
Structural Isomorphism of Meaning and Synonymy

Marie Duží

VSB-Technical University Ostrava,
Czech Republic

marie.duzi@vsb.cz

Abstract. In this paper I am going to deal with the
phenomenon of synonymy from the logical point of
view. In Transparent Intensional Logic (TIL), which is
my background theory, the sense of an expression is
an algorithmically structured procedure detailing what
operations to apply to what procedural constituents to
arrive at the object (if any) denoted by the expression.
Such procedures are rigorously defined as TIL
constructions. In this new orthodoxy of structured
meanings and procedural semantics we encounter the
problem of the granularity of procedure individuation.
Though the identity of TIL constructions is rigorously
defined, they are a bit too fine-grained from the
procedural point of view. In an effort to solve the
problem we introduced the notion of procedural
isomorphism. Any two terms or expressions whose
respective meanings are procedurally isomorphic are
deemed semantically indistinguishable, hence
synonymous and thus substitutable in any context,
whether extensional, intensional or hyperintensional.
The novel contribution of this paper is a formally
worked-out, philosophically motivated criterion of
hyperintensional individuation, which is defined in terms
of a slightly more carefully formulated version of -
conversion and -conversion by value, which amounts
to a modification of Church’s Alternative (A1).

Keywords. Procedural semantics, -conversion by
value, procedural isomorphism, transparent intensional
logic, synonymy.

1 Introduction

The phenomenon of synonymy has been of a
central interest for both linguists and logicians,
and though it is an important theoretical relation
existing in language, a satisfactory criterion of
synonymy is still a hot issue. A seemingly simple
definition of synonymy as the identity of meaning
evokes many problems including, inter alia,

questions like what the meaning of an expression
is and how fine-grained meanings should be.

This is a pressing issue, because many
paradoxes and invalid inferences arise from a too
coarse-grained analysis of premises. The purpose
of logic is to differentiate between valid and
invalid arguments so that all valid arguments be
provable and invalid ones rejected. This in turn is
closely connected with the granularity of
individuation of meaning.

Possible-world semantics (PWS) that arose
around 1960 models meanings as mappings
defined on a domain of logical possibilities
(‘possible worlds’). Possible-world semantics
gained respectability and proved to be highly
deployable in various areas, in particular, in
modal logic and its variants like temporal and
deontic logics, by solving the granularity issue.
Co-intensionality is tantamount to necessary co-
extensionality. Hence, mappings that take the
same worlds to the same extensions come out
identical. Formally, let the variables f, g range
over intensions and w over possible worlds:

fg (w (f(w) = g(w)) f = g)

The basic thing to understand about this
individuation of possible-world intensions is that it
offers an extensional account of intensional
entities. If A, B are sets of possible worlds then if
A, B share exactly the same elements then A is
identical to B. This principle of individuation is
generalized to properties, relations-in-intension,
etc. The possible-world semantics for modal logic
is firmly and comfortably immersed in set theory.
Once necessary equivalence between intensions
has been established, lots of valid inferences can
be drawn, and many invalid inferences are
blocked. Various mathematical properties, or their

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546

DOI: 10.13053/CyS-18-3-2018

absence, of various formal systems of intensions
can also be established, like soundness and
completeness.

So far so good; however, already in 1947 [3,
§§13ff] Carnap pointed out that there are
attitudinal contexts that are neither extensional
nor intensional, because the substitution of
logically equivalent expressions for the
complement of an attitude fails here. For instance,
one can easily believe that it is false that A
implies B without believing that A is true and B
false. Yet the truth-conditions of these two
embedded clauses are identical, hence they are
indiscernible in possible-world semantics.

Moreover, possible-world semantics is out of
place in case of mathematics; all true
mathematical statements are necessarily
equivalent, hence identical from the PWS point of
view. For instance, the set of equilateral triangles
is identical with the set of equiangular triangles,
but the property of being equilateral is not
identical with the property of being equiangular.
Drawing an equilateral triangle is a task different
from drawing an equiangular triangle, and one
can be able to do the former without being able to
do the latter.

Ludwig & Ray said:
"In general, one term can be substituted for

another in 'that'-clauses salva veritate only if they
are synonymous. Perhaps the most popular
solution to the problem of providing a
compositional semantics for natural languages
aims to exploit this fact by treating 'that'-clauses
as referring to intensional entities – entities (at
least) as finely individuated as the meanings
of sentences."

Thus since the late 60s, the issue of
structured, hyperintensional meanings has been
studied. The topic of hyperintensionality was born
out of negativity, as it were. As mentioned above,
Carnap noticed that there are attitudinal contexts
that are neither extensional nor intensional,
because the substitution of logically equivalent
expressions fails here. Cresswell defines any
individuation as hyperintensional that is finer
than logical/necessary/strict equivalence.
Hyperintensionality became originally a matter
of blocking unwanted and unwarranted
inferences, by pointing out that the correct

substituends are hyperintensions. Indeed, any
hyperintensional logic and formal semantics worth
its name must be able to block various invalid
inferences. But there is the other side of the coin,
which is the positive topic of which inferences
should be validated. That is, how hyper are
hyperintensions? If there is one central question
permeating hyperintensional logic and semantics
then that is this one.

The problem how fine-grained ‘intensional
entities’ hence meanings should be was of the
utmost importance to Church who considered
several alternatives of constraining these entities.1
Senses are identical if the respective expressions
are (A0) ‘synonymously isomorphic’, (A1)
mutually -convertible, (A2) logically equivalent.2
(A2), the weakest criterion, was refuted already
by Carnap, and was not acceptable to Church as
well. The alternative (A0) arose from Church’s
criticism of Carnap’s notion of intensional
isomorphism, and it is synonymy resting on -
equivalence and meaning postulates for
semantically simple terms.

(A1) is presumably considered to be the right
criterion of synonymy. Yet it was subjected to a
fair amount of criticism in particular due to the
involvement of -reduction. For instance, Salmon
in [17] adduces examples of expressions that
should not be taken as synonymous yet their
meanings are mutually -convertible. Moreover,
partiality throws a spanner in the works; -
reduction is not guaranteed to be an equivalent
transformation as soon as partial functions are
involved. Though Church’s formal apparatus in
which meanings are rendered is the typed -
calculus of total functions, we cannot avoid the
work with partial functions, because there are
meaningful terms like the ‘King of France’ that
lack a reference in the actual possible world and
time. Or, in mathematics there are terms like ‘the

1 The concept of hyperintensionality is not exactly new; the

terms ‘hyperintensionality’ and ‘fine-grained intensionality’
are. The standard term for this concept was simply
‘intensionality’ (maybe coined by Leibniz), and is still in use.
However, possible-world semantics has used the terms
‘intensionality’, ‘intensional logic’, etc., for its own concept
of intensionality.

2 For details see [1] and [4].

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546
DOI: 10.13053/CyS-18-3-2018

440 Marie Duží

greatest prime’ that lack a reference regardless of
possible worlds and times, they do not denote
anything. Yet they have meaning.

Church also considered Alternative (A1’) that
is (A1) plus -convertibility. Yet similar defects of
-convertibility as those connected with -
convertibility are evincible.

Thus the problem of the proper granularity of
structured meanings remains open. This is a
pressing issue, because in hyperintensional
contexts only strictly synonymous expressions
can be mutually substituted. We encounter the
problem of hyperintensional contexts in particular
in sentences expressing propositional attitudes
like believing, knowing, etc., and objectual
attitudes of seeking, wishing, solving, designing,
calculating, and the like. Substitution of (merely)
equivalent expressions yields the proliferation of
agent’s knowledge or abilities here, and the
problem of logical/mathematical omniscience
crops up.

In my background theory which is Tichý’s
Transparent Intensional Logic (TIL),
hyperintensionality is defined in a positive rather
than negative way.3 Any context in which the
meaning of an expression is displayed rather than
executed is hyperintensional. Moreover, we
explicate hyperintensions as abstract procedures
rigorously defined as TIL constructions which are
assigned to expressions as their context-invariant
meanings.4 The semantics is tailored to the
hardest hyperintensional contexts, and
generalized from there to simpler intensional and
extensional ones. This entirely anti-contextual and
compositional semantics is, to the best of my
knowledge, the only one that deals with all kinds
of context, whether extensional, intensional or
hyperintensional, in a uniform way. The same
extensional logical laws are valid invariably in all
kinds of context. In particular, there is no reason
why Leibniz’s law of substitution of identicals, and
the rule of existential generalization were not
valid. What differ according to the context are not
the rules themselves but the types of objects to
which these rules are applicable. In an

3 See [12, §§ 2.6, 2.7], and also [11].
4 Similar conception of meaning has been propagated also by

Moschovakis. For details see [15].

extensional context they are values of the
functions denoted by the respective expression; in
an intensional context they are the denoted
functions themselves; finally in a hyperintensional
context they are the displayed procedural
meanings themselves. Due to its stratified
ontology of entities organized in a ramified
hierarchy of types, TIL is a logical framework
within which such an extensional logic of
hyperintensions has been introduced.5

In an effort to solve the problem of the
procedural identity we introduced the notion of
procedural isomorphism. Procedural isomorphism
is a nod to Carnap’s intensional isomorphism and
Church’s synonymous isomorphism. Any two
terms or expressions whose respective meanings
are procedurally isomorphic are deemed
semantically indistinguishable, hence
synonymous and substitutable in any context.

The goal of this paper is to define the rule for
substitution of identicals in hyperintensional
contexts. Since in such contexts only
synonymous expressions can be mutually
substituted, we need a criterion of synonymy. The
novel contribution of this paper is the proposal of
a new criterion of synonymy. It is an adjustment of
Church’s Alternative (A1). The adjustment
consists in a more carefully formulated definition
of -conversion and the new definition of -
conversion, to wit, the -conversion by value.

The rest of the paper is organized as follows.
Section 2 sets out the logical foundations of TIL.
The main results are introduced in Section 3
where the relation of procedural isomorphism,
Alternative (A1’’), is defined. I prove that the so
defined relation is a strict equivalence on the set
of constructions. Concluding remarks are in
Section 4.

2 Logical Foundations of TIL

The syntax of TIL is Church’s (higher-order) typed
-calculus the terms of which are procedurally
interpreted, which means that they denote
structured modes of presentation (that is, TIL
constructions) of functions rather than set-

5 See, for instance, [6], [7], [8], [9].

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546

DOI: 10.13053/CyS-18-3-2018

Structural Isomorphism of Meaning and Synonymy 441

theoretic functions. Thus, lambda abstraction
transforms into the molecular procedure of
forming a function and application into the
molecular procedure of applying a function to an
argument. The identity of TIL constructions is
rigorously determined by a definition. Yet we still
have to deal with the issue of granularity of
meanings/procedures, because TIL constructions
are a bit too fine-grained from the procedural
point of view. The main issue here is the
following. Constructions that differ at most by
using different -bound variables of the same type
differ so slightly that from the semantic point of
view they should be treated as identical
procedures, because in natural languages we do
not express -bound variables and thus do not
reflect such differences.

Constructions are the key entities of TIL. They
are algorithmically structured procedures, of one
or multiple constituent parts and they serve to
explicate linguistic meanings. Importantly, the
constituent parts of a construction C are its
executed subconstructions rather than the
product (if any) of C which is located beyond C.
Just to be clear, constructions are not set-
theoretic mapping/functions, nor are they
formulae or otherwise linguistic entities. Their
inductive definition below enumerates six different
constructions, which is the logical core of TIL. The
stratified ontology of TIL is organized in the
ramified hierarchy of types. For the sake of
simplicity we first define simple types of order 1,
then constructions together with the types of their
products, and finally the ramified hierarchy
of types.

Definition 1 (types of order 1). Let B be a base,
where a base is a collection of pair-wise disjoint,
non-empty sets. Then

(i) every member of B is an elementary type of
order 1 over B;

(ii) let α, β1, ..., βm (m > 0) be types of order 1
over B. Then the collection (α β1 ... βm) of all
m-ary partial mappings from β1 ... βm
into α is a functional type of order 1 over B;

(iii) nothing else is a type of order 1 over B.

For the purposes of natural language analysis,
we are assuming the following base of
ground types:

ο: a set of truth-values {T, F};
ι: a set of individuals (constant universe of

discourse);
τ: a set of real numbers (doubling as temporal

continuum);
ω: a set of logically possible worlds (logical

space).

Within this type system we define possible-
world intensions and extensions. An -intension is
a function of type (ω), or frequently (()), the
types that we abbreviate as ; an -extension is
an object of type , where (ω) for any .

Definition 2 (construction).
(i) Variable x is a construction that v-constructs

an object that a valuation v assigns to x.
(ii) The Trivialization 0X is a construction. Let X

be any object whatsoever. Then 0X
constructs X without any change of X.

(iii) Composition [X Y1…Ym] is a construction.
Let X v-construct a function f of type (α
β1…βm), and let Y1,…,Ym v-construct entities
B1,…,Bm of types β1,…,βm, respectively.
Then [X Y1…Ym] v-constructs the value (an
entity, if any, of type α) of f on the tuple
argument B1,…,Bm. Otherwise the
Composition [X Y1…Ym] does not v-
construct anything and so is v-improper.

(iv) λ-Closure [λx1 … xm Y] (or Closure) is a
construction. It v-constructs the following
function f of type (α β1…βm). Let variables
x1,…xm v-construct entities of types β1,…,
βm, and let Y v-construct an entity of type α.
Let v(B1/x1,…,Bm/xm) be a valuation identical
with v at least up to assigning objects B1/β1,
…, Bm/βm to variables x1, …, xm. If Y is
v(B1/x1,…,Bm/xm)-improper (see iii), then f is
undefined on B1, …, Bm. Otherwise the
value of f on B1, …, Bm is the α-entity
v(B1/x1,…,Bm/xm)-constructed by Y.

(v) Single Execution 1X is a construction. Let X
v-construct object o. Then 1X v-constructs o.
Let X be either a non-construction or a v-

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546
DOI: 10.13053/CyS-18-3-2018

442 Marie Duží

improper construction. Then 1X is v-
improper.

(vi) Double Execution 2X is a construction. Let X
v-construct a construction Y and let Y v-
construct an object Z (possibly itself a
construction). Then the Double Execution 2X
v-constructs Z. Otherwise 2X is v-improper.

(vii) Nothing else is a construction.

Here are some explicative remarks. A variable
constructs an object by having that object as its
value dependent on a valuation function v
arranging variables and objects in a sequence.
Trivialization is TIL’s objectual counterpart of a
non-descriptive constant term, which simply
provides a particular object. Variables and
Trivializations are the atomic constructions of TIL,
Composition, Closure and Executions are the
molecular constructions. An atomic construction is
a structured whole with but one constituent part,
namely, the construction itself. A molecular
construction is a structured whole with more parts
than just itself. Importantly, the only part of 0X is
0X and not X, which is located beyond 0X: the
product of a procedure is no part of
the procedure.

The definition of the typed universe of TIL
amounts to a definition of the ramified hierarchy of
types which is divided into three parts: firstly,
simple types of order 1, which were already
defined by Definition 1; secondly, constructions of
order n; thirdly, types of order n+1.

Definition 3 (ramified hierarchy of types).
T1 (types of order 1). See Def. 1.
Cn (constructions of order n).

i) Let x be a variable ranging over a type of
order n over B. Then x is a construction of
order n over B.

ii) Let X be a member of a type of order n
over B. Then 0X, 1X, 2X are constructions
of order n over B.

iii) Let X, X1,..., Xm (m > 0) be constructions of
order n over B. Then [X X1... Xm] is a
construction of order n over B.

iv) Let x1,...xm, X (m > 0) be constructions of
order n over B. Then [x1...xm X] is a
construction of order n over B.

v) Nothing is a construction of order n over B

unless it follows from Cn (i)-(iv).

Tn+1 (types of order n+1) Let n be a collection
of all constructions of order n over B. Then

i) n and every type of order n are types of
order n+1 over B;

ii) if m > 0 and , 1,...,m are types of order
n+1 over B, then (1 ... m) (see T1 ii)) is
a type of order n + 1 over B;

iii) nothing else is a type of order n + 1 over B.

Logical objects like truth-functions and
quantifiers are extensional: (conjunction),
(disjunction) and (implication) are of type (),
and (negation) of type (). The quantifiers ,

 are type-theoretically polymorphous, total

functions of type (()), for an arbitrary type ,
defined as follows. The universal quantifier is a
function that associates a class A of -elements
with T if A contains all elements of the type ,
otherwise with F. The existential quantifier is a
function that associates a class A of -elements
with T if A is a non-empty class, otherwise with F.
Below all type indications will be provided outside
the formulae in order not to clutter the notation.
Furthermore, ‘X/’ means that an object X is (a
member) of type . ‘X v ’ means that the type
of the object valuation-constructed by X is . This
holds throughout: the variables w v and t v
. If C v then the frequently used
Composition [[Cw] t], which is the intensional
descent (a.k.a. extensionalization) of the -
intension v-constructed by C, will be encoded as
‘Cwt’. When using constructions of truth-functions,
we often omit Trivialization and use infix notation
to conform to standard notation in the interest of
better readability. Also when using constructions
of identities of -entities, =/(), we omit
Trivialization, the type subscript, and use infix
notion when no confusion can arise. Moreover,
the outermost brackets of Closure will be
occasionally omitted.

Definition 4 (subconstruction). Let C be a
construction. Then
i) C is a subconstruction of C;
ii) if C is 0X, 1X or 2X and X is a construction

then X is a subconstruction of C;

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546

DOI: 10.13053/CyS-18-3-2018

Structural Isomorphism of Meaning and Synonymy 443

iii) if C is [X X1…Xn] then X, X1, …, Xn are
subconstructions of C;

iv) if C is [x1…xn Y] then Y is a subconstruction
of C;

v) if A is a subconstruction of B and B is a
subconstruction of C then A is a
subconstruction of C;

vi) a construction is a subconstruction of C only
if it so follows from (i) – (v).

There are two modes in which a
subconstruction D of a construction C may occur,
to wit, displayed and executed. If the latter, then
we say that D is a constituent of C. The
Trivialization 0C of a construction C displays the
construction C and all the subconstructions of C.
Hence C is not a constituent part of 0C; it is not
executed, and so does not obtain an object
beyond it. We say that C occurs
hyperintensionally. It is however important to
realize that Double Execution executes a
construction twice over. Thus in 20C the
subconstruction C is a constituent part of 20C.

If C is an executed constituent of D then C can
occur intensionally or extensionally. In principle,
constituent C occurs in D intensionally if C is not
composed with a construction of the argument of
the function f v-constructed by C. Hence the
whole function f is an object of predication within
D. As a limiting case, a constituent C that
constructs an atomic entity, which is a 0-ary
function without arguments, occurs intensionally.
On the other hand, a constituent C of D occurs
extensionally if it is composed with a construction
of an argument of the function f, and C does not
occur within an intensional context of D. Hence
the value (if any) of the function f is an object of
predication within D.

These three ways in which a subconstruction
C of a construction D can occur give rise to three
kinds of context within D:6

 hyperintensional context: a construction C
occurs displayed and serves itself as a func-
tional argument to be operated on in D
(though a construction one order higher
needs to be executed in order to produce the
displayed construction);

6 Here I present just a summary. For exact definitions see [12,

§2.6].

 intensional context: construction C occurs
executed in order to produce a function f but
not the value of f; moreover, the executed
construction C does not occur within another
hyperintensional context. (Hence the entire
function v-constructed by C serves as a func-
tional argument to be operated on in D);

 extensional context: construction C occurs
executed in order to produce a particular
value of the function v-constructed by C;
moreover, the executed construction does not
occur within another intensional or
hyperintensional context. (Hence the value of
the function v-constructed by C serves as a
functional argument to be operated on in D).

Higher context is dominant over a lower one. It
means that all the subconstructions of a displayed
construction occur hyperintensionally as well, and
all the subconstructions of an executed
construction that occurs intensionally occur
intensionally as well.

Example. Below I analyze three sentences in
which the meaning of the term ‘temperature in
Prague’ denoting a magnitude of type occurs
extensionally, intensionally and hyper-
intensionally, respectively. Note that there is no
reference shift and the meaning and denotation of
this term is the same in all three types of context.
It is the construction of the denoted magnitude, to
wit, the Closure

wt [0Temperature_inwt
0Prague] .

a) Extensional context:

“The temperature in Prague is 300 Celsius.”

The types of the objects that the sentence talks
about are these: Temperature_in/(): attribute;
Prague/; wt [0Temperature_inwt

0Prague]
: magnitude; 30C/.

The whole sentence denotes a proposition of
type constructed by this Closure:

wt [wt [0Temperature_inwt 0Prague]wt = 030C].

In the Composition

[wt [0Temperature_inwt
0Prague]wt = 030C],

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546
DOI: 10.13053/CyS-18-3-2018

444 Marie Duží

the construction wt [0Temperature_inwt
0Prague]

of the magnitude occurs extensionally, because
the value of this magnitude in a given world w at
time t of evaluation is constructed, and this value
is an object of predication, to wit, this value
equals 30C. Within this Composition the
construction 0Temperature_in of the attribute
occurs extensionally as well.

b) Intensional context:

“The temperature in Prague is rising.”
Additional type. Rising/(): the property of

a magnitude.
The analysis of the sentence is the following:

wt [0Risingwt wt [0Temperature_inwt 0Prague]].

Now, wt [0Temperature_inwt
0Prague] occurs

intensionally in the Composition

[0Risingwt wt [0Temperature_inwt 0Prague]].

The function (magnitude) rather than its value
is an object of predication that this function is
rising. Due to the dominancy of a higher context
over a lower one, the construction
0Temperature_in of the attribute occurs
intensionally as well, though it is extensionalized
(composed with w and t) and composed with the
construction 0Prague of its argument.

c) Hyperintensional context:

“Tilman believes that the temperature in
Prague is 300 Celsius.”

Additional type. Believe/(n): relation-in-
intension between an individual and a
hyperproposition.

The analysis of the sentence is this:

wt [0Believewt 0Tilman
0[wt [0Temperature_inwt 0Prague]wt = 030C]].

Here we construe Believe as a relation-in-
intension of an individual to a hyperproposition.
The reason is this: the proposition that the
temperature in Prague is 300 Celsius can be
equivalently expressed, e.g., that the temperature
in Prague is 860 Fahrenheit. Yet one can believe
the former without believing the latter, and vice
versa.

Hence wt [0Temperature_inwt
0Prague]

occurs hyperintensionally in the Composition

[0Believewt 0Tilman
0[wt [0Temperature_inwt 0Prague]wt = 030C]].

This is due to the fact that the mode of
presentation, or conceptualization, or construction

[wt [0Temperature_inwt 0Prague]wt = 030C]

of the proposition that the temperature in Prague
is 300C is an object of Tilman’s belief rather than
the proposition itself. Thus all the
subconstructions of this construction occur
hyperintensionally as well. In brief, the left most
Trivialization in 0[wt [0Temperature_inwt
0Prague]wt = 030C] raises the context up to the
hyperintensional level.

3 Procedural Isomorphism

As mentioned at the outset, TIL can be viewed as
an extensional logic of hyperintensions. By
‘extensional’ I mean that the extensional rules like
existential generalization and Leibniz’s laws of
substitutivity of identicals are validly applicable in
all contexts, whether extensional, intensional or
hyperintensional. The rules of existential
quantification in intensional and hyperintensional
contexts have been specified by Duží &
Jespersen in [8], [9] and [11].

As for the substitution of identicals in an
extensional or intensional context, there is no
problem. In an intensional context analytically
equivalent terms are mutually substitutable, while
in an extensional context also co-referring terms
are substitutable.

Terms are co-referring if they refer to the same
object in a given world w and time t of evaluation.
More generally, terms are co-referring if their
meanings are v-congruent, that is v-construct
functions that happen to have the same value at
the same argument. Terms are analytically
equivalent if their meanings v-construct the same
object for every valuation v. Obviously, equivalent
terms are co-referring, but not vice versa.

Thus, for instance, the following argument is
valid.

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546

DOI: 10.13053/CyS-18-3-2018

Structural Isomorphism of Meaning and Synonymy 445

The temperature in Amsterdam is 300 Celsius.
The temperature in Amsterdam is the same as in Prague.

The temperature in Prague is 300 Celsius.

The ‘temperature in Amsterdam’ as well as the
‘temperature in Prague’ occur extensionally both
in the premises and the conclusion. Moreover, the
second premise establishes their co-reference, as
the analysis reveals:

[wt [[0Temperature_inwt 0Amsterdam]wt =
wt [0Temperature_inwt 0Prague]wt].

On this assumption the extensional
occurrences of these two terms are mutually
substitutable. However, this argument is invalid:7

The temperature in Amsterdam is rising.
The temperature in Amsterdam is the same as in Prague.

The temperature in Prague is rising.

The reason is this: in the first premise ‘the
temperature in Amsterdam’ occurs intensionally.
Particular value of the magnitude cannot be
rising; rather, being rising is a property of the
whole function, magnitude in this case. However,
the second premise establishes only co-reference
of the two terms rather than equivalency. Hence
the substitution is not valid, because in such an
intensional context only equivalent terms can
be substituted.

However, substitution of (analytically)
equivalent terms is not valid in hyperintensional
contexts. From a linguistic point of view, in a
hyperintensional context only synonymous
expressions can be substituted, because the very
meaning of expressions is displayed. Our thesis is
that synonymous expressions have structurally
isomorphic meanings. And since meaning is a
procedure, we need to define the relation of
procedural isomorphism between constructions,
because constructions are a bit too fine-grained
from the procedural point of view. The main issue
here is the following. Constructions that differ at
most by using different -bound variables of the
same type differ so slightly that we wish to say
that such constructions are one and the same
procedure. For instance, the Closures

7 I use a variant of Barbara Partee’s example.

wt [x [[0Happywt x] [0Childwt x]]],
wt [y [[0Happywt y] [0Childwt y]]],
wt [z [[0Happywt z] [0Childwt z]]], …,

are by Def. 2 different constructions of the
property of being a happy child. Yet from the
procedural point of view they are isomorphic.
They consist of these procedural steps:

 in any world w (w) at any time t (t) do this:
 take any individual x (or y, or z, …),
 take the property of being happy (by 0Happy),
 apply the (extensionalized) property of being

happy (0Happywt) to the chosen individual x
([0Happywt x]), or to y, or z, …,

 take the property of being a child (by 0Child),
 apply the (extensionalized) property of being

a child (0Childwt) to the chosen individual x (or
y, or z, …),

 check whether the chosen individual has both
the properties (0

),
 abstract over the chosen individual (x, or

y, or z, …).

Using the terminology of -calculus, the above
Closures are -equivalent. Church’s Alternative
(A0) includes -conversion and meaning
postulates for atomic constants such as ‘bachelor’
and ‘fortnight’. Of course, we need meaning
postulates to specify synonymy of semantically
simple terms. This is a matter of building up
linguistic ontology. Now we are, however,
interested in the synonymy of molecular terms,
which is structural isomorphism.

-conversion is certainly the rule that must be
included. The question is, which other rules (and
whether any other rules) could be included as
well. Church’s (A0) and (A1) leave room for
additional Alternatives. To this end we consider -
and -conversion. Yet, as explained above, we
are not content with Church’s Alternatives (A1) or
(A1’) due to their non-equivalency.

In this paper I suggest a new definition of the
criterion of structured synonymy, (A1). This
variant is close to Church’s (A1) and includes an
adjusted versions of - and -conversion. Thus
we exclude -conversion, and introduce a new
version of -conversion, to wit, the conversion by
value. In this proposal I follow two necessary

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546
DOI: 10.13053/CyS-18-3-2018

446 Marie Duží

conditions that the meanings of synonymous
expressions should meet. They must be (a)
strictly equivalent in the sense that in every
possible world at any time they either denote the
same entity or lack a denotation, and (b) their
meanings must have the same constituents.

There are two reasons for not including -
conversion. First, it does not satisfy the condition
(b). The -expanded construction of the form
λx [F x] has two more constituents than the -
reduced construction F, because the former adds
the steps of applying the function v-constructed
by F to the value v-constructed by the variable x
followed by the abstraction over the value of x.
The second reason is the fact that -conversion
does not preserve logical equivalence in a logic of
partial functions such as TIL. Hence it does not
satisfy the condition (a). To see this, consider the
function F (()) that v-constructs a function
that is not defined at the argument v-constructed
by A . Then the Composition [F A] () is v-
improper. However, the -expanded construction
λx [[F A] x] (), x , v-constructs a
degenerate function, which is a function
undefined at all its arguments. To be sure, due to
the v-improperness of [F A], the Composition
[[F A] x] is also v-improper. But λ-abstraction
raises the context to an intensional one, hence
the Closure λx [[F A] x] v-constructs a degenerate
function, which is an object, if a bizarre one.
Hence the constructions [F A] and λx [[F A] x] are
not strictly equivalent.8

In practice the exclusion of -conversion from
the definition of procedural isomorphism is going
to be harmless. When analyzing expressions in
TIL we apply our method of literal analysis, which
consists of three steps: (i) assigning types to the
objects mentioned by the sub-terms of the
analyzed expression E; (ii) combining the
Trivializations of the objects mentioned by the
semantically simple sub-terms of E in order to
obtain the construction of the object (if any)
denoted by E; (iii) checking whether the resulting
construction is type-theoretically coherent. Due to
step (ii) the application of this method yields a
construction (namely the meaning of E) that does

8 I am grateful to J. Raclavský for calling our attention to this

problem. See also Raclavský (2010).

not contain -expanded subconstructions. For
instance, the literal analysis of “The Pope is wise”
is the Closure

wt [0Wisewt
0Popewt]

rather than

wt [wt [x [0Wisewt x]]wt
0Popewt],

because the literal analysis of the predicate ‘is
wise’ is the Trivialization 0Wise rather than the
Closure wt [x [0Wisewt x]]. The types are
Wise/(); Pope/; x .

3.1 -Conversion: ‘by Name’ vs. ‘by Value’

The reasons for excluding unrestricted -
conversion are similar to the above. Though it is
the fundamental computational rule of the -
calculi, it is underspecified by the commonly
acknowledged rule

[[x C(x)] A] |– C(A/x).9

The procedure of applying the function v-
constructed by [x C(x)] to the argument v-
constructed by A can be executed in two different
ways: by value or by name. If by name then the
procedure A is substituted for all the occurrences
of x into C. In this case there are two problems.

First, conversion by name is not guaranteed to
be a strictly equivalent transformation as soon as
partial functions are involved. This is due to the
fact that A occurs in an extensional context of the
left-hand side construction, whereas when
dragged into C its occurrence may become
intensional or hyperintensional provided the
context in which x occurs in C is intensional or
even hyperintensional. For instance,
the Composition

[x [y [0+ x y]] [0: 03 00]]

is improper, because [0: 03 00] is improper. This is
as it should be, for there is no value that might be
substituted for the formal parameter x, because
the Composition [0: 03 00] is improper by failing to

9 For the sake of simplicity, we now consider a unary

function. Generalization for n-ary functions is obvious.

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546

DOI: 10.13053/CyS-18-3-2018

Structural Isomorphism of Meaning and Synonymy 447

produce a result. However, the ‘by-name’ -
reduced construction

[y [0+ [0: 03 00] y]]

is not improper as it constructs a degenerated
function undefined at all its arguments. The
improper construction [0: 03 00] has been drawn
into the intensional context of the Closure
[y [0+ x y]].

The same problem crops up in the analysis of
de re attitudes. For instance, the de re attitude
expressed by

“The Pope is believed by a to be wise”

obtains on its intensional reading the analysis10

wt [x [0Believewt a wt [0Wisewt x]] 0Popewt].

In a world w and time t when the Pope does
not exist, the Composition 0Popewt is v-improper
and the so constructed proposition lacks a truth-
value, because there is no individual to whom the
property of being believed by a to be wise would
be ascribable.

This is as it should be, because in the de re
case there is an existential presupposition that the
Pope exists. Yet the -reduction by name
transforms this analysis into the de dicto attitude:

wt [0Believewt a w’t’ [0Wisew’t’ 0Popewt]].

The so constructed proposition can be true
even in a w,t-pair in which the Pope does not
exist, which is not correct.

The second reason for refuting an unrestricted
-reduction by name is this: even in those cases
when -reduction by name is an equivalent
transformation, it may yield loss of analytic
information about which function has been
applied to which argument.11 For instance,
the Composition

wt [[x [0Largerwt x x]] a]

which is the meaning of “a is larger than itself”
reduces to wt [0Largerwt a a], the meaning of “a

10 In this case a hyperintensional analysis would be also the

choice. For the sake of simplicity we consider the
intensional one.

11 For the notion of analytic information see [5].

is larger than a”. Yet the two sentences are not
strictly synonymous, because in the former the
property of being larger than itself is applied to a
while in the latter the binary relation larger than is
applied to the pair (a,a).12

The idea of conversion by value is simple.
Execute the procedure A first, and only if A does
not fail to produce an argument value on which C
is to operate, substitute (Trivialization of) this
value for x. The solution preserves strict logical
equivalence, avoids the problem of the loss of
analytic information, and moreover, in practice it
is more efficient. The efficiency is guaranteed by
the fact that the procedure A is executed only
once, whereas if this procedure is substituted for
all the occurrences of the -bound variable it can
subsequently be executed more than once.

To elucidate the problem even more,
comparison with programming languages might
be useful. Imagine one has a procedure
(embodied as a program) C(x) with a ‘hole’ x (i.e.,
an unsaturated procedure with a formal
parameter x), and a subprogram A that specifies
the material (argument value) to be filled into the
hole x. There are two ways of going about filling x:

(1) (by name) inserting into the hole x the
whole subprogram A and then computing C(A/x)

(2) (by value) computing A first in order to
obtain the argument value a, and then inserting a
into the hole x and computing C(a/x)

In case (1) there may be undesirable side
effects. Imagine that the subprogram A is
somehow garbled and as a result the whole
procedure C gets garbled as well by the insertion,
damage being propagated upwards. Moreover,
instead of the hole x one gets A, and A may
conflict with C. This is a case of invalid -
reduction that fails to preserve equivalence.
Furthermore, even if A does not damage C when
computing C(A), after the execution of C(A) one
will have lost track of A. The two procedures have
been merged together. Suppose one wants to
compute another procedure E(x) and to supply
the same material for x. Even if the execution of
C(A) turns out to be successful, A may have been
changed by the execution. There is no guarantee
that the same material will be supplied for x into

12 See [17].

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546
DOI: 10.13053/CyS-18-3-2018

448 Marie Duží

E(x). This is the case of -reduction preserving
equivalence but yielding loss of
analytic information.

In case (2) we keep C(x), E(x), and A
separate. Procedure A is evaluated only if
needed, and if so, only once. Everything is as it
should be: no loss of analytic information arises
and equivalence is preserved.

In programming languages the difference
between cases 1 and 2 concerns evaluation
strategy and is often called passing by reference
vs. passing by value, respectively. Historically,
call-by-value and call-by-name date back to Algol
60, a language designed in the late 1950s. Only
purely functional languages such as Clean and
Haskell use call-by-name. For instance, Java
manipulates objects by reference that is by name.
However, Java does not pass arguments by
reference, but by value. Call-by-value is not a
single evaluation strategy, but rather a cluster of
evaluation strategies in which a function’s
argument is evaluated before being passed to the
calling procedure. In call-by-reference evaluation
(also referred to as call-by name or pass-by-
reference), a calling procedure receives an
implicit reference to the argument sub-procedure.
This typically means that the calling procedure
can modify the argument sub-procedure. A call-
by-reference language makes it more difficult for
a programmer to track the effects of a procedure
call, and may introduce subtle bugs.

The notion of reduction strategy in the -calculi
is similar to the evaluation strategy in
programming languages. My proposal amounts to
a specification of an evaluation strategy by-value
as adapted to TIL that is to hyperintensional,
partial typed -calculus. Similar work has been
done since the early 1970s, but merely for simple-
typed or untyped -calculi. For instance, Plotkin in
[16] proved that the two strategies are not
operationally equivalent. Hence the call-by-name
strategy should not be used in hyperintensional -
calculi such as TIL due to operational non-
equivalence. Our substitution method that I am
going to define below is similar to Chang &
Felleisen call-by-need reduction by value (see
[2]). But their work is couched in an untyped -
calculus. TIL, by contrast, is a hyperintensional,
partial -calculus based on ramified theory of

types. First we need to define the
substitution function:

Definition 5 (Subn). Function Subn/(nnnn)
operates on constructions in this way: let
constructions C1, C2, C3 v-construct constructions
(of order n) D1, D2, D3, respectively. Then the
Composition [0Subn C1 C2 C3] v-constructs the
construction D that results from D3 by collisionless
substitution of D1 for all occurrences of D2 in D3.

Occasionally we also need the polymorphic
function Tr defined as follows.

Definition 6 (Tr). The function Tr/(n) returns
as its value the Trivialization of its -argument.

In what follows I simply write ‘Sub’ and ‘Tr’
omitting thus the type-superscripts whenever no
confusion arises.

For instance, let variable y v-construct
numbers of type such as . Then [0Tr y] v(/y)-
constructs 0. Therefore, the Composition

[0Sub [0Tr y] 0x 0[0Sin x]]

v(/y)-constructs the Composition [0Sin 0].
Note that there is a substantial difference

between the construction Trivialization and the
function Tr. Whereas 0y constructs just the
variable y regardless of valuation, y being 0-bound
in 0y, [0Tr y] v-constructs the Trivialization of the
object v-constructed by y. Hence y occurs free
in [0Tr y].

Definition 7 (-conversion by value) Let Y v
; x1, D1 v 1,…, xn, Dn v n, [x1…xn Y] v
(1...n). Then the conversion

[[x1…xn Y] D1…Dn]
2[0Sub [0Tr D1]

0x1 … [0Sub [0Tr Dn]
0xn

0Y]]

is -conversion by value.

Note that in the converted construction Double
Execution is necessary. The function Sub
operates on argument constructions, and as a
result it produces again a construction; to wit, the
construction in which all occurrences of the formal
parameters x1, …, xn are replaced by the
Trivializations of the respective argument values.
In order to obtain an -value (if any) produced by

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546

DOI: 10.13053/CyS-18-3-2018

Structural Isomorphism of Meaning and Synonymy 449

the so pre-processed construction Y the resulting
construction must be executed. Hence,
Double Execution is performed.

Claim 1: Constructions [[x1…xn Y] D1…Dn] and
2[0Sub [0Tr D1] 0x1 … [0Sub [0Tr Dn] 0xn

0Y]] are
strictly equivalent in the sense that for any
valuation v they either v-construct one and the
same entity or are both v-improper.

Proof. Let C be [[x1…xn Y] D1…Dn] and let D be
2[0Sub [0Tr D1] 0x1 … [0Sub [0Tr Dn] 0xn

0Y]].
If some of the constructions D1,…,Dn is v-

improper then so are both C and D, according to
Def. 2, iii) and vi). Otherwise, let D1,…,Dn all be v-
proper, v-constructing the objects d1,…,dn,
respectively. Then by Def. 2, iv) the Closure
[x1…xn Y] v-constructs the following function f. If
Y is v(d1/x1,…,dn/xn)-improper, then f is undefined
on d1,…,dn and thus C is v(d1/x1,…,dn/xn)-
improper according to Def. 2, iii). Otherwise the
value of f on d1,…,dn is the -entity
v(d1/x1,…,dn/xn)-constructed by Y.

Let the entity v(d1/x1,…,dn/xn)-constructed by Y
be e. Then by Def. 2, iii) of Composition, the
construction C v-constructs e. We are to show
that the construction D also v-constructs e. The
first Execution of D constructs Y(x1/0d1,…, xn/0dn),
i.e., the construction Y where according to the
definition of the functions Sub and Tr all the
occurrences of variables x1,…,xn are replaced by
0d1,…,0dn, respectively. Since the Trivializations
0d1,…,0dn construct the entities d1,…,dn,
respectively, the second Execution
v(d1/x1,…,dn/xn)-constructs the entity e, or else
nothing in case Y is v(d1/x1,…,dn/xn)-improper.
Hence C and D come out strictly equivalent.

3.2 Alternative (A1’’)

At the outset of this paper I formulated the
problem of granularity of individuation meanings.
Any individuation that is finer than necessary or
logical equivalence qualifies as hyperintensional.
Since we explicate hyperintensions procedurally,
the problem transforms into the issue of
individuation of procedures. In other words, under
which conditions are we ready to consider two
constructions as procedurally isomorphic? Church
considered -, - and -conversion. In the

previous paragraph I summarized objections
against Church’s Alternatives (A1) or (A1’), and it
should be clear now that -conversion should not
be included. An obvious plausible candidate is -
conversion, which would yield Alternative (A0).

In my opinion, we also need -conversion,
because application of a function to an argument
is the very fundamental computational procedure.
However, the objections against unrestricted -
conversion (by name) are serious. Fortunately
there is a way out. The above defined -
conversion by value is immune against those
objections. It is the correct way of applying the
function constructed by the Closure [x1…xn Y] to
the arguments constructed by D1,…,Dn. According
to Claim 1, it is a strictly equivalent conversion,
unlike -conversion by name. Moreover, it does
not yield loss of analytic information, because the
calling procedure Y and argument procedures
D1,…,Dn are kept separated.

Now I will demonstrate the thesis that -value
equivalent constructions should be considered as
procedurally isomorphic. For the sake of simplicity
I will again consider a one-argument Composition
of the form [x [F x] A]. It is the specification of
calling the procedure x [F x] with the formal
parameter x at the argument provided by the
procedure A. My thesis is that the correct way of
executing this procedure consists of these
execution steps:
 execute A in order to obtain the argument

value a; if A fails to v-construct anything (is v-
improper) then abort the execution; else:

 take the argument value a (by the Trivializa-
tion of a) and substitute it for all the occur-
rences of the variable x in the procedure body
F, and finally:

 Execute the result of the substitution.

The Composition 2[0Sub [0Tr A] 0x 0F] has
exactly the same constituents. These are

 A: execute A in order to obtain the argument
value a; if A is v-improper then the entire
Composition is v-improper; else:

 [0Tr A]: obtain the Trivialization of a,
 [0Sub [0Tr A] 0x 0F]: substitute the Trivializa-

tion of a for x in F,
 2[0Sub [0Tr A] 0x 0F]: execute the result.

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546
DOI: 10.13053/CyS-18-3-2018

450 Marie Duží

We can see that -conversion by value is an
explicit specification of the procedure of applying
the function constructed by x [F x] to the
argument constructed by A. Yet one might object
that the above execution steps are not explicitly
specified by the term ‘[x [F x] A]’. This is true but
this term can be taken as an abbreviation of the
full-fledged application specification provided by
‘2[0Sub [0Tr A] 0x 0F]’. In other words, we can
consider the left-hand side of the -value rule as
definiendum and the right-hand side as definiens.

For this reason it is reasonable to claim the
two terms ‘[x [F x] A]’ and ‘2[0Sub [0Tr A] 0x 0F]’
ex definitione synonymous and thus substitutable
in all contexts, including hyperintensional ones.

In order to define procedural isomorphism on
the set of constructions, we still need another
definition, to wit, the definition of -conversion.
The standard definition that defines -equivalent
constructions as those that differ at most by using
different -bound variables does not do. The
reason is this: if -value equivalent constructions
of the form [x [F x] A] and 2[0Sub [0Tr A] 0x 0F(x)]
are procedurally isomorphic, then it does not
matter which particular variable of the respective
type, whether x, or y, or z, …, has been used as a
formal parameter. Hence since

[x [F x] A], [y [F y] A], …

are -equivalent, so should be
2[0Sub [0Tr A] 0x 0F(x)], 2[0Sub [0Tr A] 0y 0F(y)], …

For instance, constructions

[x [0+ x 01] 05]
[y [0+ y 01] 05]

are -equivalent according to the standard
definition. Yet their -reduced forms

2[0Sub [0Tr 05] 0x 0[0+ x 01]]
2[0Sub [0Tr 05] 0y 0[0+ y 01]]

would not be -equivalent. But they should be,
because from the procedural point of view it is
irrelevant which variables are used as formal
parameters for which the respective argument is
substituted. Thus we define the following:

Definition 8 (-equivalence) Let C, D be
constructions. Then C, D are -equivalent, if
either C, D differ at most by using different -
bound variables (of the same type), or their -
value equivalent forms differ at most by using
different -bound variables (of the same type).

Claim 2. -equivalent constructions are strictly
equivalent being either v-improper or v-
constructing one and the same entity.

Proof. Due to Claim 1 it suffices to prove that
Closures of the form [x1…xn Y(x1,…,xn)], [y1…yn
Y(y1,…,yn)], where Y(x1,…,xn) differs from
Y(y1,…,yn) only by collisionless substitution of
variables x1,…,xn for y1,…,yn, respectively, v-
construct one and the same function. But this
immediately follows from Def. 2, iv).

Definition 9 (procedural isomorphism) Let C, D
be constructions. Then C, D are procedurally
isomorphic iff either C and D are identical or there
are constructions C1,…, Cn (n > 1) such that 0C =
0C1, 0D = 0Cn, and for each Ci, Ci+1 (1 i < n) it
holds that Ci, Ci+1 are either - or -
value equivalent.

Corollary. Procedural isomorphism is an
equivalence relation defined on a set of
constructions such that procedurally isomorphic
constructions are strictly equivalent in the sense
that for any valuation v they either v-construct one
and the same entity or they are v-improper.

Proof. It follows immediately from Claims 1 and 2.

Having defined procedural isomorphism, we
can now specify the rule of substitution in
hyperintensional contexts.

In a hyperintensional context only procedurally
isomorphic constructions are mutually
substitutable.

Example. Consider the analysis of the
sentence “Tilman is calculating the value of the
function sin(x):cos(x) at the argument equal to the
(principal) square root of 2” that comes down to

wt [0Calculatewt
0Tilman

0[x [0: [0Sin x] [0Cos x]] [0 02]]]. (1)

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546

DOI: 10.13053/CyS-18-3-2018

Structural Isomorphism of Meaning and Synonymy 451

Types. Calculate/(n); Tilman/; :/(); Sin,
Cos/(); /(): the principal, non-negative
square root.

Since the construction

[x [0: [0Sin x] [0Sin x]] [0 02]]

is procedurally isomorphic with its -value
equivalent form

2[0Sub [0Tr [0 02]] 0x 0[0: [0Sin x] [0Sin x]]],

it follows that Tilman calculates this Composition
as well as its -value and -equivalent
procedurally isomorphic variants:

wt [0Calculatewt
0Tilman

02[0Sub [0Tr [0 02]] 0x 0[0: [0Sin x] [0Cos x]]]],
(2)

wt [0Calculatewt
0Tilman

02[0Sub [0Tr [0 02]] 0y 0[0: [0Sin y] [0Cos y]]]].
(3)

But it does not follow that Tilman calculates
the ratio of Sine at 2 and Cosine at 2:

wt [0Calculatewt
0Tilman

0[0: [0Sin [0 02]] [0Cos [0 02]]]].

Note that [0: [0Sin [0 02]] [0Cos [0 02]]] is the
result of -reduction by name of the original
Composition [x [0: [0Sin x] [0Cos x]] [0 02]]. While
in the latter the square root of 2 is calculated only
once, in the reduced construction it is calculated
twice. Hence the two constructions are not
procedurally isomorphic.

Since Calculate is a relation(-in-intension) of
an individual to a construction, and the application
of Sub produces a construction, a question arises
here. Could we omit in (2) or (3) the Trivialization
and Double Execution preceding the application
of the function Sub? In other words, are the
constructions (2) and (3) equivalent with this one:

wt [0Calculatewt
0Tilman

[0Sub [0Tr [0 02]] 0x 0[0: [0Sin x] [0Cos x]]]] ?
(4)

Our answer is no, it is not. The reason is this.
In (4) Tilman is related to the product of

[0Sub [0Tr [0 02]] 0x 0[0: [0Sin x] [0Cos x]]]

which is the following Composition:

[0: [0Sin 01.4142135…] [0Cos 01.4142135…]].

Obviously, (4) follows from (2) but not vice versa.

Yet there are other interesting issues
concerning the interplay between Trivialization
and Double Execution. While Trivialization raises
the context up to the hyperintensional level,
Double Execution decreases it back to the
intensional one. Hence for any construction C it
holds that 20C is logically equivalent to C. The
question is whether the two constructions, 20C
and C, are not procedurally isomorphic as well. In
our opinion they are not. The former contains two
additional executive steps, to wit, Double
Execution and Trivialization. Though in an
ordinary vernacular this slight difference would
most probably not matter, in the semantics of a
programming language it does matter.

Thus we are considering whether it is
philosophically wise to adopt several notions of
procedural isomorphism. The definition I pro-
posed in this paper is a very strict criterion of
synonymy, and it is not improbable that several
degrees of hyperintensional individuation are
called for, depending on which sort of discourse
happens to be analyzed. Thus we admit that
slightly different definitions of procedural
isomorphism are still thinkable. What appears to
be synonymous in an ordinary vernacular might
not be synonymous in a professional language
like the language of, for instance, logic,
mathematics or physics.

4 Conclusion

I demonstrated how to validly apply Leibniz’s Law
of the substitution of identicals in hyperintensional
contexts. Since in such a context the meaning of
an expression is displayed, only synonymous
expressions with the same meaning can be
mutually substituted. Our criterion of synonymy is
procedural isomorphism of the constructions
expressed by the respective expressions. The
paper offers a formally worked-out and
philosophically motivated criterion of
hyperintensional individuation, which is the
relation of procedural isomorphism. The definition
of procedural isomorphism includes a slightly
more carefully stated version of -conversion and

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546
DOI: 10.13053/CyS-18-3-2018

452 Marie Duží

-conversion by value, which amounts to a
modification of Church’s Alternative (A1).

Acknowledgements

This work has been supported by the internal
grant agency of VSB-Technical University
Ostrava, Project No. SP2014/157, “Knowledge
modeling, process simulation and design”.

Versions of this paper have been presented at
Logica 2013, Czech Republic, and CICLing 2014,
Nepal.

References

1. Anderson, C.A. (1998). Alonzo Church’s
contributions to philosophy and intensional logic.
The Bulletin of Symbolic Logic, 4(2), 129–171.

2. Chang, S. & Felleisen, M. (2012). The call-by-
need lambda calculus, revisited. Programming
Languages and Systems. Lecture Notes in
Computer Science, 7211, 128–147.

3. Carnap, R. (1947). Meaning and necessity.
Chicago: Chicago University Press.

4. Church, A. (1993). A revised formulation of the
logic of sense and denotation. Alternative (1).
Noûs, 27(2), 141–157.

5. Duží, M. (2010). The paradox of inference and the
non-triviality of analytic information. Journal of
Philosophical Logic, 39(5), 473–510.

6. Duží, M. (2012). Towards an extensional calculus
of hyperintensions. Organon F, 19, supplementary
issue 1, 20–45.

7. Duží, M. (2013). Deduction in TIL: From simple to
ramified hierarchy of types. Organon F, 20,
supplementary issue 2, 5–36.

8. Duží, M. & Jespersen, B. (2010). Transparent
Quantification into Hyperintensional Contexts. In
M. Peliš and V. Punčochář (eds.), The Logica
Yearbook 2010 (81–98). London: College
Publications.

9. Duží, M. & Jespersen, B. (2012). Transparent
quantification into hyperpropositional contexts de
re. Logique & Analyse, 55(220), 513–554.

10. Duží, M. & Jespersen, B. (2013). Procedural
isomorphism, analytic information, and -
conversion by value. Logic Journal of the IGPL,
21(2), 291–308.

11. Duží, M., Jespersen, B. (to appear). Transparent
quantification into hyperintensional objectual
attitudes. Synthese, special issue on
Hyperintensionality

12. Duží, M., Jespersen, B., & Materna, P. (2010).
Procedural Semantics for Hyperintensional Logic:
Foundations and Applications of Trasnsparent
Intensional Logic. Dordrecht: New York: Springer.

13. Ludwig, K. & Ray, G. (1998). Semantics for
opaque contexts. Philosophical Perspectives,
12(S12), 141–166.

14. Materna, P. (1998). Concepts and Objects. Acta
Philosophica Fennica, vol. 63. Helsinki: Edidit
Societas Philosophica: Distribuit Akateeminen
Kirjakauppa.

15. Moschovakis, Y.N. (1993). Sense and denotation
as algorithm and value. Lecture Notes in Logic, 2,
210–249.

16. Plotkin, G.D. (1975). Call-by-name, call-by-value,
and the lambda calculus. Theoretical Computer
Science, 1, 125–159.

17. Salmon, N. (2010). Lambda in sentences with
designators: an ode to complex predication.
Journal of Philosophy, 107(9), 445–468.

18. Tichý, P. (1968). Smysl a procedura. Filosofický
časopis, 16, 222–232. Translated as ‘Sense and
procedure’ in (Tichý 2004: 77-92).

19. Tichý, P. (1969). Intensions in terms of Turing
machines. Studia Logica, 24(1), 7–21. Reprinted
in (Tichý 2004: 93–109).

20. Tichý, P. (2004). Collected Papers in Logic and
Philosophy. Prague: Filosofia; Dunedin, N.Z.:
University of Otago Press.

Marie Duží received her CSc. degree (roughly
equivalent to Ph.D.) in 1992 from the Czech
Academy of Sciences in Logic. Since 2001 she
has been an Assistant Professor of Computer
Science in VSB-Technical University Ostrava,
Czech Republic.

Article received on 08/01/2014 on 06/02/2014.

Computación y Sistemas Vol. 18, No. 3, 2014 pp. 439–453
ISSN 1405-5546

DOI: 10.13053/CyS-18-3-2018

Structural Isomorphism of Meaning and Synonymy 453

http://80.link.springer.com.dialog.cvut.cz/book/10.1007/978-3-642-28869-2
http://80.link.springer.com.dialog.cvut.cz/book/10.1007/978-3-642-28869-2

