
Computación y Sistemas Vol. 17 No.3, 2013 pp. 317-327 
ISSN 1405-5546 

Parallel Adaptive Method for Selecting Points of Interest 
in Structures: Cranial Deformation 

Claudia García-Blanquel
1
, Amitava Majumdar

2
, and René Luna-García

1
 

1 
Centro de Investigación en Computación, IPN, Mexico City, 

Mexico 

2 
San Diego Supercomputer Center, University of California San Diego, 

La Jolla, CA 92037, 
USA 

cgarciab10@sagitario.cic.ipn.mx, majumdar@sdsc.edu, lunar@cic.ipn.mx 

Abstract. In this paper, we present a cranial 

deformation simulation by applying a stress model 
using the Finite Element Method (FEM). We determine 
the geometry of cranium by processing 134 Computed 
Tomography (CT) images. We implement an image 
segmentation algorithm to build a three-dimensional 
cranium structure. We simulate stress and propose the 
boundary conditions according to the final position of 
forces applied by a stereotactic frame fixed on the 
human head. We used probabilistic and adaptive 
methods to select points in the structure with the 
purpose of reducing the computational cost and 
computational error due to discretization problem. We 
implement the algorithms using parallel programming 
(PosixThread and MPI). 

Keywords. HPC, parallel programming, FEM, adaptive 

method, cranial deformation. 

Método adaptativo paralelo para la 
selección de puntos de interés en 
estructuras: deformación craneal 

Resumen. En este trabajo, presentamos un modelo de 

deformación por esfuerzos para el cráneo humano 
usando el Método del Elemento Finito (FEM). 
Determinamos la geometría del cráneo a partir de 134 
imágenes de tomografías computarizadas (CT) e 
implementamos un algoritmo para la segmentación de 
imágenes y construir una imagen tridimensional del 
cráneo. Simulamos los esfuerzos y proponemos las 
condiciones de frontera de acuerdo con la posición de 
la fuerza aplicada por un marco estereotáctico fijo 
sobre un cráneo humano. Aplicamos métodos 
probabilísticos y adaptativos para la selección de 
puntos en la estructura con la finalidad de reducir el 
costo computacional y el error de cálculo debido a la 

discretización del problema. Implementamos los 
algoritmos usando programación paralela (PosixThread 
y MPI). 

Palabras clave. HPC, programación paralela, FEM, 

método adaptivo, deformación craneal. 

1 Introduction 

In science and engineering, models of continuous 
systems may contain a great number of degrees 
of freedom, so when they are discretized by a 
numerical method, the latter produces an 
algebraic system of linear equations, requiring a 
high computational cost. Therefore, parallel 
computing and High Performance Computing 
(HPC) are necessary resources that should be 
used in this context. 

One of the great challenges of the scientific 
computing field is analysis of a series of 
considerations determined by factors external to 
the problem of interest, which impact directly on 
the way of implementing the solution of the 
problem. Some of these considerations are the 
number of available processors, size and type of 
the domain partition, default runtime. 

These main considerations leave a numerical 
solution with few degrees of freedom, making 
computing application an efficient tool which also 
allows it to be flexible and adaptable to future 
specification changes, a common matter in 
science and engineering. 

On the other hand, parallel computing is a 
technique which allows distribution of a large 
computing load among many processors. It is well 
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known [13] that one of the major difficulties of 
parallel computing is coordination of the activities 
of different processors and information exchange 
among them. The mathematical formulation of the 
problem, i.e., domain decomposition [1, 3], 
incorporates a natural separation of tasks and 
remarkably simplifies information transmission.  

The models derived from the field of 
Biomechanics have been viewed as continuous 
models. Biomechanics corresponds to Mechanics 
applied to Biology, that is, the discipline intended 
to predict mechanics in living beings. This science 
helps to understand the usual functioning of 
organisms, to characterize the behavior of living 
tissues and organs from the mechanical 
viewpoint, to predict changes in function of certain 
alterations, and to propose methods of artificial 
interventions. 

With this concept, the problem is posed within 
the Impact Biomechanics area, which looks for a 
better understanding of impacts on key anatomic 
areas, the circumstances under which a trauma is 
produced, and its frequency. 

For these reasons, there is a growing interest 
in the use of detailed models for better 
representation. This implies a higher necessity for 
a feature detection task. For the representation of 
some entity, it is therefore necessary to be able to 
select distinctive points on a model in order to 
keep the efficiency in the processes applied on 
them. Some tasks that benefit from this capability 
are object registration [5], object retrieval and 
matching [6], mesh simplification, viewpoint 
selection [9] and mesh segmentation [12, 18], just 
to mention some. 

The interest point selection on data is a 
challenging problem for several reasons. First, 
there is no consensus about definition of an 
interest point. A commonly used definition relates 
the measures of interest to the level of protrusion 
of outstanding local structures. So, vertices on 
smooth or nearly planar sections of a surface will 
have low interest, as opposite to vertices in 
regions with uncommon local structure. For 
instance, in a cranium-shaped model, an interest 
point selection should select vertices on the scalp 
and face. Second, the topology meshes are 
arbitrary. That is, a vertex can have an arbitrary 
number of neighboring vertices. This makes the 
task of selecting a local neighborhood around a 

vertex harder. In addition, this drawback causes 
such effect that different tessellations may 
represent the same locality and therefore the 
interest point method should be able to deal with 
that. Third, without a well-defined topological 
structure for meshes, the extent of a locality in 
which a vertex is an interest point is unknown or 
difficult to compute. Finally, there is no additional 
information other than the position of vertices and 
the connectivity information among them. This 
fact complicates the process because the level of 
interest needs to be measured using available 
information, which also depends on the topology 
of the mesh. 

We use a parallel adaptive method for 
selection points of interest on structures. We 
chose the gradient operator for several reasons. 
First, the computation of the operator is an 
efficient and simple task. This is an important 
issue if we want to use the interest point selection 
as a preliminary stage of subsequent process 
such as cranial deformation. Second, the gradient 
method has been effectively used in a number of 
applications which have shown high effectiveness 
as reported in publications [21, 17]. Finally, 
interesting evidence has been found recently, 
which greatly favors the ability to capture 
concavities, flexibility of tailoring the force field, 
and reduction of computational cost [19, 20]. 

The overall process consists of three steps: 
reduce computational time, improve accuracy, 
and present an analysis of the structure to 
observe deformities due to application of stress 
using a different set of interest points. 

2 Image Processing 

The original measurement protocol included high-
resolution images (512x512 pixel matrix) with a 
slide increment of 0.47 mm. In the first step, in 
order to construct the geometric model of the 
cranium, outer bone contours were extracted, 
slice per slice, from the stack of 134 CT 
(Computed Tomography). 

         
       

     

         (1) 

We use one approximate range of 3000 levels 
of gray which can be represented by integer 



Parallel Adaptive Method for Selecting Points of Interest on Structures: Cranial Deformation 319 

Computación y Sistemas Vol. 17 No.3, 2013 pp. 317-327 
ISSN 1405-5546 

numbers of           bits. On the scale of 
Hounsfield, we use zero for the pixel value of the 
water, the air pixel with a good approximation 
equal to -1000 Hounsfield Unit (HU) and bone 
tissue between 200UH and 2000HU (Fig. 1). 

We defined the range of levels of gray to work, 
and the image processing was performed in 
parallel with the algorithm whose diagram is 
shown in Fig. 2. 

1. CT images are stored as matrices nxn 
which represent the gray value of each pixel 
image (Fig. 3a).  

2. The value of zero is given to the tones that 
represent data such as air, water or soft 
tissues, i.e., anything that is not considered 
a bone. 

3. We perform the calculation and histogram 
image. 

4. We propose a first maximum and advances 
inside the histogram image until it produces 
significant and increasingly positive values. 
From this level it is considered as an area 
of interest (Fig. 3b). 

5. The resulting histogram expansion is 
located at the lowest level of the interest 
region and ponder the other levels in lineal 
forms. 

6. A method for removing noise from the CT 
scan is applied to each image; this method 
assigns a black value to each white pixel 
surrounded by black pixels. 

Finally, a connectivity process is implemented, 
which discriminates each individual structure 
without interest (mandible, vertebrae and patient 
stretcher), see Fig. 3c. 

The process ends once the files are read that 
make up the overall 2D information (Fig. 3d). 

The result is the point cloud data sets of 
surface cranium (Fig. 4), and with this information 
we built the cranium in 3D using ROOT 
5.34/01 [11]. 

3 Interest Point Selected Methods 

Two methods based on the principle of 
deformable models are presented below. They 
are neither the only nor the most powerful 
methods but techniques with a good tradeoff 
between the computational cost and the quality of 
segmentation. Applying the first method, called 
Gradient Vector Flow (GVF), we generated 

 

Fig. 3. Image processing 

 

Fig. 1. Hounsfield scale 

 

 

Fig. 2. Block diagram 
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variations, so this flexibility has been a major 
interest for use. The second method is a 
consequence of the first one in terms of reducing 
the computation time and providing other benefits, 
and is known as the Vector Field Convolution 
(VFC). 

3.1 GVF: Gradient Vector Flow 

This segmentation method based on deformable 
models [2] improves other deformable models in 
two important respects. The first one is that the 
surface mesh is drawn to the edges of the organ 
of interest from farther distances, and this 
distance takes into account the position of the 
neighboring edges, which gives a second 
segmentation quality concavities. 

First we define the gradient vector flow field to 
be the vector field  (   )    (   )  (   )  that 
minimizes the energy functional 

  ∬ (  
    

    
    

 )                    (2) 

This variational formulation follows a standard 
principle of making the result smooth when there 
is no data. In particular, when      is small, the 
energy is domatinated by sum of squares of the 
partial derivatives of the vector field, yielding a 
slowly varying field. On the other hand, when      
es large, the second term dominates the 
integrand and is minimized by setting     . The 
parameter μ is a regularization parameter 
governing the tradeoff between the first term and 
the second term in the integrand. 

3.1.1 Numerical Implementation 

Using the calculus of variations, it can be shown 
that the GVF field can be found by solving the 
following Euler equations: 

     (    )(  
    

 )    (3) 

     (    )(  
    

 )    (4) 

where    is the Laplacian operator. These 
equations provide further intuition behind the GVF 
formulation. Note that in a homogeneous region 
(where  (   ) is constant), the second term in 
each equation is zero because the gradient of 
 (   ) is zero. Therefore, within such a region, u 
and v are each determined by Laplace equation, 
and the resulting GVF field is interpolated from 
the region boundary, reflecting a kind of 
competition among the boundary vectors. This 
explains why the GVF yields that point into 
boundary concavities. 

The computational cost increases as this 
constant increases and it is a price that must be 
paid when the mesh surface initialization is far 
from the edges of the organ of interest. 

3.2 VFC: Vector Field Convolution 

Research on the computational cost of GVF led 
us to propose an emulation of the creation of the 
vector field [10]. So, the vector field is the 
diffusion gradient vector of the desired edges. It 
was proposed to create the vector field spreading 
with no diffusion gradient from convolution of a 
kernel vector, which is the initial edge of the 
structure of interest. 

First we define a vector field kernel  (   )  
   (   )   (   )  in which all the vectors point to 
the kernel origin:  

 (   )   (   ) (   ) (5) 

where  (   ) is the magnitude of the vector at 
(   ) and  (   ) is the unit vector pointing to the 
kernel origin (0, 0):  

 (   )    
 

 
       

(6) 

 

Fig. 4. Cranium in 3D 
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except n (0, 0) = [0, 0] at the origin, where 

  √      is the distance from the origin. If the 

origin is considered as the Features of Interest 
(FOI), this vector field kernel has a desirable 
property that a free particle placed in the field is 
able to move to the FOI, such as edges. Note that 
the kernel is origin of the structure. 

The VFC field highly depends on the 
magnitude of the vector field kernel  (   ). By 
considering the fact that the influence from the 
FOI should decrease as the particles are further 
away, the magnitude should be a decreasing 
positive function of distance from the origin. 

3.2.1 Numerical Implementation 

The continuous vector field kernel  (   ) is 
approximated by a discrete and finite matrix given 
as  

    (   )                      

where R denotes the preferred kernel radius. 
Three advantages are obtained from this 

segmentation method. First, the generation time 
of the vector field is substantially reduced by the 
type of transactions performed. Secondly, the 
vectors in the vector field point to the centers of 
gravity of the structure to improve the attraction 
concavities or stretches. And thirdly, the method 
is less sensitive to noise. This method is called 
the vector field convolution, VFC. 

3.2.2 Adaptive Methods 

First, a local selection of points should not involve 
a complete reconstruction of the structures that 
are modeled; in contrast, it must be local 
computational cost that would entail. On the other 
hand, the time required for modification should be 
proportional to the number of modified elements. 
To achieve these desirable objectives, it is 
necessary to find algorithms and data structures 
that conform to the structure of the problem as 
well as the refinement scheme used. 

3.2.3 Approximation Point Method 

We view this method as a constrained 
optimization problem. It intends to seek the 
surface passing through points with the minimum 
curvature, or with the lower gradient [4]: 

  ( )   ( )         
(7) 

The minor dimension K which verifies the 
above inequality is a function of minimum 
variation in the direction of the gradient. 

At this point the problem is to minimize the 
following functional form: 

 ( )         (     ( )) (8) 

It is defined by u in W, set of liptschitzians 

functions Ω bounded in   , where u represents 

the sought after surface and   ‖  ‖.  
The existence of solutions is guaranteed 

with fairly weak conditions on the function   , as 
quasiconvexity. Therefore, they try to follow a 
procedure of discretization based on finite 
differences. They define the discretization of     

of   in size cells (
 

 
)  (

 

 
), and to define the 

discretization    of W. We consider upper and 

lower triangles in  ̅ , obtaining         }, 
affine in every triangle. 

The functions of v are considered as vectors, 
where the components are free except for the 
coordinates where we have data.  

3.2.4 Vector Interaction Field Method 

Several approaches can be considered to select 
the number of rings around a point as 
neighborhood. But in irregular and complex 
meshes, these methods do not approximate a 
neighborhood adequately. 

To tackle this problem, we develop an 
adaptive technique. Our method selects a 
different neighborhood size depending on the 
area where the impact is applied: 

| ⃗( ̅)  ( ̅)|     (9) 

and  

| ⃗( ̅)  ( ̅)|     (10) 

where     . 
It is important to note that our method selects 

a fraction of the number of interest.  
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4 Selecting Interest Points 

As each vertex is associated with the gradient 
operator value, we present two ways to select the 
interest points of a given object. Firstly, we 
preserve the vertices which are local maxima. To 
do so, we select a vertex v which holds the 
following condition: 

 ( )   ( )                 (   )    (11) 

Secondly, we present two approaches to 
select the final set of interest points. 

Select the points with the highest response. 
We can pick a constant fraction of interest points 
depending on the application. In this proposal, we 
obtain the points with higher saliency; therefore, 
some portions of the object do not have interest 
points. 

The best distribution of interest points. This 
proposal consists of two steps. First, we sort the 
pre-selected interest points according to the 
gradient operator values in a decreasing order. 
Second, we apply Algorithm 1 to sorted points 
and select the final set of interest points. 

Algorithm 1. Interest Points (Gradient Method) 

Requires: Set P of pre-selected interest points 
in order of the gradient operator value. 
Ensures: Final set of interest points. 
Let Q be a set of points 
    

for     to |P| do 
Gradient Method(ρ) 
end for 
Return Q 

The value of ρ can be considered as a fraction 
of the percentage of the object bounding and it 
has effect in the number of returned interest 
points. Fig. 5 and Fig. 7 show the result of the two 
options to select interest points. 

5 Cranial Deformation 

The analytical models are limited to problems with 
regular geometry, the simple boundary condition 
and homogeneous properties of materials.  

Problems with geometrically complex domains 
of materials can be represented by a collection of 
geometrically simple subdomains called finite 
elements. The approximation functions are 
derived for each finite element since any 
continuous function can be represented by a 
linear combination of algebraic polynomials. Head 
injuries are related to failure of the tissue, 
characterized in some form of stress, strain or 
deformation. Finite element method can provide 
distribution of stress, strain or deformation across 
and within different tissues of a given 
biomechanical input, as the impact on the 
cranium. Identification of the magnitudes and the 
location of the quantities, which exceed the 
tolerance level of tissues, constitutes the link 
between external mechanical quantities and 
internal injuries. Finite element models are 
repeatable and reproducible, and simulations may 
be seen as substitution experiments without 
biologic variability.  

5.1 Finite Element Modeling (FEM) 

FEM is one of the most frequently used methods 
for solving problems of stress-strain. This is 
because it is possible to predict the distribution of 
stresses and displacements which occur in these 
areas to apply loads without resorting to models 
in vitro. The input variables for this kind of models 
are: 

 The mechanical properties of the materials 
in the case of the cranium are equal in all 
directions and exhibit isotropic behavior. 

 Charge distributions on some items of the 
cranium. 

 The actual geometry used three-
dimensional elements and it is intended to 
gain a better approximation of the model, 
which is a better adjustment of the results 
obtained and greater utility in them. 

Resolving the issue through the finite element 
method could be divided into the following 
phases: 

 

           (12) 

    [  ]    (13) 
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5.2 Geometric Discretization 

A body which we call   is divided into p parts 

       with (     ) = 1 (Fig. 6), which is a non-

overlapping decomposition [2]. 
The subdomains    are related to the 

processors in such a way that all computation for 
   are performed on the processor i. Thus, each 
subdomain can be discretized independently of 
other subdomains with finite element. The only 
constraint which one has to consider is a 
consistent discretization of the coupling 
boundaries, which means that an interface ∂i ∩ 
∂k, both domains must have the same number of 
nodes. 

5.3 Selecting Interpolation Functions 

After discretizing the domain into finite elements 
and introducing piecewise interpolation functions, 
each element is defined by an interpolation 
function that describes the behavior between the 
points. Interpolation functions express Cartesian 

displacement             of any point within the 
element in terms of displacements and strain of 
its nodes   

            
 . 

The final system of equations, which results 
from the above approximations (1) and (2), has 
the form 

           (14) 

where the global stiffness matrix [K] in (14) is in 
fact a collection of elemental stiffness matrices 

    ∑[ ( )]

 

 (15) 

Evaluation of the elemental stiffness matrices 
involves computation of interpolation functions 
which are local over the domain of a single finite 
element. The inherent parallelism (15) in the 
concurrent generation of the element matrices is 
clear. 

5.4 Indicate the Properties of Elements 

The properties considered were obtained from 
specialized literature [8, 16]; the load conditions 

and frontier are applied according to the final 
position of a stereotactic frame fixed on the 
human head (Table 1). 

The properties are linear elastic to the 
cranium. 

 
Fig. 5. Selection points from 35% 

 

 

Fig. 6. Overlapping domain decomposition 

 
Fig. 7. Selection points from 25% 
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5.5 Matrix Assembly  

The stiffness matrix of the structure is formed of 
contributions from the different matrices of 
individual elements. This operation is referred to 
as assembly. 

     ∫     ⌈ ⌉        
 

 (16) 

It can also be expressed as a matrix called the 
stiffness matrix, which indicates the local 
properties of each element: 

   [
       

   
        

] (17) 

In the assembly process, the coefficient    of 

the elementary matrix must be placed in the 
position ij of the overall stiffness matrix K of the 
structure. 

    (
   

     
 

   
   

     
 

)

   

 (18) 

The stiffness matrix of the element is a square 
matrix of nxn size, where n is the product of the 
degrees of freedom of the element by the number 
of nodes (m). For computation, the matrix is 
divided into mxm (number of nodes) submatrices. 

The force vector of the structure considers the 
contribution of each element of the mesh. In the 
assembly process, the coefficient   

  must be 

placed in the position of the overall force vector of 
the structure   (Fig. 8). 

5.6 Geometric Reconstruction 

First, we use an algorithm which allows obtaining 
the Delaunay triangulation for geometric 
reconstruction [7]. We use the point cloud data 
set, but the result is a mesh like one in Fig. 9, 
where unconvincing areas are highly dense with 
respect to the surface under analysis. 

It is here that we apply an adaptive method for 
selecting points, to improve the analysis and 
achieve better accuracy and lower computational 
cost. 

Thus, the original problem is transformed into 
a nonlinear optimization and finite-dimensional 
differentiable problem to be solved numerically by 
FEM. In particular, the processed information 
represents the points in a matrix and the points 
should be chosen to optimize the gradient norm 
calculated by the finite difference approximation. 

 

Fig. 9. Geometric cranium reconstruction  

Table 1. The mechanical properties used in the 

numerical model 

 

Young’s 
modulus 

Ρ(Pa) 

mass 
density 

E (N/mm
3
)   

The Poisson 
ratio 

Cranium
8
 2019 6500 0.21 

Facial 
bone

16
 

5000 6500 0.2 

 

Fig. 8. Overall force vector 
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6 Results 

We applied compressive forces in the first case, 
two on the front and two on the back, two on the 
right side and two on the left side. Fig. 10 shows 
the simulated strength with a strength load value 
P = 1000N, such as in [8]. 

We worked with CT images and exploited the 
Hounsfield scale in the parallel algorithm for 
image processing, and this allowed us to obtain 
better characterization of the cranium taking into 
account the results presented in [8] for image 
processing (Fig. 11). 

We performed experiments by varying average 
points to see the accuracy effect of reducing the 
number of interest points according to the two 
methods (the gradient method and the stochastic 
method), see Fig. 12. 

Fig. 13 shows the displacement on the front 
and back sides, obtained with a strength load 
value P = 1000N and using different point cloud. 
Fig. 14 shows the displacement on the left and 

right sides, obtained with a strength load value 
P = 1000 N and using different point cloud. 

7 Conclusions 

We presented a new point selection method. 
The performance characteristics of the structure 
with a uniform number of points do not affect 
the convergence of the method and decrease 
the speed of convergence. This is why the tests 
were conducted with a smaller number of points 
and were analyzed with a lower computational 
cost and better approximation . 

In addition, from the results obtained with 
our method, the experiments confirm that the 
numerical solutions are limited by density and 
quality of discretization. 

 

Fig. 10. Simulated strength 

 
Fig. 11. Results of image processing 

 

Fig. 12. Selection points from 50% 

 
Fig. 13. Effect of reducing the number of interest points 
in frontal and back sides 
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Furthermore, the performed experiments 
show that our method can be used with good 
results for 2D and 3D structures. 
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