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Abstract. A super-resolution image reconstruction al-
gorithm using natural neighbor interpolation is proposed
and its performance is evaluated. The algorithm is di-
vided into two stages: image registration and the recon-
struction of a high-resolution color image. In the first
stage, as shifts between images are usually unknown,
the algorithm computes an approximation of these dis-
placements by solving the system of linear equations
proposed by Keren, Peleg, and Brada, then the pixels
of all low-resolution images are mapped into a high-
resolution grid by computing the new coordinates using
the motion vectors. In the second stage, the pixel val-
ues that match the high-resolution grid are interpolated
using natural neighbor interpolation which is a weighted
average interpolation method for scattered data, based
in the areas of the Voronoi polygons of the neighboring
pixels. Finally, the proposed natural neighbor super-
resolution algorithm is compared with some popular
super-resolution algorithms presented in literature.

Keywords. Super-resolution, natural neighbor interpo-
lation, motion estimation, high-resolution image recon-
struction.

1 Introduction

High quality digital images are often needed and
desired in many applications. Digital images
are used in a variety of areas such as medical
imaging, surveillance, astronomy, microscopy, con-
sumer electronics, and computer vision. In recent
years the popularity and use of digital images have
increased significantly, therefore, the demand for
high quality images has increased accordingly.

As an example, a practical application where
high detail images can be used is recognition of
the license plate number of a car in an image
taken by a surveillance camera. Another example

is facial recognition systems where the algorithm
processing time is reduced and the quality of ob-
tained results is increased if the images employed
as inputs are detailed.

In order to increase the “quality” or “detail level”
of an image, its spatial resolution must be in-
creased. Spatial resolution is defined as the num-
ber of independent pixels per unite of area of an
image; in other words, it is a measurement of pixel
density. Spatial resolution depends largely on the
optical system that acquires the image, since the
number of independent pixels per unite area of a
digital image is limited by the density of imaging
sensors in the array of the system. Therefore, in or-
der to increase the quality of images it is necessary
to increase the density of imaging sensors in the
array. These sensors are usually distributed into
a two-dimensional (2D) array in an image acquisi-
tion system, the higher the sensor density in the
array, the higher the spatial resolution of images
captured. The size of this array of sensors is
limited, so spatial resolution has a physical limit.
Beside physical limitations in the imaging sensors,
there is also the disadvantage of a high cost in the
manufacturing of these devices.

An alternative to increase spatial resolution of an
image without decreasing the size of the sensors is
image processing techniques. Image processing
techniques are commonly cheaper to implement
because they do not require specialized hardware
used in high-resolution imaging systems, which
means lower manufacturing costs and reducing the
final price. For these reasons image processing
techniques arise as alternatives to improve image
resolution at lower cost. One of the most innova-
tive image processing techniques deeply studied
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Fig. 1. Information from multiple LR images is used in
order to reconstruct an HR image

in recent years is called super-resolution image
reconstruction.

Super-resolution is an image reconstruction
technique that consists in obtaining a high-
resolution (HR) image from multiple low-resolution
(LR) images of the same scene with small shifts
in each image relative to a reference image. The
basic premise is to reconstruct an HR image from
pixel information that LR images provide.

In super-resolution there is a condition to be
fulfilled: the pixel information must be different in
each LR image. That is, if images have integer
unit shifts between them, then there is no new
information available and super-resolution cannot
be achieved. In other words, by fusing new pixel
value information from each input image, a new
HR image is created. In Fig.1 the basic principle
of super-resolution is illustrated.

As explained above, some conditions must be
met in order to achieve super-resolution:

1. Availability of several LR images capturing the
same scene.

2. Low-resolution images must have sub-pixel
displacements between them.

3. Low-resolution images are aliased or sub-
sampled by an image acquisition system.

The number of LR images to be used must be
selected according to the value of the up-scaling
factor of an HR image; this means, if only a few
LR images are used as input and the algorithm is

set to obtain an output image with a high up-scale
factor, then bad quality results will be obtained.
Otherwise, if too many images are used as input
and an output image with a low up-scale factor is
desired, then the computation time will be too big
compared to the time consumed in the processing
of the same output image using fewer input images.

In order to fulfill the second condition, displace-
ments can be global or local, as well as transla-
tional or rotational. If the movement between im-
ages is very large, the reconstructed image will be
of poor quality. Small displacements are measured
with respect to a reference image.

Spatial aliasing could be explained as distor-
tion present in the output images caused by the
sub-sampling of a continuous scene digitized by
an image acquisition system. In super-resolution
algorithms information with which we reconstruct
the HR image is embedded in the form of spatial
aliasing in the LR images. Therefore, it is required
that the sensors used to capture the LR images be
weak enough so that aliasing be present.

Super-resolution image reconstruction algo-
rithms usually differentiate three stages (see Fig.6
in [17]). These stages can be implemented sep-
arately or simultaneously and they are 1) Image
registration, 2) Interpolation, and 3) Restoration.

The first stage is estimation of motion informa-
tion of a set of input LR images and arrangement
of LR pixels into an HR grid. This stage is referred
to in the literature as image registration. There are
several algorithms proposed to calculate relative
displacements between images [4, 7, 13, 14, 22].
As explained earlier, a condition that must be
met to achieve super-resolution is the existence of
sub-pixel shifts between the input images and the
original scene; in most super-resolution methods
these displacements are assumed to be known,
however, in practice this is not always true. Motion
estimation is a critical step in image reconstruction,
the quality of the estimated image and the com-
putation time depend largely on motion estimation
results. If estimation is not precise, the result will
be a lower quality image with a high processing
time. Although motion estimation is an important
stage to achieve super-resolution, most proposed
algorithms do not focus on it. A motion estima-
tion algorithm calculates the global translations in
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horizontal and vertical axis respectively as well as
the rotation angle for each image. Shifts between
LR images are non-uniform and may be global
or local. For purposes of simplicity, translational
and rotational displacements will be assumed to be
global for each LR image.

After motion estimation is performed, new coor-
dinates for each LR image are calculated using the
computed displacements and then arranged into
an HR grid. Once the pixels are arranged within the
grid they remain non-uniformly distributed along it.
Therefore, it is necessary to perform a 2D interpo-
lation for scattered data in order to calculate pixel
values aligned with the HR grid using neighboring
pixel values. In particular, we have selected the
natural neighbor interpolation for scattered data
proposed by Sibson [24].

Finally, as a third stage in some algorithms, an
image restoration method is applied to the interpo-
lated image in order to remove blurring and noise
and the output HR image is obtained. There are
several super-resolution algorithms which imple-
ment, simultaneously or separately, two or three of
the steps previously seen.

The main contribution of this work is the de-
velopment of a new super-resolution image re-
construction algorithm using the natural neighbor
interpolation that has a better performance than
other popular algorithms proposed in literature in
terms of improving spatial resolution of resulting
images. The natural neighbor is a local multivariate
interpolation technique for scattered data, which
is widely used in data interpolation in geophysical
and terrain modeling. This interpolation based
on areas has been previously used for 2D image
reconstruction to generate intermediate images in
animations [3], but it has never been used for re-
construction of an HR image using a set of LR
images. It is noteworthy that the combination of
algorithms for motion estimation and the natural
neighbor interpolation studied in this work have not
been proposed before in super-resolution image
reconstruction literature.

In this paper the first two stages of super-
resolution seen previously are implemented sep-
arately and the paper is organized as follows. In
Section 2, motion is estimated by solving the sys-
tem of linear equations proposed by Keren, Peleg,

and Brada [14]. The coefficients of this system of
linear equations are calculated by convolving the
LR images with a bivariate Gaussian function and
its partial derivatives. The convolutions are com-
puted numerically in the frequency domain using
the Fast Fourier Transform (FFT) algorithm. The
LR pixels are then mapped into an HR grid by
computing their coordinates using motion vectors.

Once the displacements are calculated, in Sec-
tion 3 the natural neighbor interpolation algorithm
for scattered data is implemented. The natural
neighbor interpolants are constructed by calculat-
ing the areas of the Voronoi polygons using the
compound signed decomposition algorithm. The
third stage of super-resolution is omitted in this
work. There are a lot of algorithms for image
restoration and it is left to the reader’s choice which
one to use.

The proposed natural neighbor super-resolution
algorithm is compared with three popular super-
resolution image reconstruction algorithms in order
to evaluate its performance. Spatial resolution im-
provement is measured statistically by comparing
the output images of each algorithm against an HR
image created from input LR images. Images are
compared using the normalized cross correlation
factor (NCC) as a measure of similarity. Also,
the HR reconstructed image of a license plate is
included to show a practical application of the algo-
rithm. Finally, experiments and results are shown
in Section 4 while conclusions are discussed in
Section 5.

2 Image Registration

2.1 Motion Estimation (ME)

The quality of the reconstructed HR image de-
pends largely on the results obtained in the ME
stage. For this reason, it is required to define
a method that calculates accurately the sub-pixel
shifts between the LR frames.

Several methods for ME have been proposed
in literature; however, most methods are not ac-
curate enough for the sub-pixel accuracy required
as a condition to achieve super-resolution. The
authors of [14] proposed a method for image reg-
istration which is accurate enough at the sub-pixel
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level required. They proposed a system of linear
equations (SLE) defining the spatial relationship
between a reference image and warped images
starting from basic geometric operations. The op-
erations of rotation about any point and displace-
ments are defined in the following equations (see
Appendix for details):

x′ = (x− xo) · cos(θ)− (y − yo) · sin(θ) + xo + a,
(1)

y′ = (y − yo) · cos(θ) + (x− xo) · sin(θ) + yo + b.
(2)

From the basic geometric operations (1) and (2)
they derived the following SLE with displacements
a, b, and rotation angle θ as unknowns, the refer-
ence and warped images defined as the functions
f and g respectively with spatial variables x and y
and partial derivatives fx and fy:[∑

x,y

f2x

]
a+

[∑
x,y

fxfy

]
b+

[∑
x,y

Rfx

]
θ =

∑
x,y

[fx · (g − f)][∑
x,y

fxfy

]
a+

[∑
x,y

f2y

]
b+

[∑
x,y

Rfy

]
θ = (3)

∑
x,y

[fy · (g − f)][∑
x,y

Rfx

]
a+

[∑
x,y

Rfy

]
b+

[∑
x,y

R2

]
θ =

∑
x,y

[R · (g − f)]

where

R = fy · (x− x0)− fx · (y − yo). (4)

Detailed derivations of the equations in (3) can
be found in Appendix. The SLE is only valid for
small values of the angle θ. It is noteworthy that
the subtractions in the right-hand side of (3) are
slightly different from the independent terms shown
in [14]. This was corrected later in [12] and [13],
however, there are still differences in the summa-
tions of independent terms in the right-hand side of
the equation. It is also noteworthy that the term R

is different from the works mentioned above since
the SLE computes the rotations about any point
(xo, yo) (see Appendix).

In order to solve the SLE in (3) for the unknowns
a, b, and θ, it is necessary to calculate the co-
efficients of the system in the left-hand side and
the independent terms in the right-hand side. To
compute the above terms, the functions f and g
must be defined and the partial derivatives fx and
fy calculated.

Usually the images f and g are not defined as
analytical functions. They are defined as a matrix
of size M×N containing the discrete pixel value
intensities arranged in rows and columns accord-
ing to their coordinates. To calculate the partial
derivatives of the function f , we take advantage of
implicit Gaussian blur h in images as well as the
derivative property of the 2D convolution.

The Gaussian blur is defined as the result of
blurring an image by a Gaussian function. In two
dimensions, the circular Gaussian function is the
distribution function for uncorrelated variables x
and y having a bivariate normal distribution and
equal standard deviation σ = σx = σy, and it is
expressed as

h =
1

2πσ2
· exp

[
−
(
(x− xo)2 + (y − yo)2

2σ2

)]
. (5)

Mathematically, applying a Gaussian blur to an
image is the same as convolving an image f ′ with
a Gaussian function h where f ′ is the original ref-
erence image:

f = f ′ ∗ h. (6)

We take advantage of the convolution derivative
property for functions of several variables which
states that “the derivative of a convolution is the
convolution of either of the functions with the
derivative of the other” [6]. Applying this property
to (6) we obtain

fx = [f ′ ∗ h]x = hx ∗ f ′,

fy = [f ′ ∗ h]y = hy ∗ f ′.
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Therefore, it is only necessary to obtain the partial
derivatives of the bivariate Gaussian function:

hx = − (x− xo)
2πσ4

·exp
[
−
(
(x− xo)2 + (y − yo)2

2σ2

)]
,

(7)

hy = − (y − yo)
2πσ4

·exp
[
−
(
(x− xo)2 + (y − yo)2

2σ2

)]
.

(8)

Since images f and g are stored as a matrix of
discrete pixels, it is necessary to produce discrete
versions of partial derivatives using formulas (7)
and (8). Then, these discrete finite versions of the
partial derivatives are convolved with the reference
image f ′ in order to calculate the coefficients of
(3). To compute the convolution, we will use the 2D
discrete Fourier Transform (DFT) and the theorem
of circular convolution. The spatial convolution
between a digital image and a Gaussian function
or its partial derivatives can be calculated using the
backward DFT of the product of two forward DFTs.
The Fast Fourier Transform (FFT) is an efficient
algorithm to compute forward and backward DFTs.
From now on the notation FFT[f ] will be used to
indicate that the forward DFT of an image f is
computed using the FFT algorithm, and the nota-
tion IFFT[f ] means that backward FFT algorithm
is implemented. Finally, in order to compute the
nine coefficients on the left-hand side of (3), the
following three terms are calculated first:

T1 = f = IFFT {FFT [f ′] · FFT [h]} , (9)
T2 = fx = IFFT {FFT [f ′] · FFT [hx]} ,(10)
T3 = fy = IFFT {FFT [f ′] · FFT [hy]} ,(11)

where 0 ≤ x < M and 0 ≤ y < N . Then we
proceed to calculate the term R in (4) using the
terms (10) and (11):

R = T3 · (x− xo)−T2 · (y − yo). (12)

The following matrix of coefficients is calculated
using the terms (10), (11), and (12) according to
the left-hand side in (3):

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , (13)

where

a11 =
∑
x,y

T2 ·T2, a21 =
∑
x,y

T2 ·T3,

a31 =
∑
x,y

R ·T2,

a21 =
∑
x,y

T2 ·T3, a22 =
∑
x,y

T3 ·T3,

a23 =
∑
x,y

R ·T3,

a31 =
∑
x,y

R ·T2, a32 =
∑
x,y

R ·T3,

a33 =
∑
x,y

R ·R.

(14)

Then, each shifted input LR image g′k is con-
volved with the Gaussian function. This yields a
fourth term for the k-th warped image:

T4
k = gk = IFFT {FFT [g′k] · FFT [h]} . (15)

Finally, the constant term vector is computed
using (9), (10), (11), and (15) according to the
right-hand side in (3):

bk =
[
b1k b2k b3k

]T
, (16)

where

b1k =
∑
x,y

T2 ·
[
T4

k −T1

]
,

b2k =
∑
x,y

T3 ·
[
T4

k −T1

]
, (17)

b3k =
∑
x,y

R ·
[
T4

k −T1

]
.

Therefore the SLE is as follows:

Amk = bk,

where mk is the k-th ME vector. To find mk, the
matrix A is inverted such that

mk = A−1bk =
[
ak bk θk

]T
. (18)

It is noteworthy that the nine coefficients of the
matrix A in (13) are computed once, so only the
function g and consequently the vector bk in (16)
have to be calculated for each image. The matrix
A is easily invertible using the adjoint method.

The ME algorithm is summarized below.
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Algorithm 1 Calculate ak,bk,θk
Calculate h [eq. (5)].
Calculate hx and hy [eq. (7) and eq. (8)].
Calculate FFTs of f ′, h , hx and hy.
Calculate terms T1, T2 and T3 [eq. (9), eq. (10)
and eq. (11)].
Calculate term R [eq. (12)].
Calculate matrix A [eq. (13) and eq. (14)].
Inverse matrix A.
for k = 1 to Number of Images do

Compute T4
k [eq. (15)].

Compute T4
k −T1.

b1k =
∑
x,y T2 ·

[
T4

k −T1

]
,

b2k =
∑
x,y T3 ·

[
T4

k −T1

]
,

b3k =
∑
x,yR ·

[
T4

k −T1

]
[eq. (17)],

bk = [b1k, b2k, b3k] [eq. (16)].
mk = A−1bk [eq. (18)].

end for

2.2 High-Resolution Grid Mapping

Once the motion parameters of each image are es-
timated, we proceed to map the LR images into the
desired HR grid. Using the ME vector mk, the new
LR image coordinates are calculated combining (1)
and (2), and taking into account the horizontal and
vertical up-scale factors Fx and Fy of the desired
HR image. This yields

x′ = Fx · (x− xo) · cos(θk)− Fy · (y − yo) · sin(θk)
+ Fxxo + akFx, (19)

y′ = Fy · (y − yo) · cos(θk) + Fx · (x− xo) · sin(θk)
+ Fyyo + bkFy. (20)

Using the coordinates obtained in the above equa-
tions, each LR image gk is mapped on the de-
sired HR grid. As an example, in Fig. 2 three LR
images are translated and rotated with respect to
a reference image (square pixels image). Then
the motions of each image are estimated. The
new coordinates into the HR grid with the up-scale
factors Fx = Fy are computed using (19) and (20).
Finally, all the pixels of the LR images are mapped
in the HR grid as shown in Fig.3. Only the pixels
within the HR grid are taken into account for the
scattered interpolation.

Fig. 2. Warped LR images

Fig. 3. Low resolution pixels mapped into the HR grid

3 High-Resolution Color Image
Reconstruction

Since the shifts between the LR images are arbi-
trary and with sub-pixel precision, the mapped LR
pixels do not match the HR grid as shown in Fig.3.
Therefore, it is necessary to perform a multivariate
non-uniform data interpolation in order to estimate
the points that match with the grid.

The ME from Section 2 is performed in the lumi-
nance component Y of a multi-component YCrCb
color system. The same principle can be used
in color image spatial interpolation. Since non-
uniform data interpolation is more complex than a
uniform data interpolation, it is preferable to per-
form a robust scattered data interpolation on Y
component, using the mapped pixels on the HR
grid of Section 2, and a uniform interpolation on
chrominance channels using the original Cr and
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Cb components of the reference LR image. A sim-
ple and fast spatial uniform interpolation to perform
is bilinear interpolation.

Within the classification of scattered data spa-
tial interpolation methods are local techniques [1,
2]. Local interpolation methods have an advan-
tage: interpolation is continuous at data points and
smooth around them. In these local techniques the
interpolation function is influenced by the neighbor-
ing data points of the interpolated point. A robust
local coordinate technique is natural neighbor in-
terpolation.

3.1 Natural Neighbor Interpolation

The natural neighbor is a local multivariate interpo-
lation technique for scattered data, which is widely
used in data interpolation and modeling of geo-
physical phenomena. It was first introduced by Sib-
son in 1981 [24]. This method is based on Voronoi
diagrams and its dual graph Delaunay triangula-
tion of a given set of discrete scattered spatial
points. Natural neighbor interpolation is a weighted
average method, where the weights are defined
by the area stolen by the interpolated point when
simulating its insertion in the Voronoi diagram of
scattered points. This is related to the concept
of local coordinates proposed by Sibson. To bet-
ter understand the mechanics of natural neighbor
interpolation and local coordinates we first review
some basic concepts and properties of the Voronoi
diagram and the Delaunay triangulation.

The Voronoi diagram, also known as Voronoi
tessellation or Dirichlet tessellation, is a geometric
partitioning of a given space into regions based
on a set of scattered data points called sites or
centroids. Assuming that a given space is a 2D
Euclidean space, the space is divided into regions
called Voronoi cells associated to a site. The
Voronoi cells are determined by the distance from
a given site to the other sites in the plane. Namely,
a Voronoi cell is the set of all points in the given
space whose distance to the associated site is
no greater than their distance to the other sites.
Consider a set of distinct sites in the Euclidean 2D
space X :∈ R2

P = {p1,p2, . . . ,pN} .

The Voronoi cell Vn associated to site pn is defined
as a set of all points in X whose distance to the site
pn is no greater than their distance to other sites
mathbfpm, where n is an index different from m.
This is formalized as follows:

Vn = {x ∈ X : d(x,pn) < d(x,pm) ∀ n 6= m} ,
(21)

where d(x,p) is the Euclidean distance from the
point x to the site p. Then, the Voronoi diagram is
the set of all Voronoi cells Vn in the space X.

In the field of image processing a given space
is a 2D finite Euclidean space. If we apply the
concepts seen above to the HR grid studied in
Section 2, then the given space X is the HR grid di-
vided into a set of regions. If each mapped pixel is
considered a site in the space X, then each divided
region is associated with a pixel mapped according
to the new coordinates that were calculated using
the ME vectors, such that any point inside a spe-
cific region is closer to that pixel associated with
the region than to any other pixel in the grid. In
the simplest case, if only two pixels are mapped
into the grid, the HR grid is divided into two half
planes bounded by the perpendicular bisector of
both pixels. If more pixels are uniformly inserted
into the grid, then each region will intersect n−1
Voronoi cells and thus convex polygons are formed
in the grid as shown in Fig.4.

One important property of Voronoi diagrams is
the duality with the Delaunay triangulation for the
same set of sites in the Euclidean space.

The Delaunay triangulation, also known as De-
launay tessellation, was first introduced by Delau-
nay in 1934 as cited in [15]. Delaunay triangulation
is based on the concept of a Voronoi diagram that
divides the plane into a set of regions bounded
by convex polygons and each region is associated
with a single point or site, then the Delaunay tri-
angulation is constructed by connecting the points
with which the Voronoi cells have common bound-
aries [30]. It is said that Voronoi diagrams and
Delaunay triangulation are dual structures because
both contain the same information but represented
in a different form. There is a Delaunay trian-
gle edge between two points or sites only if their
Voronoi cells are adjacent as can be seen in Fig.5
for the same Voronoi diagram shown in Fig.4.
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Fig. 4. Voronoi diagram of thirteen scattered points

Fig. 5. Delaunay triangulation and its dual graph the
Voronoi tessellation

A property of the Delaunay triangulation is that
it maximizes the minimum angle in each single
triangle avoiding the construction of skinny trian-
gles, this is a desired property for finite element
triangulation [30]. A Delaunay triangle is validated
using the empty circumcircle criterion, this criterion
states that if a circle circumscribing any Delaunay
triangle does not contain any other points within its
circumference, then the line connecting two ver-
tices of the triangle that intersects the circumfer-
ence is an edge of a Delaunay triangle. Formally,
the empty circumcircle criterion is the name of the
theorem that states that for every finite set of points
in a plane, there is a minimum number of circles
such that every point in the convex hull of the set
of points lies exactly in the circumference of one or
more of the circles, but none of the points lies within
the circle. This means that each point lies on one
or more circles but not in the interior of any. Fig.6
illustrates the empty circumcircle criterion that vali-
dates some of Delaunay triangles in Fig.5.

As explained before, natural neighbor interpola-
tion is a local non-uniform data interpolation tech-
nique based on local coordinates. In local interpo-

Fig. 6. Empty circumcircle criterion

lation techniques, points influencing the interpola-
tor are the neighbors surrounding a given point to
interpolate. The level of “influence” of each neigh-
bor over the interpolate point is defined by the local
coordinates of the given point. More properties of
local coordinates are studied in [9,21,23].

As seen in Fig.4, the Voronoi diagram partitions
the plane into segments or tiles called Voronoi cells
defined formally in (21). By observing the equation
again, each Voronoi cell encloses the point pn,
then the Voronoi polygon Vn is composed of the
points that are closer to the given point pn than
any other point pm. Hence, it is said that the point
pn is a natural neighbor of the point pm if and only
if their Voronoi polygons Vn and Vm, respectively,
share a common edge.

Translating the above definition to the concept
of circumcircles, two data points are natural neigh-
bors if the circle passing through them and a third
point does not enclose a fourth data point. There-
fore, if these three points are contiguous, they are
natural neighbors meeting the Delaunay empty cir-
cumcircle criterion, therefore, these points are the
vertices of a Delaunay triangle. Then, it is obvious
that the minimum number of natural neighbors of a
given point in a Voronoi diagram is two (when n ≥
3). The given point and its natural neighbors form
the elemental natural neighbor triplets in Voronoi
diagrams.

In order to build the natural neighbor interpolant,
it is necessary to construct a Voronoi diagram from
the original scattered data point set S, then we
proceed to simulate the insertion of a query point q,
which is the point to be interpolated. This new point
q creates a new Voronoi polygon that overlaps the
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q

Fig. 7. Voronoi tile of the query point q overlaps the tiles
of points

original Voronoi tessellation as it can be seen in
Fig.7. Given (21), the new Voronoi cell created by
the query point is defined by

V(q) = {z ∈ S : d(z,q) < d(z,xi) ∀ i = 1 . . . n} ,
(22)

where z is the subset of points in the original set
S ∈ R2 inside the Voronoi cell, q is the query point,
xi is the i-th natural neighbor of the query point,
and n is the number of natural neighbors of q. The
intersection of the new Voronoi polygon with the
original Voronoi diagram is defined by

Vi(q) = V(q) ∩Vi, (23)

where Vi is the Voronoi polygon of the i-th natural
neighbor xi. It is said that the new Voronoi poly-
gon V(q) “steals” some area from the neighboring
Voronoi tiles Vi of the query point. Then, the ratio
of the area of each intersection Vi(q) by the total
area of the polygon V(q) constructs the natural
neighbor interpolant of the query point q and is
defined by

f̂(q) =
∑
i

wi(q)f(xi), (24)

where
wi(q) =

Area[Vi(q)]

Area[V(q)]
(25)

and f(xi) is the function value in the i-th natural
neighbor point. In our case, it is the luminance
value Y of the neighboring pixel.

The ratio of the areas wi(q) is the weight that
measures the “influence” of each natural neighbor

in order to interpolate the point q. Therefore, it
is said that the natural neighbor interpolation is a
weighted average of the set of points in S that are
the natural neighbors of the query point. Eq. (25)
shows that wi(q) is normalized, therefore

0 ≤ wi(q) ≤ 1,
∑
i

wi = 1.

Note that the area ratio varies between 0 and 1,
where 0 means that the area of the Voronoi cell
of the given point does not intersect the area of
the query point, and 1 means that the query point
coincides exactly with the original point.

The function f̂(q) defines a surface that is con-
tinuous and differentiable, except in data points xi

[28]. Then, the interpolator in (24) is of C0 type,
which means that its derivatives are discontinu-
ous at points xi. There is a method to obtain
the gradient of the function f̂(q) at points xi and
construct a natural neighbor of C1 type interpolant
[24]. However, for the purposes of this work, the
C0 type interpolant will be used since an image is
discrete and only the points that match with the HR
grid will be interpolated.

By observing Fig. 7 it would be obvious that in
order to compute the natural neighbor interpolant
of each query point, it is necessary to construct a
Voronoi diagram of the original point set S and then
build a new Voronoi diagram for each point to be
interpolated. It is noteworthy here that in the fastest
algorithms used to compute a Voronoi diagram
usually a Delaunay triangulation is computed first.
Also, to find each weight wi in (25), it is required
to calculate the areas of the convex polygons that
are stolen from the original Voronoi diagram, and
since it is easier to find the area of a triangle than
the area of an irregular polygon, a typical method
is to divide the polygon into triangles and perform
the summation of the areas of all triangles, which
means to compute more triangulations. Therefore,
it is computationally costly to use the above method
to interpolate the HR image where it is needed to
interpolate each pixel that matches with the HR
grid.

The compound signed decomposition technique
for natural neighbor interpolation proposed by Wat-
son [27] is an algorithm that calculates the area
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ratio wi computing only the original Delaunay tri-
angulation from the original set of points. This al-
gorithm is based on the Bowyer-Watson algorithm
and performs local triangulations for each query
point instead of computing a whole new triangu-
lation, which saves computation time. Each pixel
mapped in the HR grid represents a vertex of a
Delaunay triangle; using this characteristic, it is
possible to perform local triangulations. The fun-
damental principle of this algorithm is to construct
a super-triangle that contains the polygon whose
area will be calculated. Each edge of the super-
triangle contains some edge of the polygon. The
portions of the super-triangle that are outside of the
polygon are also triangles. Therefore, the final area
of the polygon is the sum of the “positive” area of
the super-triangle and the “negative” areas of the
triangles outside the polygon. This is the concept
of signed triangulation, because the areas of some
triangles are considered positive and some other
areas are negative.

The method for obtaining the local coordinates
wi using the compound single decomposition is
explained in detail in [29] and is summarized below:

Algorithm 2 Calculate natural neighbor coordi-
nates wi

Construct a Delaunay triangulation Dt from
original point set S using Bowler-Watson algo-
rithm [25].
for each Delaunay triangle t inDt whose circum-
circle contains q do

Let cct be the circumcenter of t
for each edge i of t with vertices j and k do
cci := circumcenter(q, j,k)

end for
for each vertex i of t do
wi := wi + 0.5 ·DET (ccj, cck, cct)

end for
end for
Normalize all wi in order to obtain the local coor-
dinates of q.

The sign of the areas of triangles is given by the
sequence of its vertices in the determinant. The
order of the sequence is given by the table shown
on page 9 in [29].

3.2 Bilinear Interpolation in Chrominance
Color Components

Since scattered data interpolation is complex, it
is preferable to use a simple interpolation in the
chrominance color components Cr and Cb of the
image. This is because only chrominance compo-
nents contain color information. This method saves
computation time and the resulting HR image qual-
ity is not affected significantly. Bilinear interpolation
is a common and simple interpolation technique in
the image processing field and is mostly used to re-
size digital images. In order to increase the spatial
resolution of chrominance components, the pixel
values between the HR grid must be computed. An
efficient algorithm of bilinear interpolation applied
to images is explained in [20].

4 Experiments and Results

The Natural Neighbor Super-Resolution (NNSR)
algorithm was coded in the C programming lan-
guage. The algorithm was divided into two stages
as follows.

In the image registration stage the input LR im-
ages are converted from the RGB color space to
the textitYCrCb color space. The Y luminance
component of each image is used in the compu-
tation of the motion vectors. The ME was per-
formed by implementing the algorithm proposed by
Keren, Peleg, and Brada [14] following the steps in
Algorithm 1 shown in Section 2. The FFTs were
computed using the FFTW open-source library
[10]. Then, pixels of the luminance component
of each input LR image were mapped (using the
computed motion vectors) into an HR grid whose
size is defined by the up-scale factor F .

In the HR color image interpolation stage, the
luminance pixel values of the HR image are in-
terpolated using the natural neighbor interpolation
and the nn-c open-source library that implements
a hardware assisted algorithm based in compound
signed decomposition that takes advantage of the
capacity of modern video cards [8]. The chromi-
nance (Cr and Cb) pixel values of the HR image
are interpolated using the bilinear interpolation. Fi-
nally, the interpolated Y, Cr, and Cb components
are converted to the RGB color system.
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Standard LR test images were created from the
HR images using the Matlab GUI developed in
the Reproducible Research project [26]. This pro-
gram is a graphical user interface that implements
several motion-estimation and super-resolution al-
gorithms. The NNSR algorithm was compared
with three combinations of popular image registra-
tion and super-resolution algorithms implemented
in the Super-Resolution Matlab GUI mentioned
above.

In each experiment a different test image was
used. Each HR image obtained from the NNSR
algorithm and the combination of algorithms men-
tioned above was compared with the original HR
image from which LR images were obtained. The
comparisons were performed using the normalized
cross-correlation (NCC) coefficient as a quality
measure. The NCC coefficient was computed over
each RGB color channel of the compared images
and the coefficients were averaged.

The Normalized Cross Correlation (NCC) is a
commonly used metric to evaluate the degree of
similarity between two compared images. The
main advantage of NCC, which makes it different
from the other image comparison measures, is
that it is less sensitive to linear changes in the
amplitude of illumination in two compared images.
The maximum absolute value of NCC coefficient is
one which indicates perfect matching. Therefore,
the closer the NCC coefficient is to one, the closer
the reconstructed HR image is to the original HR
image.

Let X and Y be the images to be compared [5],
then

NCC =
1

N

∑N
i=1(Xi − µX)(Yi − µY )√∑N

i=1(Xi − µX)2
√∑N

j=1(Yj − µY )2
,

where µX and µY are the means of images X
and Y, respectively, and N is the number of pix-
els assuming that the images are of the same
size; therefore, summations are performed over all
pixels of both images. The NCC coefficient has
been used recently as an image quality measure
for super-resolution algorithms [5,11].

In the first experiment, the output HR images
obtained from the proposed NNSR algorithm are
compared with the HR images reconstructed from

Table 1. Image motions of Lenna LR images

Rotation x shift y shift

Image 1 0.00 0.00 0.00
Image 2 0.00 0.25 0.25
Image 3 0.00 0.5 0.50
Image 4 0.00 -0.25 -0.25
Image 5 0.00 0.15 0.15
Image 6 0.00 0.35 0.35
Image 7 0.00 -0.15 -0.15
Image 8 0.00 -0.35 -0.35

Table 2. NCC coefficients from the comparison with the
Lenna HR image

4 images 8 images
NNSR RS NNSR RS

Red NCC 0.998047 0.977294 0.998142 0.975516
Green NCC 0.997776 0.970706 0.997891 0.968936
Blue NCC 0.993972 0.954812 0.994048 0.953366
Avg. NCC 0.9966 0.96765 0.996695 0.965984

the combination of the ME algorithm of Marcel [16]
and the Robust Super-Resolution (RS) algorithm
[31]. Lenna 512×512 standard test image was
used as the original HR image (Fig.8a). The HR
image was sub-sampled by a factor of 4 in each
dimension and was used as the reference image
(Fig.8b). The reference LR image was shifted in
order to produce eight Lenna 128×128 LR images
with the shifts and rotations shown in table 1.

Four HR images were obtained in this experi-
ment by implementing the algorithms considered
previously with an up-scale factor of 4 and using
the LR images. The first two images were re-
constructed by implementing the proposed NNSR
algorithm. The image in Fig.9a was reconstructed
using the LR images from 1 to 4. The image in
Fig.10a is the result of using the eight images. The
high-resolution images of Fig.9b and Fig. 10b were
reconstructed with the RS algorithm using four and
eight images, respectively. Each obtained HR im-
age was compared with the original HR image of
Fig. 8a by computing the NCC coefficient on each
RGB color component. The results are shown in
Table 2.

In the second experiment, the HR images pro-
duced by the NNSR algorithm and the combination
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(a) (b)

Fig. 8. (a) Lenna original HR image, (b) Lenna reference LR image

(a) (b)

Fig. 9. (a) Lenna HR image reconstructed by the NNSR algorithm (4 images), (b) Lenna HR image reconstructed by
the RS algorithm (4 images)

of the ME algorithm [16] and the Iterated Back-
Projection (IBP) algorithm for image reconstruction
[13] were compared. Mandrill 512×512 standard

test image was used as the original HR image
(Fig. 11a). Ten Mandrill 128×128 LR images were
created from the HR image by sub-sampling the
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(a) (b)

Fig. 10. (a) Lenna HR image reconstructed by the NNSR algorithm (8 images), (b) Lenna HR image reconstructed by
the RS algorithm (8 images)

(a) (b)

Fig. 11. (a) Mandrill original HR image, (b) Mandrill reference LR image

original image by a factor of 4 and adding the shifts
and rotations of Table 3 where the first image is the
reference image.

An up-scale factor of 4 was used in the recon-
struction of the HR images. The result of im-
plementing the NNSR algorithm to the first four
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(a) (b)

Fig. 12. (a) Mandrill HR image reconstructed by the NNSR algorithm (4 images), (b) Mandrill HR image reconstructed
by the IBP algorithm (4 images)

(a) (b)

Fig. 13. (a) Mandrill HR image reconstructed by the NNSR algorithm (10 images), (b) Mandrill HR image reconstructed
by the IBP algorithm (10 images)

images is shown in Fig. 12a. The resulting HR
image using ten images is shown in Fig. 13a. Also,

two HR images were reconstructed using the IBP
algorithm. Fig. 12b shows the image obtained from
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Table 3. Image motions of Mandrill LR images

Rotation x shift y shift

Image 1 0.00 0.10 -0.10
Image 2 0.00 0.15 -0.15
Image 3 0.00 0.20 -0.20
Image 4 0.00 0.25 -0.25
Image 5 0.01 0.30 -0.30
Image 6 -0.01 -0.10 0.10
Image 7 0.02 -0.15 0.15
Image 8 -0.02 -0.20 0.20
Image 9 0.03 -0.25 0.25
Image 10 -0.03 -0.30 0.30

Table 4. NCC coefficients from the comparison with the
Mandrill HR image

4 images 10 images
NNSR IBP NNSR IBP

Red. NCC 0.912466 0.802046 0.923084 0.83115
Green NCC 0.861507 0.683716 0.884554 0.721808
Blue NCC 0.900955 0.790601 0.912872 0.820018
Avg. NCC 0.891909 0.760657 0.906983 0.792516

four images, and Fig. 13b shows the reconstructed
image from ten images. Each resulting HR image
from the NNSR and IBP algorithms was compared
with the original HR image of Fig. 11a by computing
the NCC coefficient on each RGB color compo-
nent. The results are shown in Table 4.

In the third experiment the NNSR algorithm
is compared against the Normalized Convolution
(NC) algorithm for image reconstruction [18], using
the ME technique [14] discussed in Section 2. A
256×256 Jelly Beans image is used as the original
HR image. Eight 64×64 Jelly Beans LR images
were created from the original HR image by sub-
sampling with a factor of 4 and adding the sub-pixel
shifts and rotations of Table 5, where the first image
is the reference image. Two HR images were
constructed using the NNSR and NC algorithms
and all the eight LR images were made with an
up-scale factor of 4. Both HR images resulting
from the NNSR and NC algorithms were compared
with the original HR image computing the NCC co-
efficient over each RGB color component and the
results are shown in Table 6. For space purposes,

Table 5. Image motions of Jelly Beans LR images

Rotation x shift y shift

Image 1 0.00 0.00 0.00
Image 2 0.00 0.40 -0.20
Image 3 0.017453289 0.50 0.60
Image 4 -0.017453289 0.35 -0.25
Image 5 0.026179933 -0.05 0.05
Image 6 -0.026179933 -0.10 0.30
Image 7 0.052359867 -0.15 -0.15
Image 8 -0.052359867 -0.1 0.20

Table 6. NCC coefficients from the comparison with the
Jelly Beans HR image

NNSR (8 images) NC (8 images)
Red NCC 0.980665 0.915898
Green NCC 0.988527 0.961583
Blue NCC 0.98999 0.956812
Avg. NCC 0.986403 0.944987

input and output images in this experiment are not
shown in this work.

Finally, a practical example is included in order
to show the utility of the NNSR algorithm. The four
LR images from Fig. 14a to Fig. 14d were taken
from [19], the images were cropped to show the
license plate number. The HR image in Fig. 15 was
generated with the NNSR algorithm using the four
LR images with an up-scale factor of 4.

5 Conclusions

In this paper we proposed a new super-resolution
image reconstruction using natural neighbor inter-
polation. The main contribution of this work is the
implementation of the area based method of natu-
ral neighbor interpolation in super-resolution image
reconstruction where LR images are used in order
to reconstruct an HR image. Also an optimized
image registration method is introduced solving the
SLE by computing the Fast Fourier Transform of
images. The HR images constructed by the NNSR
algorithm were compared against the images ob-
tained from three popular super-resolution image
reconstruction algorithms proposed in literature.
The results of experiments show that the proposed
NNSR algorithm has a better performance in terms

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 211–231
doi: 10.13053/CyS-19-2-2068

A Super-Resolution Image Reconstruction using Natural Neighbor Interpolation 225

ISSN 2007-9737



(a) (b)

(c) (d)

Fig. 14. Four LR images of a license plate

of quality of the resulting images than the algo-
rithms it was compared against.

The results of the comparison against the RS al-
gorithm demonstrate visually (Fig. 9a and Fig. 10a
against Fig. 9b and Fig. 10b) and statistically using
the NCC coefficient (Table 2), that the HR image
obtained from the NNSR algorithm is superior in
quality to the image produced by the RS algorithm
when the input LR images have very small transla-
tional displacements and null rotations.

The results obtained from the comparison
against the IBP algorithm show that the output
NNSR image has a significantly better quality than

that of the mentioned algorithm (from Fig. 12a to
Fig. 13a and Table 4).

In the last experiment, the NNSR algorithm
is compared against the normalized convolution
method. It is shown (Table 6) that the NNSR algo-
rithm output image has a slightly better statistical
quality than that of the NC algorithm.

It is noteworthy that in the first experiment, the
Lenna image quality is not improved significantly
when eight images are used as input instead of
four. However, in the second experiment the Man-
drill image quality increases considerably when ten
images are used instead of four images. This is be-
cause the Mandrill image has several well defined
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Fig. 15. License plate HR image reconstructed by the NNSR algorithm

borders and edges, so the area based interpolation
has a better performance for this kind of images.

Finally, by visual inspection, the reconstructed
HR image of the license plate in Fig. 15 has a sig-
nificant resolution improvement compared with the
LR images from Fig. 14a to Fig. 14d. The NNSR al-
gorithm could be used in an image pre-processing
stage for an automatic number plate recognition
algorithm for better results in recognition.

Appendix

It is necessary to define the spatial relationship be-
tween the reference image and the warped image
in order to obtain the SLE. Displacements and rota-
tions are the basic geometric operations to change
the size and shape of objects in an image. Usually,
a left-handed Cartesian coordinate system is used
in image processing, with the origin located in the
upper left corner of the image. Fig. 16 shows the
basic idea of the rotation operation in an image.

Looking at the picture and adding horizontal
and vertical displacements, we derive the following
equations:

x′ = x · cos(θ)− y · sin(θ) + a, (26)

y′ = y · cos(θ) + x · sin(θ) + b. (27)

The first two terms in each equation perform the
rotation in any angle θ, whereas the terms a and b

perform shifts in the horizontal and vertical direc-
tions. Equations (26) and (27) perform the rotation
operation, but only about the origin located in the
upper left corner in the image. Another kind of
rotation operation allows any point (xo, yo) in the
image to be the center of rotation. The operations
of rotation about any point and displacements can
be combined to generate operations given in (1)
and (2). Once the basic geometric operations
are defined, the relationship between the reference
image and a single shifted rotated image can be
defined: the reference image is set as a function
f(x, y), and the warped image is set as a function
g(x, y). The following relation is established using
(1) and (2) for the horizontal shift a, the vertical shift
b, and the rotation angle θ about the origin (xo, yo):

g(x, y) = f(x′, y′) = f
(
(x− xo) cos(θ) (28)

− (y − yo) sin(θ)
+ a, (y − yo) cos(θ) + (x− xo) sin(θ) + b

)
.

If cos(θ) is expanded to its first two terms and sin(θ)
is expanded to its first term in their Taylor series

cos(θ) ≈ 1− 1

2
θ2, sin(θ) ≈ θ, (29)

then, substituting (29) in (28) and defining new
coordinates x′′ = (x − xo) and y′′ = (y − yo), we
get

g(x, y) ≈ f
(
x′′ + a− y′′θ − x′′ θ

2

2
,
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Fig. 16. Image rotation about origin

y′′ + b+ x′′θ − y′′ θ
2

2

)
. (30)

Expanding the function g(x, y) to the first term of
its own Taylor series around the point (x′′, y′′), we
obtain

f(x′, y′) ≈ f(x′′, y′′) + (x′ − x′′)f(x′′, y′′)x
+ (y′ − y′′)f(x′′, y′′)y. (31)

According to (30) we have

x′ ≈ x′′+a−y′′θ−x′′ θ
2

2
, y′ ≈ y′′+ b+x′′θ−y′′ θ

2

2
.

Therefore, from (31) and (28), and since x′′ = (x−
xo) and y′′ = (y − yo), finally, we get

g(x, y) ≈ f(x, y)

+

(
a− (y − yo)θ − (x− xo)

θ2

2

)
f(x, y)x

+

(
b+ (x− xo)θ − (y − yo)

θ2

2

)
f(x, y)y.

(32)

The mean square error (MSE) function (with vari-
ables a, b, and θ) of the approximation of function
g(x, y) in (32) is

MSE ≈
∑
x,y

[
f +

(
a− (y − y0)θ − (x− xo)

θ2

2

)
fx

+

(
b+ (x− xo)θ − (y − yo)

θ2

2

)
fy

− g
]2

where the functions f(x, y) = f and g(x, y) = g
were redefined to simplify notation. The summa-
tion is over the overlapping part of f and g. For
small angles (less than 1 radian or 180/π degrees),
the nonlinear terms θ2 are very small so they can
be neglected in the error function. Then

MSE ≈
∑
x,y

[
f + (a− (y − y0)θ) fx

+ (b+ (x− xo)θ) fy − g
]2
. (33)

The next step is to look for the minimum of (33)
by computing its partial derivatives with respect
to a, b, and θ and equating to zero. To simplify
notation, a function U with variables a, b, and θ is
defined as

U = [f + (a− (y − y0)θ) fx+(b+ (x− xo)θ) fy − g] .
(34)

The partial derivatives of the error function with
respect to the horizontal shift a, the vertical shift b,
and the rotation θ are

MSEa = 2
∑
x,y

U · Ua,

MSEb = 2
∑
x,y

U · Ub, (35)

MSEθ = 2
∑
x,y

U · Uθ

where

Ua = fa + fx · (a− (y − y0) θ)a
+ [fy · (b+ (x− xo)θ)]a − ga = fx,

Ub = fb + [fx · (a− (y − y0)θ)]b (36)
+ fy · (b+ (x− xo)θ)b − gb = fy,

Uθ = fθ + fx · (a− (y − y0)θ)θ + fy · (b+ (x− xo)θ)θ
− gθ = fy · (x− x0)− fx · (y − yo).

Substituting (36) in (35), we obtain

MSEa = 2
∑
x,y

U · fx,

MSEb = 2
∑
x,y

U · fy, (37)

MSEθ = 2
∑
x,y

U · [fy · (x− x0)− fx · (y − yo)] .
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Substituting (34) in (37) and equating partial
derivatives to zero, we get

0 =
∑
x,y

[f + (a− (y − y0)θ) fx

+ (b+ (x− xo)θ) fy − g] fx,

0 =
∑
x,y

[f + (a− (y − y0)θ) fx

+ (b+ (x− xo)θ) fy − g] fy,

0 =
∑
x,y

[f + (a− (y − y0)θ) fx

+ (b+ (x− xo)θ) fy − g]
· [fy · (x− x0)− fx · (y − yo)] .

Then, substituting R as given in (4) and doing
some algebra we obtain the SLE given in (3). The
equations in (3) are the final SLE, with displace-
ments a, b, and rotation angle θ as unknowns.

It is noteworthy that the SLE is only valid for
small values of the angle θ due to the Taylor series
approximations. The SLE derived in this work is
slightly different from the SLE shown in [12–14].
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