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Abstract. Unprecedented advancements have been 

achieved to understand the underlying mechanisms 
that sustain life. The modulation of these mechanisms, 
especially in disease conditions, could lead to the 
development of new medical applications. However, to 
attain this goal, we need to characterize life processes 
at the molecular level. Unfortunately, the majority of 
current experimental techniques used in life sciences 
lack this resolution. In this work, we have used 
molecular dynamics, a computational “microscopy”, to 
gain insight into the mechanism of interaction, at the 
atomic level, between two bicyclic glutamate analogues 
with the ligand–binding domain (LBD) of a kainate 
receptor 1 (GluK1). This protein receptor plays a crucial 
role in the development of various central nervous 
system (CNS) disorders such as Alzheimer’s disease, 
epilepsy and depression. Here we report the outcome 
of Molecular Dynamics (MD) simulations to calculate 
the affinity of binding of two ligands, the glutamate 
analogues LM-12b and CIP-AS, toward the LBD of 
GluK1 (GluK1–LBD) and to unravel, at the atomic level, 
the structural dynamics of such interactions. Our 
computational approach not only was capable of 
ranking correctly the binding affinity of analyzed ligands 
toward the protein receptor, but also to reveal, at atomic 
resolution, the dynamic nature of such ligand–LBD 
interaction. Our studies showed that the methyl group 
of LM-12b is crucial to stabilize structurally the LBD 
pocket. In contrast, the LBD–CIP-AS complex lacked 
this interaction, which may explain its weaker affinity. 
Revealing the structural and dynamics bases that 
underlie the mechanism of ligand–kainate receptor 
interaction may ultimately drive the identification of new 
modulators aimed at the treatment of CNS disorders. 

Keywords. Molecular dynamics, gluK1 receptor, 

binding energy. 

1 Introduction 

The function and structure of the central nervous 
system (CNS) is complex. An astronomical 
number of cells compose this system, including 
millions of neurons that possess the capacity of 
forming even thousands of synaptic connections. 
This fascinating system controls our movements 
and our thinking and learning processes; 
however, it is also vulnerable to disruptions that 
can result in lethal diseases. Shading light on how 
the CNS works both under normal and disease 
conditions is crucial to the development of new 
therapeutic strategies that allow correcting its 
malfunction [1]. Although the origin of CNS 
disorders is generally unknown, there is evidence 
that in many cases it involves the functional 
alteration of neurotransmitter receptors. 

The ionotropic glutamate receptors (iGluRs) 
participate in critical aspects of CNS development 
and function. These transmembrane proteins 
regulate the rapid synaptic transmission, vital in 
neuronal communication [2]. In addition, through 
their role in synaptogenesis, neuronal viability, 
and regulation of synaptic efficacy, they also have 
crucial impact on memory, learning and plasticity 
processes [3].  
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The dysfunction of these protein receptors is, 
consequently, inherent to several chronic 
neurodegenerative disorders, including 
depression, stroke, epilepsy, Alzheimer’s disease 
and Parkinson’s disease [4, 5]. 

The active structure of the iGluRs is composed 
of four subunits that integrate a tetrameric 
complex [6, 7]. This complex includes a 
transmembrane domain (TMD), and two 
extracellular domains: the amino-terminal domain 
(ATD), and the ligand-binding domain (LBD). It 
also has an intracellular carboxyl-terminal domain 
(CTD) that modulates traffic and anchoring in 
synaptic sites. The TMD provides the structural 
scaffolding to form the ion-permeable central 
pore, while the ATD is packed in a dimer of 
dimers. The architecture of the LBD is defined by 
two lobes that houses ligands (small molecules) 
such as glutamate. Glutamate, the main 
excitatory neurotransmitter in mammals, 
activates iGluRs when it binds to the LBD. The 
outcome of this process prepares the neuron to 
produce a response and its disruption is 
associated to various CNS disorders [8–13]. The 
structural and dynamic characterization of the 
binding of ligands towards LBD is, therefore, 
essential from the pharmacological point of view. 
The design of molecules with ability to bind LBDs 
could drive the development of invaluable drugs 
for the treatment of a wide variety of 
neurological disorders. 

The availability of the 3-dimensional (3D) 
structure of the protein (receptor) target is crucial 
to be able to incorporate drug design techniques 
to the discovery of new drugs. Recently, Møllerud 
and colleagues [14] obtained, by means of X-ray 
crystallography, the 3D structures of the LBDs of 
two rat iGluRs of the subtype kainate (GluK1) in 
complex with the glutamate analogue molecules 
(ligands), pyrazoline amino acid (LM-12b) and 3-
carboxyisoxazolinyl proline (CIP-AS). However, 
although X-ray crystallography reveals structural 
information on the ligand–receptor interaction at 
the atomic level, it lacks the ability to provide 
insight into the dynamics of these interactions in 
both ligand–protein complexes. In this context, 
computational strategies have become a valuable 
complement to experimental techniques to 
extend the classical view of proteins, which 
considers these molecules as rigid entities, 

towards a dynamic model in which intra-molecular 
movements result in conformational changes that 
determine protein function and behavior when 
interact with different molecules. 

Molecular dynamics (MD) is regarded as a 
computational ‘microscopy’ which “is able to 
capture the interplay between the atomic 
components of a system (e.g. ligand–receptor 
interaction) at a spatio-temporal resolution” [15]. 
This computer simulation technique is capable of 
monitoring the movements of particles (e.g. 
atoms and molecules), which are allowed to 
interact for a period of time, providing a 
description of the dynamic evolution of the 
system. This method assumes that the 
components of the system obey the laws of 
classical mechanics and, thus, the trajectories 
(conformational changes) of atoms and 
molecules are calculated solving numerically 
Newton’s equation of motion [16]. 

In this work, we have used molecular 
dynamics to obtain a view of the dynamic 
structural evolution of the interaction of the 
ligand–binding domain (LBD) of receptor GluK1 
with two analogues of glutamate (LM-12b and 
CIP-AS) and to calculate the energetic affinity of 
such interactions. This knowledge may help the 
rational design of new drugs to treat 
CNS disorders. 

2 Methods 

One of the most powerful tools to the study of 
biomolecular systems is the Molecular Dynamics 
(MD) method. This technique, by numerically 
solving the Newton’s law of motion, allows to 
monitor the physical movements of atoms in a 
system and to compute its energy. MD 
simulations characterize, at the atomic level, the 
interplay between molecules for a certain period 
of time. This method is capable of providing 
detailed information on the fluctuations and 
structural changes of biomolecules, and thus, it is 
now routinely used to investigate the structure, 
dynamics and thermodynamics of biomolecules, 
such as proteins and their interactions with 
ligands. The first step of the MD simulation 
algorithm (Figure 1) includes the assignment of 
coordinates for each atom in the system, initial 

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 313–324
doi: 10.13053/CyS-23-2-3195

Pavel Andrei Montero Domínguez, Ramón Garduño Juárez, Sergio Mares Sámano314

ISSN 2007-9737



velocities, and a simulation time step (Δt) is 
defined. Subsequently, for each time-step of the 
simulation the forces between atoms, which are 
governed by an interatomic potential (force field), 
are computed and equations of motion 
are integrated. 

2.1 Model System Preparation 

The immense majority of biological processes 
occur in aqueous solution. Therefore, water 
effects are essential in determining molecular 
conformations and binding energies of interaction 
between biomolecules. Although GluK1 is a 
protein that is anchored to the membrane, the 
LBD is located in the extracellular space which is 
aqueous in nature. Consequently, each 
simulation system was constructed, including the 
ligand-receptor complex and a number of water 
molecules. The 3D coordinate of complexes 
GluK1-LBD/LM-12b (PDB ID: 5NEB B) and 
GluK1-LBD/CIP-AS (PDB ID: 5NF5 B) were taken 
from Protein Data-Bank [17]. The numbering of 
residues of both ligand binding domains (LBD) 
was conserved as indicated in the original pdb 
coordinate files. Each ligand–receptor complex 
was solvated with water molecules employing the 
Tip3P water model, and NaCl was added to reach 
a 0.15M concentration. Each system contained 
approximately 65,000 atoms with a cubic box 
dimension of 87 x 87 x 87 Å3. 

2.2 Energy Minimization 

3D coordinates of proteins obtained from the PDB 
usually contain bad contacts between atoms, 
causing high energy and forces. To reduce these 
structural inconsistencies and to find an energetic 
local minimum, we subjected both systems to 
50,000 steps of energy minimization using 
GROMACS [18], applying the steepest 
descent algorithm. 

2.3 System Equilibration 

Under physiological conditions, biological 
processes take place at 298K and 1 atm. 
Accordingly, we heated the system, employing 
the V-rescale thermostat [19], until a temperature 
of 298K was reached.  

Heating was carried out under a constant Number 
of particles, Volume, and Temperature (NVT) 
ensemble during 0.5 ns. Subsequently, we 
applied pressure to the system until it reached the 
proper density using the Parrinello-Rahman 
barostat [19,20] and maintained the temperature 
constant using the Nose-Hoover thermostat [21], 
this process was conducted under an NPT 
ensemble for 5 ns, in which the Number of 
particles, Pressure, and Temperature were 
kept constant. 

2.4 Molecular Dynamics Production 

All simulations in this study were conducted under 
NPT conditions. The temperature (298K) and 
pressure (1 atm) were kept constant using the 
Nose-Hoover thermostat and the Parrinello-
Rahman barostat throughout the 100 ns of 
simulation. Periodic boundary conditions were 
employed, and the long-electrostatic interactions 
were computed using the particle-mesh Ewald 
algorithm [22].  

 

Fig. 1. Molecular dynamics algorithm (adapted 
from [32]) 
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Fig. 2. Three-dimensional structure of the ligand binding-domain of kainate receptor subunit 1 (GluK1-LBD) depicted in 

new cartoon and colored according to secondary structure. Purple (alpha helix), green (beta sheet), ochre (connecting 
loops), study motifs in the “mouth” of the ligand-binding domain colored by black (I11–Y16), red (G59–A63), blue (V137–
S141) and yellow (S173) (A). (A). Structure representation of LM-12b and CIP-AS depicted in ball and stick and Natta 
projection (B) 

 

Fig. 3. Main chain RMSD of complexes GluK1–LBD/LM-12b and GluK1–LBD/CIP-AS throughout 100 ns of molecular 

dynamics simulation 
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A time step of 2 fs was employed in all MD 
simulations, and the trajectory data was saved at 
10 ps intervals. The center of mass (COM) of 
ligands with respect to different segments of the 
protein —residues I11–Y16, G59–A63, V137–
S141 and S173— was measured. Binding energy 
of each ligand–receptor complex was obtained 
using the Adaptive Poisson-Boltzmann Solver 
(APBS) package [23], which allows to calculate 
the electrostatic free energy using a set of 
structures from the most representative cluster of 
the dynamics, by solving the Poisson-Boltzmann 
electrostatic continuity equation [23].  

The cluster was calculated using structural 
similarity (RMSD) with a cut-off scheme of 0.07 Å 
on the main chain of the protein and on all atoms 
of ligand. The most visited structure (centroid) of 
each cluster was used for representing the 
interactions and they were obtained using 
LigPlot+ [24] and VMD [24, 25] programs. All MD 
simulations were performed using Gromacs 5.1.4 
[18] with the CHARMM36 force field [26] on a 
Linux cluster using 64 cores at 2.6GHz for five 
days of wall-clock time for each system. 

Trajectories were analyzed by using Gromacs 
software package. 

3 Results and Discussion 

Biological processes are the outcome of time 
dependent interactions between biomolecules, 
and these interactions occur at the interfaces of 
molecules such as those that form proteins and 
ligands. Thus, the structural and dynamics 
characterization of such interactions is of 
paramount importance to unveil the mechanism 
that sustains life.  

For example, profiling the dynamics 
interaction of the receptor GluK1, a subtype of the 
iGluRs, with ligand molecules could potentially 
help elucidate the mechanisms that underlie 
many CNS disorders (e.g., Alzheimer’s disease, 
epilepsy and depression) and pave the way to 
advance the development of new drugs. 
However, traditional laboratory approaches are 
able to measure mostly macroscopic observables 
but lack the resolution needed to measure the 
atomic behavior of molecules in a period of time. 
Molecular dynamics (MD) techniques have 

emerged as an essential complement to 
laboratory methods to gain understanding on the 
microscopic evolution, at the atomic level, of 
biomolecular systems. In this work, we have used 
MD to explore the dynamics of the interaction 
between the ligand-binding domain of the protein 
GluK1 with the ligands CIP-AS and LM-12b. 

3.1 Characterization of Conformational 
Changes 

According to crystallographic data [14], both 
LBDs display three loops and one alpha helix in 
close proximity to ligands. Our MD simulations 
identified four regions of GluK1 that play and 
essential role in the interaction with CIP-AS and 
LM-12b (Figure 2), and allowed us to explore the 
conformational changes of these structural motifs 
with respect to the ligand over a period of 100 ns 
of simulation.The structural conformation 
(trajectory) of the complex GluK1-LBD/CIP-AS 
remained stable throughout the simulation time 
(Figure 3).  

The RMSD —the conformational change of 
the complex at every simulation point with respect 
to the initial conformation— varied approximately 
only 0.1 nm.It is accepted that a variation lower 
than 0.02 nm describes a stable molecular 
system [27]. In contrast, the GluK1-LBD/LM-12b 
complex showed an abrupt RMSD change from 
nanosecond 45 onwards (Figure 3). Trajectory 
analysis also showed that these conformational 
changes resulted from the structural relaxation of 
the segments that compose the external “mouth” 
of the ligand-binding domain (LBD). 

Based on the residues that are allocated in 
close proximity to ligands, we defined four 
receptor segments, V137–S141, S173, G59–
A63, and I11–Y16. We explored the mobility of 
these segments relative to the center of mass 
(COM) of each ligand throughout the simulation. 
The COM of residues V137–S141 and S173 of 
the complex GluK1–LBD/LM-12b are relatively 
close to the COM of the ligand during the first 50 
nanoseconds of simulation, ~0.6 nm (Figure 4A) 
and ~0.8 nm (Figure 4B), respectively. However, 
these distances increased dramatically from the 
ns 50 onwards until they remained stable at ~0.8 
nm and 1 nm, respectively.  

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 313–324
doi: 10.13053/CyS-23-2-3195

Computer Simulation Studies of a Kainate (GluK1) Receptor with Two Glutamate Analogues 317

ISSN 2007-9737



These distances are comparable to that 
showed between GluK1-LBD and CIP-AS 
(Figures 4A and 4B). Unlike these protein 
segments, the distance between the residues 
G59-A63 and the COM of the ligand in both 
complexes remained stable at an approximate 
value of 0.85 nm (Figure 4C). The notable 
conformational change observed in the GluK1–
LBD/LM-12b complex suggests that the initial 
structure obtained by crystallography may not 
describe accurately the ligand-
receptor interactions. 

The structure of the GluK1–LBD/CIP-AS 
complex is more uniform throughout the 
simulation (Figure 3). Segments V137–S141 
S173, G59–A63, and I11–Y16 of these 
complexes showed conformational stability 
(Figures 4A, 4B, 4C and 5D), and importantly the 

average structure obtained from the simulation is 
comparable to that of the 
crystallographic structure.  

Interestingly, unlike the previous segments 
analyzed, where the distance between their 
COMs to the ligand COM is similar in both 
complexes over the COM of segment comprised 
by the residues I11-Y16 and the ligand COM 
presented a difference of 0.13 nm (Figure 4D). 
This distance difference could be attributed to the 
hydrophobic interaction formed with the methyl 
group of the structure of LM-12b (Figure 3B). 

The hydrocarbon chain of residue E13 is 
crucially implicated in this interaction with the 
ligand.The close proximity of the segment I11–
Y16 to both ligands is responsible for stabilizing 
its conformational mobility, resulting in a 
decreased RMSF, 1.8 Å for CIP-AS, and 1.0 Å for 

 

Fig. 4. Distances between the center of mass (COM) of ligands and segments allocated in the “mouth” of the LBD of 

complexes throughout the simulation. Distance variation between COM of segment V137–S141 and ligand (A). 
Distance variation between COM of residue S173 and ligand (B). Distance between COM of Segment G59–A63 and 
ligand (C). Distance between COM of Segment I11–Y16 and ligand (D). Inset tables shows the average (and standard 
deviation) distance between the COM of residue segments and COM of ligands calculated over the last 40 ns 
of simulation 
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LM-12b. This low mobility is associated to the low 
fluctuation and high stabilization of the 
interactions formed in each ligand-
receptor complex. 

3.2 Binding Energy and Ligand-Receptor 
Interactions 

Radioligand binding assays have been 
reported to the measurement of the affinity of a 
both LM-12b and CIP-AS towards rat GluK1 in 
terms of their inhibitory constants (Ki) [14]. In 
comparative studies, we employed a 
computational approach to estimate the energy of 
binding of both complexes and subsequently 
investigate if there was a consistency between 
predicted affinities computationally calculated 
and reported experimental Ki values. Although 
there are many computational approaches to 
calculate the ligand-protein energy of binding, the 

Poisson-Boltzmann method is a cost-effective 
method to estimate this thermodynamic property, 
and thus we used this computational strategy to 
calculate the binding affinities of LM-12b and CIP-
AS with rat GluK1. Table 1 shows the calculated 
binding energies for both complexes.  

These calculated energy values were 
consistent with the reported Ki values: a lower Ki 
value implies a higher affinity; likewise, a lower 
predicted energy of binding suggests a 
stronger affinity. 

Although our results show that the method 
successfully ranks the affinities of both ligands, it 
underestimated the affinity of LM-12b toward the 
receptor (LBD of GluK1) (Table 1). Our in silico 
approach calculated approximately a two-fold 
increased affinity for LM-12b with respect to CIP-
AS. However, experimentally calculated Ki shows 
that the affinity of this ligand is actually about nine 
times higher than that of LM-12b (Table 1).  

 

Fig. 5. Most representative centroid of complex GluK1-LBD/CIP-AS during the las 40 ns of simulation. Three-

dimensional structure of complex GluK1-LBD/CIP-AS and main interaction residues (R25 and E190) depicted by ball 
and sticks, study motifs in “mouth” of binding ligand domain colored black (I11–Y16), red (G59–A63), blue (V137–
S141) and yellow (S173) (A). Bi-dimensional map of principal interactions of complex GluK1/CIP-AS. Dotted lines of 
green represent ionic and hydrogen interactions, red semi-circle represents hydrophobic interactions with ligand (B) 
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Other studies have found similar results [28, 
29] for other ligand–receptor systems and 
attributed such differences to the contribution of 
the configurational entropy [30]. 

It is worth noting that there are other in silico 
approaches that are capable of providing more 
accurate estimations of the binding affinity [31], 
but the improvement is attained at the expense of 
a significant increased computing time. The 
method that we have used though it delivers more 
rough binding estimations, importantly it still can 
rank correctly the binding affinities of a group of 
ligands at a reduced computing cost, which may 
potentially be valuable to the rapid identification 
of ligands that bind the protein receptor with 
higher affinity, which could lead to the 
development of new drugs. 

Both complexes showed similar ionic 
interactions. Residues E190 and R95 (Table 2) 

interacted this via with the secondary amine 
group (N1: CIP-AS and N3: LM-12b) and the 
carboxylate group (C1: CIP-AS and C8: LM-12b) 
(Figures 5 and 6). All saline bonding interactions 
have the same distance magnitude, being the 
R95–COO¯ bond of the CIP-AS ligand only 
slightly different (Table 2). However, the lengths 
of all ionic bonds for both complexes were below 
0.32 nm, which are considered as strong 
interactions. H-bonding interactions are similar in 
both complexes (Figure 5B, 6B and Table 3). The 
only difference lies in that CIP-AS forms two 
additional hydrogen bonds with residue T142.  

However, these additional interactions in the 
GluK1–LBD/CIP-AS caused a decreased 
occupation percentage for the 
conserved interactions.  

For example, the occupancy of T90, involved 
in a hydrogen bonding interaction with 

Table 1. Binding energy calculation by Poisson Boltzmann method and reported experimental inhibitory constant (Ki) 

for complexes GluK1-LBD/Ligand 

Complex In silico binding Energy Experimental Ki 

GluK1-LBD/LM-12b -89.58 ± 10.58 Kcal/mol 17± 5 nM [14] 

GluK1-LBD/CIP-AS -40.20 ± 16.11 Kcal/mol 152 ± 31 nM [14] 

Table 2. Ionic bonding lengths for complexes GluK1-LBD/Ligand (nm) 

Ionic Bond GluK1/LM-12b GluK1/CIP-AS 

R95-COO¯ 0.270±0.010 0.271±0.010 

E190-NH 0.272±0.011 0.293±0.027 

Table 3. Occupancy for hydrogen bonds for complexes GluT1-LBD/Ligand 

GluK1-LBD/LM-12b GluK1-LBD/CIP-AS 

Donor Aceptor Occupancy Donor Aceptor Occupancy 

S141-Main LM-12b-O3 60.41% S141-Main CIP-AS-O4 50.31% 

S141-Side LM-12b-O3 47.53% S141-Side CIP-AS-O4 67.10% 

T90-Main LM-12b-O4 83.80% T90-Main CIP-AS-O1 79.40% 

T90-Side LM-12b-O4 72.07% T90-Side CIP-AS-O1 0.13% 

LM-12b-N1 P88-Main 14.86% CIP-AS-N1 P88-Main 24.42% 

   T142-Side CIP-AS-O5 30.27% 

   T142-Main CIP-AS-O5 8.07% 
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carboxylate group of LM-12b, decreased 
dramatically from 72% to 0.13% (Table 3). It is 
worth noting that this carboxylate group is also 
involved in an ionic interaction with R95 of the 
LBD. Consequently, LM-12b stability is affected 
when it is in close proximity to the loop including 
I11–Y16 residues, which restricts its mobility and 
strengthens ligand–LBD atomic interactions. 

The hydrophobic interactions are also highly 
similar in both complexes. The difference resides 
in that E13 residue, located in the loop I11–Y16 
of complex GluK1/LM-12b (Figure 6B y 7B), 
appears to be in closer proximity to the methyl 
group of LM-12b than to that of CIP-AS. The 
distance between the gamma carbon (CG) of E13 
and the C6 of the methyl group of LM-12b was 
0.435 ± 0.043 nm, during the last 40 ns of 
simulation, resulting in a decreased RMSF for this 
specific residue from 0.25 nm to 0.17 nm for LM-
12b. Also, the proximity of E13 to LM-12b 
increased the occupation percentage of the 

hydrogen bond formed by the side chains of E13 
and Y61, from 10.90% to 30.12% (Table 3), 
resulting in a decreased mobility (RMSF) of Y61, 
which takes part in hydrophobic interactions in 
both complexes, from 0.21 Å to 0.11 Å.  

4 Conclusions 

Since molecules are flexible and dynamic in 
nature, experimental structures of biomolecules 
alone cannot reveal the entire picture of the 
microscopic interactions. Molecular simulations 
represent an interdisciplinary approach that is 
necessary to complement the experimental 
studies to describe the structural variations of 
biomolecules in a fixed period of time. 

Our molecular dynamics studies revealed that 
the crystallographic structure of the GluK1-
LBD/LM-12b complex may not be appropriate to 
represent the ligand–protein interactions. 

 

Fig. 6. Most representative centroid of complex GluK1-LBD/LM-12b during the las 40 ns of simulation. Three-

dimensional structure of complex GluK1-LBD/LM-12b and main interaction residues (R25 and E190) depicted by ball 
and sticks, study motifs in “mouth” of binding ligand domain colored black (I11–Y16), red (G59–A63), blue (V137–
S141) and yellow (S173) (A). Bi-dimensional map of principal interactions of complex GluK1/LM-12b. Dotted lines of 
green represent ionic and hydrogen interactions; red semi-circle represents hydrophobic interactions with ligand (B) 
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According to this crystallographic data, protein 
segments (S173 and V137–S141) forming part of 
the “mouth” of the ligand binding–domain are in 
close proximity to the ligand. However, our 
findings showed that this is the case only at the 
early stages of the simulation. From ns 5 
onwards, LM-12b ligand started to separate from 
the receptor until it stabilized at a distance similar 
to that between CIP-AS and GluK1-LBD. 

MD simulations also showed that interactions 
in both complexes are essentially similar. The 
main difference is given by the distance of the 
loop comprising residues I11-Y16 to both ligands. 
The distance of this loop in GluK1-LBD/LM-12b 
complex allowed the interaction with the methyl 
group present in ligand. This interaction further 
stabilized the LM-12b molecule, decreasing its 
mobility and favoring interactions such as the 
triple interaction T190-COO¯-R95, and intra-
chain hydrogen bonding between E13 with T61. 

Residue T61 also takes part in a conserved 
hydrophobic interaction with the ligand in both 
complexes. E13 forms an additional hydrophobic 
contact, but it is only present in the GluK1-
LBD/LM-12b complex, with methyl group of LM-
12b. In comparative studies, the ligand–protein 
binding energy calculated using the Poisson-
Boltzmann method allowed us to rank correctly 
both complexes and these results were consistent 
with the experimental affinities (Ki).  

This method could be a valuable tool to 
classify ligand-receptor affinity for this particular 
system. The understanding of the structural and 
dynamics bases that underlie the mechanism of 
ligand–kainate receptor interaction may ultimately 
drive the identification of new modulators aimed 
at the treatment of CNS disorders. 
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Sureste de México for the computing resources 
and technical assistance (project 201801055N). 

References 

1. Paoletti, P. & Pin, J.P. (2015). Editorial overview: 

Neurosciences: Targeting glutamatergic signaling 
in CNS diseases: new hopes?. Current Opinion in 
Pharmacology, Vol. 20, DOI: 10.1016/j.coph.2015. 
01.001 

2. Hayashi, T. (1954). Effects of sodium glutamate 
on the nervous system. The Keio Journal of 
Medicine, Vol. 3, No. 4, pp. 183–192. DOI: 
10.2302/kjm.3.183. 

3. Maren, S. & Baudry, M. (1995). Properties and 

Mechanisms of Long-Term Synaptic Plasticity in 
the Mammalian Brain: Relationships to Learning 
and Memory. Neurobiology of Learning and 
Memory, Vol. 63, No. 1, pp. 1–18. DOI: 
10.1006/nlme.1995.1001. 

4. Rikkert, M., Dekkers, W., Scheltens, P., & 
Verhey, F. (2004). Memantine in Moderate-to-

Severe Alzheimer Disease Evidence and Ethics 
Based?. Alzheimer Disease & Associated 
Disorders, Vol. 18, No. 1, pp. 47–48. 

5. Alt, A., Nisenbaum, E., Bleakman, D., & Witkin, 
J. (2006). A role for AMPA receptors in mood 
disorders. Biochemical Pharmacology, Vol. 71, 

No. 9, pp. 1273–1288. DOI: 10.1016/j.bcp. 
2005.12.022. 

6. Sobolevsky, A., Rosconi, M., & Gouaux, E. 
(2009). X-ray structure, symmetry and mechanism 

of an AMPA-subtype glutamate receptor. Nature, 
Vol. 462, pp. 745–756. 

7. Salussolia, C., Prodromou, M., Borker, P., & 
Wollmuth, L. (2011). Arrangement of Subunits in 
Functional NMDA Receptors. Journal of 
Neuroscience, Vol. 31, No. 31, pp. 11295–11304. 
DOI: 10.1523/JNEUROSCI.5612-10.2011. 

8. Meyerson, J., Kumar, J., Chittori, S., Rao, P., 
Pierson, J., Bartesaghi, A., Mayer, M., & 
Subramaniam, S. (2015). Structural Mechanism 

of Glutamate Receptor Activation and 
Desensitization. Biophysical Journal, Vol. 2, No. 1, 
pp. 287a. DOI: 10.1016/j.bpj.2014.11.1568. 

9. Dürr, K., Chen, L., Stein, R., De Zorzi, R., Folea, 
I., Walz, T., Mchaourab, H., & Gouaux, E. (2014). 

Structure and Dynamics of AMPA Receptor GluA2 
in Resting, Pre-Open, and Desensitized States. 
Cell, Vol. 158, No. 4, pp. 778–792. DOI: 
10.1016/j.cell.2014.07.023. 

10. Yelshanskaya, M., Singh, A., Sampson, J., 
Narangoda, C., Kurnikova, M., & Sobolevsky, 
A. (2016). Structural Bases of Noncompetitive 

Inhibition of AMPA-Subtype Ionotropic Glutamate 
Receptors by Antiepileptic Drugs. Neuron, Vol. 91, 

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 313–324
doi: 10.13053/CyS-23-2-3195

Pavel Andrei Montero Domínguez, Ramón Garduño Juárez, Sergio Mares Sámano322

ISSN 2007-9737



No. 6, pp. 1305–1315. DOI: 10.1016/j.neuron. 
2016.08.012. 

11. Dutta, A., Krieger, J., Lee, J., Garcia-Nafria, J., 
Greger, I., & Bahar, I. (2015). Cooperative 

Dynamics of Intact AMPA and NMDA Glutamate 
Receptors: Similarities and Subfamily-Specific 
Differences. Structure, Vol. 23, No. 9, pp. 1692–
1704. DOI: 10.1016/j.str.2015.07.002. 

12. Krupp, J., Vissel, B., Heinemann, S., & 
Westbrook, G. (1998). N-Terminal Domains in the 

NR2 Subunit Control Desensitization of NMDA 
Receptors. Neuron, Vol. 20, No. 2, pp. 317–327. 
DOI: 10.1016/S0896-6273(00)80459-6. 

13. Møllerud, S., Pinto, A., Marconi, L., 
Frydenvang, K., Thorsen, T., Laulumaa, S., 
Venskutonytė, R., Winther, S., Moral, A., 
Tamborini, L., Conti, P., Pickering, D., & 
Kastrup, J. (2017). Structure and Affinity of Two 

Bicyclic Glutamate Analogues at AMPA and 
Kainate Receptors. ACS Chemical Neuroscience, 

Vol. 8, No. 9, pp. 2056–2064. DOI: 10.1021/ 
acschemneuro.7b00201. 

14. Ingólfsson, H.I., Arnarez, C., Periole, X., & 
Marrink, S.J. (2016). Computational “Microscopy” 
of cellular membranes. Journal of Cell Science, 
Vol. 129, pp. 257–268. DOI: 10.1242/jcs.176040. 

15. Karplus, M. & McCammon, J. (2002). Molecular 

dynamics simulations of biomolecules. Nature 
Structural Biology, Vol. 9, No. 9, pp. 646–652. 

16. Koetzle, T. (1981). The Protein Data Bank. Acta 

Crystallographica Section A Foundations of 
Crystallography. Vol. 37(a1), C344-C344. 

17. Van-Der-Spoel, D., Lindahl, E., Hess, B., 
Groenhof, G., Mark, A.E., & Berendsen, H.J.C. 
(2005). GROMACS: fast, flexible, and free. Journal 
of Computational Chemistry, Vol. 26, No. 16, pp. 
1701–1718. DOI: 10.1002/jcc.20291. 

18. Bussi, G., Donadio, D., & Parrinello, M. (2007). 

Canonical sampling through velocity rescaling. 
The Journal of Chemical Physics, Vol. 126, No. 1, 

pp. 014101-1–014101-7. DOI: 10.1063/ 
1.2408420. 

19. Parrinello, M. & Rahman, A. (1981). Polymorphic 

Transitions in Single Crystals: A New Molecular 
Dynamics Method. Journal of Applied Physics, 
Vol. 52, No. 12, pp. 7182–7190. DOI: 10.1063/ 
1.328693. 

20. Evans, D.J. & Holian, B.L. (1985). The Nose–
Hoover thermostat. The Journal of Chemical 
Physics, Vol. 83, No. 8, pp. 4069–4074. DOI: 
10.1063/1.449071. 

21. Darden, T., York, D., & Pedersen, L. (1993). 

Particle mesh Ewald: An N⋅log(N) method for 

Ewald sums in large systems. The Journal of 
Chemical Physics, Vol. 98, No. 12, pp. 10089–
10092. DOI: 10.1063/1.464397. 

22. Jurrus, E., Engel, D., Star, K., Monson, K., 
Brandi, J., Felberg, L., Brookes, D., Wilson, L., 
Chen, J., Liles, K., Chun, M., Li, P., Gohara, D., 
Dolinsky, T., Konecny, R., Koes, D., Nielsen, J., 
Head-Gordon, T., Geng, W., Krasny, R., Wei, G., 
Holst, M., McCammon, J., & Baker, N. (2017). 

Improvements to the APBS biomolecular solvation 
software suite. Protein Science, Vol. 27, No. 1, pp. 
112–128. DOI: 10.1002/pro.3280. 

23. Laskowski, R. & Swindells, M. (2011). LigPlot+: 

Multiple Ligand–Protein Interaction Diagrams for 
Drug Discovery. Journal of Chemical Information 
and Modeling, Vol. 51, No. 10, pp. 2778–2786. 
DOI: 10.1021/ci200227u. 

24. Humphrey, W., Dalke, A., & Schulten, K. (1996). 

VMD: Visual molecular dynamics. Journal of 
Molecular Graphics, Vol. 14, No. 1, pp. 33–38. 
DOI: 10.1016/0263-7855(96)00018-5. 

25. Huang, J. & MacKerell, A. (2013). CHARMM36 

all-atom additive protein force field: Validation 
based on comparison to NMR data. Journal of 
Computational Chemistry, Vol. 34, No. 25, pp. 
2135–2145. DOI: 10.1002/jcc.23354. 

26. Bursulaya, B., Totrov, M., Abagyan, R., & 
Brooks III, C. (2003). Comparative study of 

several algorithms for flexible ligand docking. 
Journal of Computer-Aided Molecular Design, Vol. 
17, No. 11, pp. 755–763. DOI: 10.1023/B:JCAM. 
0000017496.76572.6f. 

27. Wan, S. & Peter, V. (2011). Rapid and accurate 

ranking of binding affinities of epidermal growth 
factor receptor sequences with selected lung 
cancer drugs. Journal of the Royal Society 
Interface, Vol. 8, pp. 1114–1127. DOI: 10.1098/ 
rsif.2010.0609. 

28. Rastelli, G., Rio, A.D., Degliesposti, G., & 
Sgobba, M. (2009). Fast and accurate predictions 

of binding free energies using MM-PBSA and MM-
GBSA. Journal of Computational Chemistry, Vol. 
31, No. 4, pp. 797–810. DOI: 10.1002/jcc.21372. 

29. Stoica, I., Sadiq, S.K., & Coveney, P.V. (2008). 

Rapid and accurate prediction of binding free 
energies for saquina- vir-bound HIV-1 proteases. 
Journal of the American Chemical Society. Vol. 
130, No. 8, pp. 2639–2648. DOI: 10.1021/ 
ja0779250. 

30. Kukol, A. (2008). Molecular Modeling of Proteins. 
Methods in Molecular Biology, pp. 173–209. DOI: 

10.1007/978-1-4939-1465-4. 

31. Yao, H., Dai, Q., You, Z., Bick, A., Wang, M., & 
Guo, S. (2017). Property Analysis of Exfoliated 

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 313–324
doi: 10.13053/CyS-23-2-3195

Computer Simulation Studies of a Kainate (GluK1) Receptor with Two Glutamate Analogues 323

ISSN 2007-9737



Graphite Nanoplatelets Modified Asphalt Model 
Using Molecular Dynamics (MD) Method. Applied 
Sciences, Vol. 7, No. 1, pp. 1–24. DOI: 10.3390/ 
app7010043. 

Article received on 25/10/2018; accepted on 11/02/2019. 
Corresponding author is Pavel Andrei Montero-Domínguez.

 

Computación y Sistemas, Vol. 23, No. 2, 2019, pp. 313–324
doi: 10.13053/CyS-23-2-3195

Pavel Andrei Montero Domínguez, Ramón Garduño Juárez, Sergio Mares Sámano324

ISSN 2007-9737


