the commonality among the objects
‘touched’ by collections of agents while executing an
action. Although it naturally arises in several contexts,
e.g., in profiling the behavior of a collection of system
users, SGC (to the authors’ knowledge) has been
ignored. Our proof of SGC NP-completeness consists of
a Karp reduction from the well-known Longest Common
Subsequence (LCS) problem to SGC. We also prove
that a special case of SGC which we call 2-SGC, where
the commonality among actions is limited to agent pairs,
remains NP-complete. For proving NP-completeness
of 2-SGC though, our reduction departs from the
well-known Hitting Set problem. Finally, we hypothesize
that the optimality version of SGC is NP-hard, hinting on
how to deal with the proof obligation.

Keywords. Social Group Commonality, complexity
theory, social networks, graphs.

Es NP-completo calcular la comunidad
entre los objetos sobre los que una

colección de agentes ha realizado una
acción

Resumen. En este trabajo demostramos que el
problema que llamamos Comunalidad de grupos
sociales (SGC por sus siglas en inglés) es NP-completo.
Este problema consulta la comunalidad entre los objetos
tocados por una colección de agentes que ejecutan
acciones. Aunque se presenta naturalmente en varios
contextos e.g., perfilar el comportamiento de un conjunto
de usuarios de un sistema, SGC ha sido, acorde
al conocimiento de los autores, ignorado. Nuestra
demostración consiste en una reducción de Karp a
partir del problema conocido como Longest Common
Subsequence (LCS). Probamos también que un caso
especial, al que llamamos 2-SGC, donde la comunalidad
entre las acciones está limitada a pares de agentes,

sigue siendo NP-completo. Para probar 2-SGC, nuestra
reducción parte del problema conocido como Hitting
Set. Antes de concluir con el artı́culo, especulamos
que la versión de optimización de SGC es NP-duro,
dando indicaciones de como realizar la demostración
necesaria.

Palabras clave. Comunalidad de grupos sociales, teorı́a
de la complejidad, redes sociales, grafos.

1 Introduction

Grouping is an everyday task. We tend to group
objects that are somehow similar, forming a class.
Often, grouping is one-dimensional; for example,
we put in the same class people with similar
income, the same gender, or with comparable
social status. Multi-dimensional grouping is much
more interesting, although harder to compute.
Indeed, there exists a number of daily situations,
where we would like to know the commonality
among the objects, upon which a collection of
agents has executed some action. For instance,
we would like to know all the connections (e.g.,
friends, colleagues, etc.) that have in common a
collection of users of a given social network (e.g.,
Facebook, Linkedin, etc.) This problem which we
call Social Group Commonality (SGC) is common,
simple to formulate, and interestingly hard.

For example, SGC can be used to structure
the use of a DNS server, so as to investigate
how a collection of agents (an IP address together
with a port number) relate to one another on the
basis of the web domains (an URL) they have
commonly visited over a period of time. We
use this SGC formulation for the detection of a
DNS attack, validating the working hypothesis that

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No. 4, 2013 pp. 489-500ISSN 1405-5546DOI: 10.13053/CyS-17-4-2013-003

malicious activity forms anomaly patterns in the
groups linking users with URL’s [1].

Another example of a SGC application consists
of computing the semantic relatedness of text
documents using wikification. Wikification is the
process of relating words in an arbitrary text to
concepts, structured as wikipedia articles [14, 11,
10]. We might like to know the relation (whether
weak or strong) among these articles, following
the idea that an article should be supported by a
group of concepts. We could use this relation as a
criterion for an article-concept ranking. Semantic
meaning of wikipedia articles could be useful
for numerous applications, including the semantic
web. Works like [6] study the complexity of some
aspects of the semantic web.

Also, forming customer classes is formulated as
SGC. For example, the staff of sales or marketing
would be eager to have all their customers grouped
together in terms of the commonality of the goods
or services they have somehow recently requested
for. These could be used, for example, to elaborate
sales offers, or issue a marketing campaign based
on a finer customer profile. Other example
applications include computing the file system
objects that are used simultaneously by a collection
of system users, the books or music commonly
bought by a set of individuals and many others.

In this paper, we prove that SGC is actually
NP-complete. Our proof consists of a Karp
reduction from the well-known Longest Common
Subsequence (LCS) problem to SGC. Roughly
speaking, the LCS decision problem consists of
determining whether there exists a string of at least
a given length that is a subsequence of every string
belonging to a finite set of strings. Not surprisingly,
LCS has also a number of applications including
bioinformatics and file comparison.

Interestingly, even computing the commonality
among the objects referred to by the actions carried
out by agent pairs is NP-complete, provided that
the objects remain in a given object set. Our
proof of the NP-completeness of this special SGC
case which we call 2-SGC also consists of a Karp
reduction; this time, though, our reduction departs
from the well-known Hitting Set (HS) problem to
SGC. Roughly speaking, the HS decision problem
consists of determining whether there exists a set
of at least a given cardinality such that it contains
at least one element which is also part of every set
from a given collection of sets.

We conclude the paper hypothesizing that the
optimality version of SGC is NP-hard.

The paper has the following structure. In
Section 2 we formally introduce the Social Group
Commonality problem, it also serves as a later
reference to formulate the SGC and 2-SGC
decision problems. Next, the Karp reduction
(Section 3) is shown as a proof of the SGC
NP-completeness. Section 4 presents the 2-SGC
problem which is a special case of SGC; we also
prove that it is NP-complete. Finally, remarks and
indications for further work are given in Section 5.

2 Social Groups: Computing
Commonality Among Users, Actions,
and Objects

In this section, we provide a model for the behavior
of a social group based on the objects referred to
by an action carried out by a collection of agents.
We shall use this model in order to formalize both
decision problems: SGC and 2-SGC.

2.1 Agents Executing Actions over Objects for
a Period of Time

Given that the behavior of an agent might change
over time (e.g., people may lose friends, books,
etc.), the kinds of agent interactions, together
with the kinds of agent relations these interactions
give rise to, remain for only a period of time.
Accordingly, we capture relations of interest relative
to a given time period called a window. A window is
given by a number of agent actions each of which
we henceforth call a query.

Let W be the set of all windows, ranged over by
w1,w2, . . ., A the set of all agents, ranged over by
a1, a2, . . ., and let O be the set of all objects, ranged
over by o1, o2, We shall use qryw(a, o) to denote
that agent a has queried object o, over window w.
The set of active agents, with respect to a given
window w ∈W, is defined as follows:

agt(w) = {x ∈ A | ∃y ∈ O, qryw(x, y)}

Likewise, the set of objects, onto which the agent
actions have been performed, is given by

obj(w) = {y ∈ O | ∃x ∈ A, qryw(x, y)}

Clearly, given a window w ∈ W, the activity of
agents, agt(w), over a collection of objects, obj(w),

Susana
Cuadro de texto
490 Roberto Alonso and Raúl Monroy

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No. 4, 2013 pp. 489-500ISSN 1405-5546 DOI: 10.13053/CyS-17-4-2013-003

can be represented by means of a query matrix,
Qw, of size |agt(w)| × |obj(w)| (where |S| denotes
the cardinality of set S), such that Qw

i,j = m implies
that agent ai has queried m times object oj across
w.

2.2 Groups

We now define a structure called a social group,
which relates agents that have carried out a query
over the same collection of objects for a given time
window.

Definition 1 (Social Group). Let w be a window,
with agents, agt(w), and objects, obj(w). Then, the
tuple

〈w,A ⊆ agt(w),O ⊆ obj(w)〉

written gw(A,O) for short, forms a social group of
size |O|, and weight |A|, iff every agent in A has
queried all objects in O, in symbols:

∀x ∈ A. ∀y ∈ O. qryw(x, y)

Notice that, in particular, for a given group
gw(A,O), qryw is the Cartesian product of A×O.

Definition 2 (Size-/Weight-Maximal Group). Let
w ∈ W be a window, and let Gw denote all the
existing groups in w. Then, a group gw(A,O) ∈ Gw

is called a size-maximal group of Gw if there does
not exist gw(A′,O′) ∈ Gw such that |O| < |O′|.

Similarly, a group gw(A,O) ∈ Gw is called a
weight-maximal group of Gw if there does not exist
gw(A′,O′) ∈ Gw such that |A| < |A′|.

Clearly, we can build a poset out of Gw, using a
lexicographical order, ≺, which combines the two
previous posets, namely: size, and weight, in that
order.

Definition 3 (�, ≺, Maximal Group). Define �
and ≺ as follows:

— 〈a, b〉 � 〈c, d〉 iff a < b, or (a = b and c ≤ d),
and

— s ≺ s′ if s � s′ and s 6= s′.

Then, let w ∈ W be a window, and let Gw

denote all the existing groups in w. Then, a group
gw(A,O) ∈ Gw is called a maximal group of Gw

if there does not exist gw(A′,O′) ∈ Gw such that
〈|O|, |A|〉 ≺ 〈|O′|, |A′|〉.

2.3 Queried Objects and Queried by Individuals

We now define symbols that collect information
about individuals’ activities.

Definition 4 (Agent Cover, Object Attraction).
Let w ∈ W be a window, with agents agt(w) =
{a1, a2, . . .} ⊂ A, and objects obj(w) =
{o1, o2, . . .} ⊂ O. Then, the cover of an agent ai,
with respect to w, written qi(w), is a list, just as
w, except that it contains all the objects queried by
agent ai, following w’s order of appearance:

qi(w) = 〈oj , ok, . . .〉 whenever,
w = 〈. . . , (ai, oj), . . . , (ai, ok), . . .〉

Likewise, the attraction of an object oj , with
respect to w, written trkj(w), is the list of all agents
that have queried oj :

trkj(w) = 〈ai, ak, . . .〉 whenever,
w = 〈. . . , (ai, oj), . . . , (ak, oj), . . .〉

2.4 “Real” world examples of SGC

Example 1. A team of market researchers
is interested in identifying groups of clients of
an online bookshop with common book interests.
Since the set of client book purchases is rather
huge, the team decides to segment the purchase
record history using a sliding window approach,
therefore fixing the window size (for instance, the
number of purchases) and the window step (for
instance, the number of purchases the window is to
be slid for the next group analysis.) For the sake of
simplicity, suppose the research team has fixed the
window size to 9 purchases, and that, currently, for
some window w has got the following observation:

w = 〈(c1, b1), (c1, b2), (c1, b3), (c2, b4),

(c2, b3), (c2, b2), (c3, b1), (c3, b4), (c2, b1)〉

where we use c, and b to denote a client and
a book, respectively. Then, clients and books
form the sets agt(w) = {c1, c2, c3}, and obj(w) =
{b1, b2, b3, b4}. The client purchase record, as
expressed by w, is then used to respectively
compute the covers of agents c1, c2, and c3: q1 =
〈b1, b2, b3〉, q2 = 〈b4, b3, b2, b1〉, and q3 = 〈b1, b4〉.

Clients c1 and c2 form a group of size and weight
two, since both have purchased books b2 and b3,
in symbols: g({c1, c2}, {b2, b3}). Notice that clients

Susana
Cuadro de texto
On the NP-Completeness of Computing the Commonality Among the Objects… 491

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No. 4, 2013 pp. 489-500ISSN 1405-5546DOI: 10.13053/CyS-17-4-2013-003

c2 and c3 also form a group of the same measures,
this time, though, given by g({c2, c3}, {b1, b4}), as
they have in common the purchases b1 and b4. With
this information, the market research team might
issue a campaign, offering, e.g., for sale the books
that clients do not have in common.

Example 2. Suppose now that we are interested
in studying how a collection of concepts, c1, c2, . . .,
are referred to in a few wikipedia articles, a1, a2,
Also, suppose, that at some time, we have
analyzed these articles and taken the following
observation:

w = 〈(c1, a1), (c1, a2), (c1, a3), (c2, a4),

(c2, a3), (c2, a2), (c3, a1), (c3, a4), (c2, a1)〉

Then, agt = {c1, c2, c3} and obj = {a1, a2, a3, a4},
with agent covers q1 = 〈a1, a2, a3, a4〉, q2 =
〈a4, a2, a1〉, and q3 = 〈a2, a3〉. Notice, however, that
in this case qi denotes the articles where concept
ci appears.

Again, we find two groups. One,
g({c1, c2}, {a1, a2, a4}) conveys, that concepts
c1 and c2 appear in three articles: a1 and a2,
and a4; and the other, g({c2, c3}, {a2, a3}), that
concepts c2 and c3 appear in articles a2 and a3.

Further examples of SGC are given by simply
substituting agents, objects and the action on
a particular scenario. For example, students
and books correspond to agents and objects,
respectively, while the action could be buying. As
another example, we can consider users as agents,
webpages as objects, and visiting a web page
using a browser as the action.

2.5 Problem Statement

Take a window, w ∈ W, and two positive integers,
z and t. Then, the problem that asks for all groups,
gw, in w, having size k or less and weight t or less
is, clearly, provably intractable. This is because
it is easy to construct instances of the problem
where exponentially many groups are smaller than
or equal to the given bound; this way, no polynomial
time algorithm could possibly list them all. As
pointed out by Garey and Jhonson [5], this problem
formulation might not be realistic, in that it involves
more information than one could hope to use. This
remains true for our problem unless we are trying
to compute a maximal group, or to compare two or

more populations in terms of their activity, as is the
case for the detection of a denial of service attack
to a DNS server (see, e.g., [1]), and many other
cases.

Accordingly, we shall cast the calculation of
social groups as a decision problem, having two
possible solutions, namely: “yes” or “no”, in a way
that it becomes of practical interest. In addition, this
casting is necessary as we shall be constructing a
Karp reduction from a well-known decision problem
to ours, when proving NP-completeness of social
group calculation.

The decision version of the social group
calculation problem can be defined as shown
below.

Definition 5 (Social Group Calculation, SGC).
INSTANCE: A window w ∈ W, a finite set

obj = {o1, o2, o3, ..., on} ⊂ O of objects, a finite
set agt = {a1, a2, a3, ..., am} ⊂ A of agents,
a finite set Qy = {q1, q2, q3, ..., qm} of agent
covers, one for each agent, a positive integer,
z > 0 and, a positive integer, t > 0.

QUESTION: Is there a group of size lesser than
or equal to z and weight t?

Example 3. Let w = 〈(a1, o1), (a1, o2), (a1, o3),
(a2, o4), (a2, o3), (a2, o2), (a3, o1), (a3, o4)〉, agt =
{a1, a2, a3}, obj = {o1, o2, o3, o4}, Qy = {q1, q2, q3}
with agent covers q1 = 〈o1, o2, o3〉, q2 = 〈o4, o3, o2〉,
q3 = 〈o1, o4〉. Together, they constitute a
yes-instance of SGC, with z = 2 and t = 2,
witnessed by the group g({a1, a2}, {o2, o3}).

Remark Determining whether or not there exists
a group of size z and weight t in a given window
is in the class P, under the proviso that we
do not bother ourselves to produce a witness
(see Example 3). To see this, simply notice
that social group information can be obtained by
looking into the matrix product1 Q × QT of the
query matrix, Q, and its associated transpose,
QT . Actually, from Q × QT , it is possible to
determine how many groups Q has, together with
their corresponding sizes and weights. Inspecting
this matrix product entirely is not complex and
is further alleviated by both facts: that Q × QT

1We are grateful and indebted to Johan Van Horebeek (from
CIMAT) for making this observation.

Susana
Cuadro de texto
492 Roberto Alonso and Raúl Monroy

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No. 4, 2013 pp. 489-500ISSN 1405-5546 DOI: 10.13053/CyS-17-4-2013-003

is symmetric and that the main diagonal carries
other information (namely, the top active agents).
However, determining a group of a given size z and
weight t is provably intractable, that is, producing
the witness g(agt, obj) cannot be carried out in
polynomial time.

3 SGC is NP-complete

The classic paper of Karp [5, 7] was a significant
breakthrough towards the understanding
of complex problems. Karp proves the
NP-completeness of several well-known problems
using a mapping procedure later known as a Karp
reduction. After that, several works on proving
NP-completeness appeared. As an example
during the last 12 years works like [3, 15, 4, 13]
showed the validity of using Karp’s idea.

Karp showed that for proving the
NP-completeness of an unknown problem, π′,
one may follow a five-step procedure. In the first
step, we select a problem, π, that has been proven
to be NP-complete (in principle, any NP-complete
problem would do, but a careful selection makes
it easier to find the proof of the third step, see
below). Next, in the second step, we prove that π′

is in NP. Then, in the third step, we show how to
transform π to π′; this step is typically known as
the reduction and denoted by π ≤p π

′. In the fourth
step, we show that the reduction can be carried
out in polynomial time. Finally, in the fifth step, we
prove that whenever there is an answer in π, then
there also is an answer in π′, and vice versa.

As expected, we shall follow this proof procedure
for establishing the main results of this paper.

3.1 Longest Common Subsequence Problem

For our first reduction, we have chosen the
Longest Common Subsequence (LCS) problem
for the Karp reduction: LCS ≤p SGC. LCS is
NP-complete and well-known [9], for it arises in
many contexts [2], such as bioinformatics [8] or
file comparison (c.f. the UNIX diff command.)
Let length(·) be a polymorphic function, which has
the natural interpretation, returning the number
of elements of its input argument; then LCS is
defined as follows:

Definition 6 (Longest Common Subsequence).
INSTANCE: A finite alphabet Σ, a set R of

strings from Σ∗, and a positive integer k.

QUESTION: Is there a string s′ ∈ Σ∗, with
length(s′) ≥ k, such that s is a subsequence
of each s′ ∈ R?

Example 4. Let Σ = {a, b, c, d}, R = {s1, s2}, with
strings s1 = abcd, s2 = dadbcaa,2 and let k = 3.
Together, they constitute a yes-instance of LCS,
with k = 3, witnessed by s′ = abc, the longest
common subsequence for the strings s1 and s2.

3.2 SGC NP-Completeness

Theorem 1: SGC is NP-complete.

Proof: Having fixed π to be LCS, we then
prove that SGC is in NP. To see this, notice
that any instance of SGC can be solved using a
Non-Deterministic Turing Machine (NDTM), which,
upon halting, provides a witness, g(A,O). Verifying
that g(A,O) truly is a witness can be certainly
carried out in polynomial time, as it consists of
checking that every agent in the set A queries all
objects in the set O.

We now proceed to produce the reduction, LCS
≤p SGC. We use I, J , . . . stand for indexing sets,
and write Σ̃I = {`i : ` ∈ Σ, i ∈ I} to denote the
set of symbols in Σ, indexed by I. Let s|p denote
the element e at position p ∈ {1, . . . , length(s)}
of s, either a list or a string. Now, let Σ be a
finite alphabet, R a set of strings from Σ∗, and
let k be an integer, such that they all constitute
an instance of the LCS problem. Our reduction
maps the parameters of an LCS instance to an
SGC instance, as follows:

1. For each alphabet symbol, `i ∈ Σ̃I , create a
unique object, oi ∈ õbjI , and then build the
bijective function, 7→I , which associates every
symbol in Σ with an object in obj: Σ̃I 7→I õbjI .

2. For each string, sj ∈ R̃J , create a unique
agent, aj ∈ ãgtJ , and then build the bijective
function 7→J , such that R̃J 7→J ãgtJ .

2Following standard notation, we use juxtaposition to denote
the string constructor function.

Susana
Cuadro de texto
On the NP-Completeness of Computing the Commonality Among the Objects… 493

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No. 4, 2013 pp. 489-500ISSN 1405-5546DOI: 10.13053/CyS-17-4-2013-003

3. For each string, sj ∈ R̃J , build the
associated cover of the agent aj , qj , such that
length(sj) = length(qj), and such that, for all
p ∈ {1, . . . , length(sj)}, sj |p 7→J qj |p; in this
way, we also build Qy.

4. For each agent cover, qj = 〈oi, ok, . . .〉, build
the expected agent (sub-)window:
wj = 〈(aj , oi), (aj , ok), . . .〉. Next, build w
simply by concatenating all agent windows.

5. Finally, set z = k and t = |R|.

Example 5. Consider an instance of LCS, where
Σ = {a, b, c, d, e}, R = {s1, s2}, s1 = abbdc, s2 =
abdeb, and k = 3. Following our Karp reduction, we
generate the next instance of SGC:

1. obj = {o1, o2, o3, o4, o5};
2. agt = {a1, a2};
3. q1 = 〈o1, o2, o2, o4, o3〉, q2 = 〈o1, o2, o4, o5, o2〉,

and Qy = {q1, q2};
4. w = 〈(a1, o1), (a1, o2), (a1, o2), (a1, o4), (a1, o3),

(a2, o1), (a2, o2), (a2, o4), (a2, o5), (a2, o2)〉;
5. z = 3, and t = 2.

Our reduction can be carried out in polynomial
time; indeed, it is clearly linear in the number of
steps plus the number and length of each string.

Now, the only step left is to prove that,
for any LCS instance, there exists a common
subsequence with length(s′) ≥ k, if and only if
there also is a group of size z = k and weight
t = |R| in the generated SGC instance.

(=⇒) Take again an instance of LCS, with Σ, a
finite alphabet, R, a set of strings from Σ∗, and
k, a positive integer. Also, take this instance to
be positive, with witness s. To transform s into a
SGC witness, g, carry out our reduction, and then
proceed as follows:

1. Set
A = agt, and
O = {o | s|p 7→J o, p ∈ {1, . . . , length(s)}}.

2. Finally, set g(A,O), which stands for a group
of size |O| and length |A|.

Example 6. Consider again Example 5. The
LCS instance is actually positive: s = abd is a
witness longest common subsequence, with k =
3. Carrying out the previous procedure, we end
up with a SGC instance which is also positive,
witnessed by g({a1, a2}, {o1, o2, o4}), with size z =
3 and weight t = 2.

(⇐=) We first prove that finding a group in the
generated SGC instance implies finding a common
subsequence for the LCS instance. Take the
generated instance of SGC, with agt, obj, Qy, w,
z and t. Then, to find a group, if any, proceed as
follows:

1. Set A = agt. Find O ⊆ obj, such that |O| = z,
and such that g(A,O) forms a group of size
z = |O|, and weigth t = |A|. If there does not
exist one such a group, halt with failure (see
below); otherwise convert O into a list, O′, and
continue.

2. Using the inverse of 7→J ,3 transformO′ into the
string Ô′.

3. Transform Ô′, imposing an ordering, so that it
is a subsequence of every ŝj (j ∈ J).

4. Call the transformed string, s, actually the
witness of the LCS instance; that is, s is a
longest common subsequence of every string
in R.

Example 7. Let us go back again to the generated
SGC instance of Example 5, and assume we
have now set k = 2. Then, using the previous
procedure, we could have picked up the group
g({a1, a2}, {o2, o4}) of size z = 2 and weight t = 2.
This, in turn, yields the LCS witness s′ = bd for
k = 2.

Consider now the case where we have A ⊆ agt
and O ⊆ obj, such that A and O are not a group
of size |O| and weight |A|. Then, it only remains to
prove that O cannot be transformed into a common
subsequence, for a positive answer of the LCS
problem instance. To see this, notice that, since A
and O are not a group, not all the elements of O
appear in the associated agent covers, and, thus,

3Recall that 7→I and 7→J are bijective, so it is guaranteed
that they both have an inverse.

Susana
Cuadro de texto
494 Roberto Alonso and Raúl Monroy

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No. 4, 2013 pp. 489-500ISSN 1405-5546 DOI: 10.13053/CyS-17-4-2013-003

O cannot be transformed into a string that is a
subsequence of every string in R, out of which we
have computed the agent covers.

Example 8. Consider Example 5, let A = {a1, a2}
and O = {o4, o5}. Together, these sets are not a
group of size z = 2 and weight t = 2. Transforming
this SGC answer to a LCS witness gives us s = de,
which can easily be seen not to be a valid common
subsequence with length(s) ≥ k = 2.

4 2-SGC is NP-complete

We now consider the scenario, where, given an
observation window, we would like to know if every
agent belongs to some group, not necessarily the
same one, of a size and a weight at least equal
to 2. This special case of the SGC model, which
we call 2-SGC, is still NP-complete. Our result
follows by means of a Karp reduction from the
well-known Hitting Set problem and relies on a
graphical representation of 2-SGC.

4.1 2-SGC Problem Statement

A query matrixQw, associated with window w ∈W,
can be easily turned into an incidence matrix, by
setting Qw

i,j = 1, if agent ai has queried object oj
along w, and Qw

i,j = 0, otherwise. An incidence
matrix in turn gives rise to a graph, which we call
connectivity graph, G = (V ,E), which is such that
V = obj ∪ agt, and E = {(ai, oj) | Qw

i,j = 1} (see
Fig. 1). We formalize 2-SGC as follows (as before,
when understood from the context, we shall refrain
ourselves from explicitly noting the window, w ∈W,
upon which observations are made):

Definition 7 (2-SGC).
INSTANCE: A connectivity graph G = (V ,E)

with V = obj ∪ agt and E = {(ai, oj) | Qi,j =
1}, for a given Q.

QUESTION: Is there a 2-SGC?, i.e., does every
agent, ai ∈ agt, belong to a group, involving
objects oj ∈ obj, of a size and a weigth at least
equal to two?

Example 9. Fig. 1 portrays an example
connectivity graph, where G = (V ,E), with V =
obj ∪ agt, obj = {o1, o2, o3} and agt = {a1, a2, a3},
and where E = {(a1, o1, (a1, o2}, (a1, o3), (a2, o2),
(a2, o1), (a3, o1), (a3, o3)}.
It actually is a yes-instance of 2-SGC, witnessed
by g({a1, a3}, {o1, o3}) and g({a1, a2}, {o1, o2}).
Notice that if we removed the dotted line, the
instance would no longer be of type yes.

Fig. 1. Incidence matrix Q and associated connectivity
graph; as it is standard in the literature (resource usage),
agents are denoted with circles and objects with squares

4.2 Hitting Set

For proving 2-SGC NP-completeness, we have
chosen Hitting Set (HS) [7, 12]:

Definition 8 (Hitting Set, HS).

INSTANCE: A finite set S, a collection C of
subsets of S, and a positive integer k ≤ |S|.

QUESTION: Is there a hitting set? i.e., is there
a subset S′ ⊆ S such that S′ has at least one
element of each subset of C with |S′| ≤ k ?

Example 10. Take S = {s1, s2, s3, s4}, C =
{C1,C2,C3}, C1 = {s1, s2, s3}, C2 = {s2, s4, s3},
and C3 = {s1, s2}. Together, they constitute a
yes-instance of HS, with k = 3, witnessed by
S′ = {s2, s3, s4}.

Susana
Cuadro de texto
On the NP-Completeness of Computing the Commonality Among the Objects… 495

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No. 4, 2013 pp. 489-500ISSN 1405-5546DOI: 10.13053/CyS-17-4-2013-003

4.3 2-SGC NP-Completeness

Theorem 2: 2-SGC is NP-complete.

Proof: Clearly, an NDTM can be used to solve
any instance of the 2-SGC problem, yielding a
collection of groups. Verifying the witness 2-SGC
amounts to verifying that each agent belongs to a
group of a size and a weight at least equal to two.
As argued in Section 3.2 group verification can be
carried out in polynomial time. Thus, 2-SGC is in
NP.

Fig. 2. A partially social cell

aj

Fig. 3. New agent chained to the component

We shall now provide a Karp reduction: HS ≤p

2− SGC. Consider an instance of HS, with S, a
finite set, C, a collection of subsets of S, and k ≥
|S|, an integer. We shall index S and C using I and
J , respectively. Then, for each element si ∈ S̃I , we
construct a social group as follows:

1. Add what we call a partially social cell,
consisting of an agent querying for two objects
(see Fig. 2).

2. If there is a set Cj containing si, complete
the most recently added social cell, adding an
agent labeled aj (see Fig. 4), thus forming
a group of size and weight equal to two.
Otherwise, remove the partially social cell,
skip the rest of these steps, going back to
step 1 and continuing with the next si ∈ S̃I .

Henceforth, we shall call a chain of social cells
a social component.

3. Then, add a partially social cell to the current
social component in such a way that the newly
added agent is connected with of one of the
resources (see Fig. 3).

4. If there is another Cj containing si go back to
step 2; otherwise, box the social component,
forming a subgraph, and label this graph Gi,
using the same index as the current si (see
Fig. 5). Then, go back to step 1, continuing
with the next si ∈ S̃I .

aj

Fig. 4. A social cell

aj

Gi

Fig. 5. Boxed component, Gi, comprising agent aj

Notice that in our reduction, the objects that are
introduced for the 2-SGC are dummy. An example
transformation of HS to 2-SGC is given below.

Example 11. Let S = {s1, s2, s3, s4}, C =
{C1,C2,C3}, with C1 = {s1, s2, s3}, C2 = {s2, s4},
C3 = {s1, s2, s4}, and k = 2 be an instance
of the HS problem. After applying the previous
transformation, we get the connectivity graph
shown in Fig. 6.

Susana
Cuadro de texto
496 Roberto Alonso and Raúl Monroy

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No. 4, 2013 pp. 489-500ISSN 1405-5546 DOI: 10.13053/CyS-17-4-2013-003

a3

a1

a1 a2

a3

a1

a2

a3

G1

G2

G3

G4

Fig. 6. The 2-SGC instance that results from applying
our reduction to the HS instance S = {s1, s2, s3, s4}, C =
{C1,C2,C3}, with C1 = {s1, s2, s3}, C2 = {s2, s4}, and
C3 = {s1, s2, s4}

Notice that our reduction can be performed in
polynomial time, since the construction of the graph
can be done in linear time on the cardinality of S.
So the only step left is to prove that a hitting set
with |S′| ≤ k exists if and only if 2-SGC holds in the
output connectivity graph.

(=⇒) Take a yes instance of HS, with S, a finite
set, C a collection of subsets of S, and k ≤ |S|, an
integer, such that S′ is the corresponding witness,
with |S′| ≤ k. Then, collect together in a single
connectivity graph all the box components, labeled
Gi, for each i such that si ∈ S′: G =

⋃
si∈S′ Gi.

Since, by construction, every agent aj in a boxed
component Gi is part of a social cell, it follows that
every agent belongs to a group that is of a size and
weight equal to two; therefore, we have yielded a
yes 2-SGC instance.

(=⇒) Finally, to transform a generated 2-SGC
answer into one of HS, simply select at least k
boxed components, such that they contain all
the agents appearing in the 2-SGC instance. To
transform the 2-SGC answer to a HS answer,
construct the HS witness using the corresponding
si using the label of the selected box component
Gi.

Example 12. Consider again the HS instance of
Example 11, together with the associated output
connectivity graph 2-SGC instance, yielded by our
reduction, and shown in Fig. 6. The set S′ =
{s1, s4} is hitting, for |S′| ≤ k = 2, since it contains
at least one element of each Cj ∈ C. We map S′

to a 2-SGC witness, selecting for each si ∈ S′ the
corresponding box component labeled Gi, G1 and
G4, and forming the corresponding connectivity
graph G = G1 ∪ G4 (see Fig. 7), in which clearly
every agent ai belongs to a group of size and
weight equal to two.

a3

a1 a2

a3

G1 G4

Fig. 7. 2-SGC made out of social components G1 and
G4, taken from the graph shown in Fig. 6

By contrast, notice that if we selected an invalid
witness from the ouput connectivity grap shown in
Fig. 11, say G = G3 ∪ G4 (see Fig. 8), we would
produce S′ = {s3, s4}, which is also invalid as a
witness for the associated HS problem. Thus, there
is a hitting set, with |S′| ≤ k, if and only if there is
a 2-SGC in the connectivity graph output by our
reduction.

With this, we have completed the fifth step of
the Karp reduction and also our proof of 2-SGC
NP-completeness.

Susana
Cuadro de texto
On the NP-Completeness of Computing the Commonality Among the Objects… 497

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No. 4, 2013 pp. 489-500ISSN 1405-5546DOI: 10.13053/CyS-17-4-2013-003

a3

a1

a1

G1

G3

Fig. 8. 2-SGC made out of social components G1 and
G3, taken from the graph shown in Fig. 6

5 Conclusion and Future Work

We introduced the Social Group Commonality
(SGC) problem. Basically, SGC queries the
commonality among the objects upon which a
collection of agents has performed an action. SGC
has several applications including modeling of DNS
servers for the detection of Distributed Denial
of Service (DDoS) attacks [1], multidimensional
clustering for marketing purposes, modeling of
system users, wikification, etc. SGC is simple to
formulate and interestingly hard.

The SGC problem and the special case 2-SGC
are NP-complete. The theorems presented in this
work give some insight into the difficulty of grouping
agents on the basis of the actions performed on
a set of objects. It also proves the inexistence
of a polynomial algorithm capable of computing a
group in SGC (Theorem 1) and determining if every
agent belongs to some group, not necessarily the
same one, in 2-SGC (Theorem 2), unless P=NP.
Moreover, if we look for a maximal group, SGC
might as well belong to the NP-hard class since
the NDTM needs to compute all groups to verify
the answer. Thus, ongoing work includes proving
NP-Hardness of SGC, using a Turing reduction.

The best algorithm to solve SGC remains open.
A naı̈ve algorithm has an exponential number of
operations. This algorithm computes combinations
of objects making polynomially intractable to find
every group in a window. Algorithms to solve,
correctly and completely, SGC can use the idea of
the absence of some objects combinations. For
example, a group of Facebook users, John and
George with common friends Laura, Lisa and Paul,
exists if and only if John and George are friends
of Laura and Paul, if John and George are friends

of Laura and Lisa, and if John and George have
the common friends Lisa and Paul. From this idea
we can drastically reduce the search space when
looking for all groups in a window.

We are currently working on finding the
phase transition of SGC. Roughly speaking,
phase transition helps us to identify instances
of NP-complete problems solvable in polynomial
time. Current experimental data indicate that the
complexity of an instance is given by the size and
weight of the groups in a window.

The results presented in this work provide
a better understanding of this (to the authors’
knowledge) so far ignored problem. The results
also motivate research in an area where the best
algorithm, heuristics, and applications for SGC are
the main topics to be covered.

Acknowledgement

This paper has largely benefited from numerous
discussions with Luis Ángel Trejo-Rodrı́guez. We
thank to the members of the NetSec group at
Tecnológico de Monterrey, Estado de México, for
their constructive comments on an earlier version
of this paper. The first author was supported by
CONACYT student scholarship 45904, while the
second author was in part supported by CONACyT
grant 105698.

References

1. Alonso, R., Vazquez, J., Trejo, L., Monroy, R., &
Sanchez, E. (2009). How social networks can help
detecting ddos attacks on dns servers. In Artificial
Intelligence and Applications, Complementary
Proceedings of MICAI 2009, 8th Mexican
International Conference on Artificial Intelligence.
Sociedad Mexicana de Inteligencia Artificial,
Guanajuato, Mexico. ISBN 978-607-95367-1-8,
261–270.

2. Bergroth, L., Hakonen, H., & Raita, T. (2000).
A survey of longest common subsequence
algorithms. In Proceedings of the Seventh
International Symposium on String Processing
Information Retrieval (SPIRE’00), SPIRE ’00. IEEE
Computer Society, Washington, DC, USA. ISBN
0-7695-0746-8, 39–48.

Susana
Cuadro de texto
498 Roberto Alonso and Raúl Monroy

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No. 4, 2013 pp. 489-500ISSN 1405-5546 DOI: 10.13053/CyS-17-4-2013-003

3. Dı́az, J., Pottonen, O., Serna, M., & van Leeuwen,
E. J. (2012). On the complexity of metric dimension.
In Proceedings of the 20th Annual European
conference on Algorithms, ESA’12. Springer-Verlag,
Berlin, Heidelberg. ISBN 978-3-642-33089-6,
419–430. doi:10.1007/978-3-642-33090-2 37.

4. Dyer, M. & Greenhill, C. (2000). The complexity
of counting graph homomorphisms. In Proceedings
of the ninth international conference on on Random
structures and algorithms. John Wiley & Sons, Inc.,
New York, NY, USA, 260–289.

5. Garey, M. R. & Johnson, D. S. (1990). Computers
and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA. ISBN 0716710455.

6. Horst, H. (2005). Combining rdf and part of owl with
rules: Semantics, decidability, complexity. In Gil, Y.,
Motta, E., Benjamins, V., & Musen, M., editors,
The Semantic Web – ISWC 2005, volume 3729 of
Lecture Notes in Computer Science. Springer Berlin
Heidelberg. ISBN 978-3-540-29754-3, 668–684.
doi:10.1007/11574620 48.

7. Karp, R. (1972). Reducibility among combinatorial
problems. In Miller, R. & Thatcher, J., editors,
Complexity of Computer Computations. Plenum
Press, 85–103.

8. Liu, W., Chen, L., & Zou, L. (2007). A parallel
lcs algorithm for biosequences alignment. In
Proceedings of the 2nd international conference
on Scalable information systems, InfoScale
’07. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications
Engineering), ICST, Brussels, Belgium, Belgium.
ISBN 978-1-59593-757-5, 83:1–83:8.

9. Maier, D. (1978). The complexity of some problems
on subsequences and supersequences. J. ACM,
25(2), 322–336. ISSN 0004-5411. doi:10.1145/
322063.322075.

10. Mihalcea, R. & Csomai, A. (2007). Wikify!:
linking documents to encyclopedic knowledge. In
Proceedings of the sixteenth ACM conference
on Conference on information and knowledge
management, CIKM ’07. ACM, New York, NY, USA.

ISBN 978-1-59593-803-9, 233–242. doi:10.1145/
1321440.1321475.

11. Milne, D. & Witten, I. H. (2008). Learning to
link with wikipedia. In Proceedings of the 17th
ACM conference on Information and knowledge
management, CIKM ’08. ACM, New York, NY, USA.
ISBN 978-1-59593-991-3, 509–518. doi:10.1145/
1458082.1458150.

12. Paschos, V. T. (1997). A survey of approximately
optimal solutions to some covering and packing
problems. ACM Comput. Surv., 29(2), 171–209.
ISSN 0360-0300. doi:10.1145/254180.254190.

13. Schmitt, M. & Martignon, L. (2006). On the
complexity of learning lexicographic strategies. J.
Mach. Learn. Res., 7, 55–83. ISSN 1532-4435.

14. Witten, I. H. (2010). Semantic document
processing using wikipedia as a knowledge base.
In Proceedings of the Focused retrieval and
evaluation, and 8th international conference on
Initiative for the evaluation of XML retrieval,
INEX’09. Springer-Verlag, Berlin, Heidelberg. ISBN
3-642-14555-8, 978-3-642-14555-1, 3–3.

15. Xu, D., Chen, Y., Xiong, Y., Qiao, C., & He, X.
(2006). On the complexity of and algorithms for
finding the shortest path with a disjoint counterpart.
IEEE/ACM Trans. Netw., 14(1), 147–158. ISSN
1063-6692. doi:10.1109/TNET.2005.863451.

Roberto Alonso is a Ph.D.
student in Computer Science
at Tecnológico de Monterrey,
Campus Estado de México
(CEM). His thesis work is
related to the detection of
security anomalies on DNS
servers. Since 2012, he is a

part-time lecturer at Tecnológico de Monterrey,
CEM. His research interests include complexity
theory, particularly, proving NP-completeness of
problems, pattern recognition, data mining and
computer security.

Susana
Cuadro de texto
On the NP-Completeness of Computing the Commonality Among the Objects… 499

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No. 4, 2013 pp. 489-500ISSN 1405-5546DOI: 10.13053/CyS-17-4-2013-003

Raúl Monroy obtained a Ph.D.
in Artificial Intelligence in 1998
from Edinburgh University,
under the supervision of Prof.
Alan Bundy. He is a (full)
Professor in Computing at
Tecnológico de Monterrey,
Campus Estado de México.

Since 1998, he is a member of CONACyT’s

National Research System, currently rank 2. Dr.
Monroy’s research interests are in discovery and
application of general search control strategies
for uncovering and correcting errors in either a
system or its specification, detecting anomalies
endangering information security and planning
robot motion.

Article received on 19/12/2012; accepted on 15/01/2013.

Susana
Cuadro de texto
500 Roberto Alonso and Raúl Monroy

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No. 4, 2013 pp. 489-500ISSN 1405-5546 DOI: 10.13053/CyS-17-4-2013-003

