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Abstract. Stochastic optimization is widely used in
combinatorial computer vision problems, and many
variant have been proposed. This contribution aims
at analyzing and assessing several flavours of the
simulated annealing algorithm. We particularly want to
show the optimization performance, convergence speed,
and quality of the solution with respect to the algorithm’s
parameters and cooling schedules. We also verify
experimentally that the S.A. algorithm is a global method
i.e. it is able to lock a strong minimum regardless of the
initialization. Performance evaluation is conducted in the
context of stereo matching.
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1 Introduction

Image matching is one of the most difficult
problems in computer vision. Indeed, it is the
fundamental precursor of 3D reconstruction from
a stereo pair or image sequence. Dense image
matching can be cast as finding corresponding
points in two or more images that correspond to
the same physical point in the scene [16, 24, 13,
23, 9, 10, 21, 6].

Dense image matching is an important step
of 3D reconstruction of scenes and objects.
Dense image matching can be defined as the
relationship between two 2D images used to
construct the 3D scene. From the 2D images,
dense image matching identifies corresponding
points that refer the same scene point [17, 18].
Unfortunately, many problems can be detected

such as occlusions, repetitive textures, illumination
changes and discontinuities of disparity.

Image matching can be achieved by several
techniques. It can always be cast as an
optimization problem. There are two major
classes: local methods and global methods.
Local methods are based on correlation (SAD,
SSD, ZNCC), while global methods are based on
stochastic algorithms such as taby search, genetic
algorithms, or simulated annealing (SA).

Several works on simulated annealing have
always claimed that the SA algorithm has
the fundamental property of finding the global
minimum regardless of the initial configuration.
While this has been shown as an asymptotic
convergence towards the global minimum in infinite
time, no experimental benchmarking has been
achieved either to evaluate the quality of solution or
to verify that a strong minimum is reached in finite
time.

Using the simulated annealing algorithm in
stereo matching has several problems such as
initialization of the algorithm and the random
number generator. The performance of the
algorithm in terms of computation time and quality
of disparity map depends on control parameters as
well as the cooling schedule.

In this paper, we are interested in the study
and evaluation of different cooling schedules in
simulated annealing algorithm [4, 22, 8, 15]. Our
work focuses on evaluating the results of the
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simulated annealing algorithm in then context of
stereo matching [20, 5].

We analyze the algorithm performances by using
different initializations (configuration), initial values
of temperature, and different seed value for the
random number generator.

2 Simulated Annealing

Initially, the system is set in an arbitrary
configuration. The annealing procedure takes the
system from this initial configuration to a final state
through a sequence of elementary transitions:

P (xk+1|xk) = min

[
1, exp

(
−E (xk+1)− E (xk)

T

)]
,

(1)
where E (xk) is the energy function value at the kth
iteration.

Metropolis et al. [11] proposed an algorithm
to simulate the behavior of the system as
the Boltzmann distribution at temperature T .
The simulated annealing uses this iterative
procedure to achieve a state of thermal equilibrium.
Kirkpatrick et al. [7] proposed to adapt this
algorithm to solve optimization problems. The
energy function is replaced by the objective
function to minimize.

The simulated annealing algorithm starts from
a random initial state and performs a random
walk in the configurations space. Transitions
from the current state to a new state with lower
energy are always accepted. Transitions to a
state with higher energy are accepted according
to the Boltzmann probability distribution function:
at high temperature, it is likely to accept this
kind of transitions while, at low temperatures,
only transitions reducing the energy are accepted.
The transitions are defined according to the
temperature plateaus, each plateau contains a set
of configurations that could be reached at this
temperature. The temperature is decreased only
when the system in thermal equilibrium at the
current temperature. Let assume E(x) the function
to minimize. The simulated annealing algorithm is
as follows:

The effectiveness of simulated annealing de-
pends in the choice of certain parameters such

Algorithm 1 Simulated Annealing

1: initialize the system at an initial state xk;
calculate the function E (xk)

2: choose another state xk+1; calculate the
function E (xk+1)

3: if E (xk+1) ≤ E (xk) then
4: accept the transition to the new state xk =

xk+1

5: else
6: accept transition with probability exp

(
−∆E

T

)
7: end if
8: Decreasing the temperature by a cooling

schedule
9: repeat steps 2 to 8 until global equilibrium

as the initial temperature value and the cooling
schedule.

2.1 Annealing Parameters

The initial temperature should not be very high
to have a reasonable computation time but high
enough to allow greater freedom in exploring the
search space. It should not be very low to
ensure convergence towards the global minimum
and avoid to be trapped in local minima.

One way to choose the value of the initial temper-
ature, is to generate a number of transformations
and to calculate their average cost x0. The initial
temperature value of the temperature can be set
as [2]:

Tinit = − ∆E

lnx0
. (2)

3 Cooling Schedule

The cooling schedule is the procedure that
decreases the temperature parameter. Bringing
the temperature parameter from a large value to
zero too quickly has some dramatic consequences
on the quality of the solution. Lowering the
temperature too slowly may result in a large
computation time. The speed of convergence
towards the global minimum and the quality of
the solution depend on the cooling schedule.
We propose to study several cooling schedules
available in the literature:
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3.1 Logarithmic Cooling Schedule

Geman and Geman [3] defined a cooling schedule
as

Tt =
c

log (1 + t)
, (3)

where c is positive constant independent of t
but depending on the problem. Theoretically,
the logarithmic cooling schedule asymptotically
converges towards the global minimum. However,
this scheme converges very slowly and requires a
large computation time.

3.2 Geometrical and Linear Cooling Schedule

This type of cooling schedule is faster than
the logarithmic cooling scheme [14, 15], as it
decreases geometrically

Tt = Tinit α
t, (4)

where α is a constant between 0 and 1. To have a
slow decrease of temperature, it is necessary that
the value of α is closer to 1.

The linear cooling schedule is defined as follows

Tt = Tinit − nt, (5)

where t is the iteration number and n is the decay
parameter. These strategies do not guarantee
convergence towards the global optimum, but they
converge more rapidly towards a strong minimum
(strong minima are solutions that lie in the near
vicinity of the global minimum).

3.3 Adaptive Schedule (Reversibility)

This cooling schedule slightly differs from the
geometric cooling schedule [15]. It decreases the
temperature when the new average energy is less
than or equal to the previous average energy.

Ti+1 =

{
Ti
αTi

si
si
〈E〉i+1 ≤ 〈E〉i
〈E〉i+1 > 〈E〉i

. (6)

This schedule has two major drawbacks, namely
the constant a must be adjusted properly and it is
very slow in practice.

3.4 Arithmetic-Geometric Cooling Schedule

We also propose to consider a cooling schedule
inspired by the arithmetic-geometric progression.
This progression is defined as a recurrence affine
relation between a term and the next term of the
sequence. It is defined as

Tt+1 = aTt + b. (7)

In the case a = 1, this progression would be an
arithmetic progression and when b = 0, we would
have a geometric progression. Consequently,
parameters a and b must be different from 1 and
0 respectively.

There are various behavior of the values that can
take a:

a > 1 : The progression diverges to plus ±∞.

|a| < 1 : The progression converges to L = b
1−a .

a ≤ −1 : The progression diverges (±∞ are not
necessarily limit of the progression).

4 Simulated Annealing without Cooling
Schedule (WCS)

Dieter Muller has proven that we can reach the
Boltzmann distribution without having to specify
the temperature parameter T [12]. The proposed
distribution is given by:

pµ =

(
1

Z

)
exp

(
−β.E

(
x(µ)

))
, (8)

Z =

N∑
µ=1

exp
(
−β.E

(
x(µ)

))
. (9)

The parameter β is identical to the quantity 1
T in

the standard simulated annealing. This explains
that we can achieve an approximation of the
Boltzmann distribution without having to indicate
the value of temperature T .
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5 Microcanonical Annealing

A variant of simulated annealing is the micro-
canonical annealing [1]. the main difference with
simulated annealing is the convergence towards
the global optimum. The first is based on plateaus
of temperature and the second on decreasing
plateau of total energy related to the reduction of
kinetic energy at each plateau.

Microcanonical annealing algorithm implements
Creutz procedure [1], which is based on the
assessment of a succession of transitions to
maximize the entropy for a total energy constant.
This energy is fixed beforehand.

Algorithm 2 Microcanonical Annealing

1: initialize at a random state xk; calculate the
function E (xk)

2: choose another state xk+1; calculate the
function E (xk+1)

3: if ∆E < 0 or ∆E < ED then
4: accept the transition and decreases demon

energy
5: else
6: reject the transition
7: end if
8: repeat steps 2 to 7 until reaching equilibrium

Creutz algorithm is much simpler than Metropolis
algorithm and requires much less computation
time. Compared with simulated annealing, in
the case of large problems, several studies have
shown that the results obtained are very close, with
an advantage for the microcanonical annealing in
terms of computation time.

The value of the kinetic energy is ED = Et −
E (xk) , Et is the total energy which is high at the
beginning of the algorithm. Reducing the total
energy, the algorithm will converge to the global
optimum.

6 Modeling the Energy Function

The experimental study is conducted in the
context of stereo matching. The computation
of disparity maps is modeled as an optimization
problem where the energy functional is specified

according to known problem constraints. Taking
into account the stereo matching in both directions
(left-right and right-left), the energy function will
be modeled considering the following constraints:
resemblance, epipolar geometry, continuity of the
disparity, and uniqueness [19, 17, 18].

6.1 Notation

The following notation is used:

— I l(x, y); Ir(x, y): The left and right images.

— dxa(x, y) = xb − xa: Horizontal disparities.

— dya(x, y) = yb − ya: Vertical disparities.

— {Ol(x, y);Or(x, y)} ∈ {0, 1}: The left and right
occlusions.

— {cax(x, y); cay(x, y)} ∈ {0, 1}: Horizontal and
vertical contour.

6.2 Resemblance Constraint

The resemblance constraint stipulates that
matched pixels should have similar gray levels,
which is fundamentally true in the case of
Lambertian surfaces. The constraint is defined as
follows:

ER =

nx∑
x=1

ny∑
y=1

K∑
k=1

(Alk (x, y)−Ark (x+ dxl(x, y), y +

dyl(x, y)))2Ol(x, y), (10)

where K is the number of lighting conditions.

6.3 Continuity of the Disparity Constraint

We consider that physical surfaces are locally
continuous. In this case the Euclidean projection
is also continuous. Since the disparity varies
smoothly, except at depth edges, the constraint is
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cancelled around contours, as well as occlusions.
This constraint can be expressed as:

Ea
C =

na
x∑

x=1

na
y∑

y=1

(∆dxa
h(x, y))2cax(x, y)Oa(x, y)Ob(x + 1, y)

+

na
x∑

x=1

na
y∑

y=1

(∆dxa
v(x, y))2cay(x, y)Oa(x, y)Ob(x, y + 1)

+

na
x∑

x=1

na
y∑

y=1

(∆dyah(x, y))2cax(x, y)Oa(x, y)Ob(x + 1, y)

+

na
x∑

x=1

na
y∑

y=1

(∆dyav (x, y))2cay(x, y)Oa(x, y)Ob(x, y + 1).

6.4 Number of Occlusions

To limit the number of occlusions in the image, we
add a counterweight for the energy function. For a
single image, the functional is:

EaO =
∑
x

∑
y

(1−Oa(x, y)). (11)

6.5 Uniqueness Constraint

A pixel can only matched with one pixel in the
other image. This constraint reduces the number
of possible matches, it is expressed in elementary
transitions.

6.6 Epipolar Geometry

The epipolar constraint reduces the search space
of corresponding to a line called the epipolar line.
This allows to avoid wrong matchings and reduces
computation time.

The energy functional is the weighted sum of
energy functionals derived from the constraints:

E = ρRER + ρc(E
l
C + ErC) + ρO(ElO + ErO), (12)

where ρR; ρc; ρO are the energy functional terms
weighting coefficients.

7 Experimentation

In this section, we analyze and evaluate the
performance of different cooling schedules used
in the simulated annealing algorithm and the dif-
ferent variants without cooling schedule described
above.

The results are evaluated by calculating the
mean absolute error (MAE), the mean relative error
(MRE) and the percentage of correct matches (C)
as well as wrong matches (E). Other important
evaluation criteria are the visual aspect of disparity
maps and the computation time.

7.1 Parameters Setting

The experimentation is conducted on synthesized
imagery which are illustrated in Figure 1.

Fig. 1. The first column represents the left-hand side and
the second column represents the right-hand side. Each
row corresponds to particular lighting condition

Figure 1 represents the synthesized images
used in this experimentation. The first column of
images is the left-hand side and the second column
of images is the right-hand side. These images are
generated under four different lighting conditions.
The images are 60× 40.

The algorithm is initialized with disparity maps
and occlusion calculated by the SAD correlation
method, over 5× 5 window. We have implemented
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the SAD correlation algorithm with the same stereo
constrains.

The initial temperature is set to 1, 000 for all
cooling schedules except the logarithm cooling
schedule for which it was set to 1. This is because
this schedule is very slow. For the microcanonical
annealing, the total energy is equal to 70, 000.

Table 1 shows the parameters of the different
cooling schedules used in this study.

Table 1. Cooling schedules parameters

Definition of parameters
Logarithmic Tt+1 = 0.301

log(1+number of plateaus)

Gometric Tt+1 = Tt0.99

Linear
{
Tt+1 = Tt − 1 if Tt is big
Tt+1 = Tt − 0.0002 else

Arithmetic-Geometric Tt+1 = Tt0.9 + 0.0001
Adaptive Tt+1 = Tt0.99
WCS β = 0.01

The weighting coefficients of the energy function
are the same as the ones defined in [17, 18] ρR =
5; ρO = 2; ρC = 0.25.

The number of iterations within a temperature
plateau is given by M = τ (size of domain); the
parameter τ is equal to 100. These parameters
have proven to give good results.

7.2 Results and Discussion

Numerical results obtained in this study for the left
disparity maps are defined in the table 2.

Table 2. The numerical results of the left-right matching
direction

Cooling Schedule MAE MRE C(%) E(%) Time(s)
Geometric 0.86 0.047 76.88 23.11 798.44
Linear 0.94 0.046 74.91 25.08 8627.68
Adaptive 0.99 0.044 73.63 26.36 1806.02
Arithmetic- 0.88 0.045 77.92 22.07 107.81
Geometric
Logarithmic 1.01 0.046 73.89 26.10 -
Microcanonical 0.87 0.043 76.92 23.07 132.58
WCS 0.90 0.052 77.85 22.14 -

The numerical results of the right disparity maps
are nearly the same and do not necessitate to be
shown separately.

Adaptive Cooling Schedule

Arithmetic-Geometric Cooling Schedule

Geometric Cooling Schedule

Microcanonical Annealing

WCS

Linear Cooling Schedule

Logarithmic Cooling Schedule

Fig. 2. The visual result of stereo matching. Disparity
maps computed with different cooling schedules and
variants

The analysis of the results described in table
2 show that the cooling schedule arithmetic-
geometric and WCS have produced a high per-
centage of correct matches with a small advantage
for arithmetic-geometric cooling schedule. We
note 77.95% of correct matches produced by the
arithmetic-geometric cooling schedule.

The low percentage of correct matches is
recorded for adaptive cooling schedule with
73.63%.

As seen in table 2, logarithmic cooling schedule
and WCS algorithm do not have a time record
because these variants are time consuming.
These variants are stopping after blocking.

Computación y Sistemas, Vol. 21, No. 3, 2017, pp. 493–501
doi: 10.13053/CyS-21-3-2553

Walid Mahdi, Seyyid Ahmed Medjahed, Mohammed Ouali498

ISSN 2007-9737



Fig. 3. This figure shows the evolution of each term of the energy functional per plateaus as well as the total energy of
the system

Computación y Sistemas, Vol. 21, No. 3, 2017, pp. 493–501
doi: 10.13053/CyS-21-3-2553

Performance Analysis of Simulated Annealing Cooling Schedules in the Context of Dense Image Matching 499

ISSN 2007-9737



In Figure 2, we show the visual of stereo
matching for each cooling schedule, as we
observe, the simulated annealing produced some
amount of occlusions.

Figure 2 shows the disparity maps obtained by
each cooling schedule. For each cooling schedule,
the left image represents the disparity map of the
left-right direction and the right image represents
the disparity map of the right-left direction.

We observe also that the geometrical cooling
schedule and microcanonical annealing produce
good results in terms of computation time and
produce few errors compared to other alternatives.

The arithmetic-geometric cooling schedule de-
creases rapidly. Although it gave good result, this
scheme could have trapped the algorithm in a local
minimum.

We conducted our experiments with different
initializations: disparity map from correlation,
disparity map with 0 values, and initialization with
synthesized solution. We also made sure the
random number generator is always initially fed
with a different seed point. For all these cases, we
obtained a roughly similar energy value solution.
The disparity maps are also almost identical, which
confirms that our implementations achieve a strong
minimum in finite time. Figure 3 shows the
evolution of each term of the energy functional. We
observe that during the first plateaus, some cooling
schedules exploit the solution space by accepting
the transition which increases the energy function
when the temperature is very high.

Figure 3 illustrates the function values of
each cooling schedule. Subfigure (a) shows
the resemblance term, the second subfigure (b)
represents the continuity term, the third subfigure
(c) represents the occlusion term and the last
subfigure (d) shows the global energy function.

As seen in figure 3, we observe that the
continuity and the resemblance are decreasing
and converging to small values. The global
energy generated by geometric cooling schedule
decreases rapidly in the first 170 iterations.
Thereafter, it decreases slowly.

8 Conclusion

In this paper, we have studied and analyzed the
perfermances of different cooling schedules used
in conjonction with the simulated annealing and
other variants without cooling schedule. The
experimentations were conducted in the context of
stereo matching. The microcanonical annealing
and the geometrical cooling schedule have proven
their perfermances in matching with an advantage
for microcanonical annealing which produces a
small number of occlusions. The logarithmic
schedule is very slow and it is unrealizable in
practice. The results obtained by WCS show that
this approach is also very slow.

Last but not least, regardless of the initial state,
our implementation of the S.A. algorithm variants
along with the cooling schedules always converges
towards a strong minimum. It is important to note
that the disparity maps are almost identical and the
final value of the energy functional is almost the
same.
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