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Abstract 1 Introd uction
A new class of multicomputer interconnection networks
is proposed and analyzed: Parametrically described,
Regular, and based on Semigroups (PRS) networks
(or R8(N,v,g) graphs with the order N, the degree
v, the girth g, and the number of equivalence classes
s). The class of PRS networks includes many classes
of known networks (hypercubes, circulant networks,
cube-connected cycles, etc.) as special cases. We
explore the basic topological properties ( connectivity,
isomorphism, lower bounds on the diameter and the
average distance, etc.) of the proposed graphs and syn-
thesize the optimal PRS networks having the minimal
diameter for the given parameters of the graph. The
PRS networks and their subclass -multidimensional
circulants -are compared to hypercubes: the optimal
P RS graph 's diameter is ~ O.211og2 N (for 9 = 6) and
the circulant's diameter is ~ O.321og2 N whereas the
hypercube 's diameter is log2 N, provided they have the
same vertex and edge complexity.

A design of interconnection networks for parallel com-
puter system architectures and distributed memory
computer systems requires a study of undirected dense
regular graphs with small diameters. Graphs with these
properties can be found within the class of Cayley
graphs, in particular in the class of circulant graphs (Du
et al., 1990; Monakhova, 1991; Bermond et al., 1995)
and also within the class of PRS graphs introduced in
Monakhov (1979). The PF.S graphs are a generaliza-
tion of circulants, hypercubes, cube-connected cycles
(Preparata and Vuillemin, 1981), chordal ring networks
(Arden and Lee, 1981) and other classes of graphs used
as interconnection networks of computer systems. In
K wai and Parhami (1996, 1998) Gaussian cubes are
considered as generalization of hypercubes which also
represent a subclass of the PRS graphs. Notice that
hypercubes have a logarithmic estimate on the diame-
ter only provided that a degree of a node grows with N
as log N. The graphs from the class of PRS netwoks
have a logarithmic estimate on the diameter (from N)
for a fixed degree of a node of the graph in contrast to
hypercubes. The other classes of graphs are presented
in Scherson (1991) and Corbett (1992) with logarithmic
estimate on the diameter .

Keywords: regular interconnection networks, paral-
lel systems, circulant networks, hypercube topologies.

L(N,v,g) graphs
2

At first let us consider the class of L(N, v, g) graphs in-
troduced in Korneyev and Monakhov (1980) as a struc-
ture of parallel computer systems. These graphs are a
basis for generation of the PRS graphs.

The L(N,v, g) graphs are regular graphs ofthe degree
v with the number of nodes N and the girth g. The
algorithm for a construction of L(N,v,g) graphs makes
use of the notation of L( v, g) graph which is an infinite
planar graph ofthe degree v and the girth g. Note that
a graph is called planar if it can be drawn at the plane

lThis work is partially supported by RFBR grant N99-07-
90422

85



~

so that any two of its edges are not intersected. The
method of construction of L(v,g) graphs is presented
in Korneyev and Monakhov (1980). The example of
fragment of L(4, 5) graph is shown in Figure 1.

By definition, the diameter of the graph G
d = maxij dij, where dij is the length of the shortest

path from node i to node j. The average distance in
the graph G datl = Eij dij/N(N -1).

Lemma 1. Let the graph L(v,g) have the degree

v > 3 and the girth 9 > 3 or v = 3 and 9 ?: 6. If the

node a E Ak, k > O, then a is adjacent either to one

node on the layer k -1 and to v -1 on the layer k + 1,

or to two nodes on the layer k -1 and to v -2 on the

layer k + 1, or if 9 is odd, to one node on the layer

k -1, to one on the layer k, and to v -2 on the layer
k+ 1.

1

~r
;;.

~ ~
Let Xk, Zk, yk denote the numbers of nodes situated

on the layer k, k > O, and having the above-mentioned
types of connection, in the order they were listed in
Lemma 1.

~

~
..A

~

Corollary. Let the graph L(v,g) have the degree

v > 3 and the girth 9 > 3. Then the number of nodes

situated on the layer k, k > O, is determined from

the following formulas: nk = Xk + yk + Zk for 9 odd,

nk = Xk + Zk for 9 even.

Figure Fragment oí L( 4,5) graph

The proofs of Lemma 1 and Theorems 1 and 2 can
be found in Korneyev and Monakhov (1980).

Now we find the distribution of Xk, Yk Zk depending
on the values of k, v, and g.

The network, belonging to the class of L(N,v,g)
graphs, will be formed:

(1) by the construction from the infinite planar graph
L(v,g) ofa subgraph with the number ofnodes N, form-
ing the first ( k -1) layers and part of the kth láyer of
required network: E:=-~ IAil ~ N ~ E~o IAil, where
Ai is a set of nodes on the layer i of L(v, g) graph;

(2) by the complement of the set of edges of obtained
subgraph with respect to the regular graph with the
given degree v and girth g.

The second stages is fulfilled by an algorithm of re-
duced search. Its implementation requires considerable
computer time. One of the ways of reduction of graph 's
construction time is to use the properties of symmetry
of these graphs. The aim of this paper is to present
and investigate a subclass of L(N, v, g) graphs -the
R8 ( N, v, g) graphs that have a symmetry of connections
and assume a parametric description. The parametri-
cal description of the computer system structure is con-
venient for organization of operating system execution
(under distribution and loading of the data, realization
of routing procedures, etc.). It is more compact form
of presentation of a network than description with the
help of adjacency matrices or lists of structures.

Theorem 1. Let the graph L(v, g) have the degree
v > 3 and the girth 9 > 3, or v = 3 and 9 ?:: 6, and let
9 = 2n + 1, where n ?:: 2 is the natural number. Then

the distribution of Xk, yk, Zk depending on the num-

ber of layer k is determined by the following recurrent

relationships:

1. xo=O,yo=O,ZO=O for k=O;

2. XI = V, YI = O, ZI = 0 for k=l

9. Xk = Xk-l(V -l),yk = O,
Zk = 0 for 1 < k ~ n- 1j

4. Xk = Xk-l(V -1) -2V,yk = 2v,
Zk = 0 for k = nj

2.1 Bounds on the diameter and the av-

erage distance ofL(N, v, g) graphs

Consider the properties of the graphs L(v,g) and
L(N, v, g), which allow us, using the given values of N ,
v, and g, to determine the lower evaluations of their di-
ameter and average distance. These values are true also
for the graphs RB(N, v, g).

5. Xk = Xk-l(V -1) + (yk-l + Zk-l)(V -2) -2Zk -yk,

yk = 2Xk-n(V -2) + 2(v -3)(yk-n + Zk-n), Zk =

Yk-n/2 10r k ~ n + 1.

Theorem 2. Let the groph L(v,g) have the degree

v > 3 and the girth 9 > 3 or v = 3 and 9 ~ 6, and

let 9 = 2n, where n ~ 2 is the natural number. Then

the distribution 01 Xk and Zk depending on the number

01layer k is defined by the 10ll0wing recurrent relation-

ships:
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forXo = o, Zo = 0 k =O; In this case, ir the equivalence 11 is defined by
expression (2), we denote RJL(N,v,g) graphs in terms
orRs(N,v,g) graphs.

2. XI = V, ZI = O for k = I;

3. X k = Xk-l (V -1), Zk = O

for 1 < k ~ n -1;
Distinguish the cla8s of R8 ( N, v) graphs that includes

all R8(N,v,g) graphs with fixed values of s, N and v.
Thus, the total set ofnodes V ofthe graph R8(N,v) is
subdivided into s equivalence cla8ses Vi:

4. X k = Xk-l(V -1) -2v, Zk = V

for k = n;

Vi = { a I a E V, a = í(mod s)},5. X k = Xk-l(V -1) + Zk-l(V -2) -2Zk,

Zk = Xk-n(V -2) + Zk-n(V -3)

for k ~ n + 1.
where i = ~.

Let r = N/s. It follows from the definition of

R/l.(N.v.g) graphs that for each pair of nodes a,b E
Vi. i = ~, of the graph RB(N.v) an automorphism
<p E Aut(R) exists such that <p(a) = b. that is:

b = a + js(mod N), (3)j=~.

If in the graph Rs(N,v) two nodes a and c are con-
nected by the edge (a,c) E E and c- a = l(mod N),
where I is a natural number and I < N, then we call I
a mark oí the edge (a, c). Note, the edge has also the
mark I' = a- c(mod N).

Theorems 1 and 2 allow us to determine the lower
bounds on the diameter and the average distance of
L(N,v,g) graphs. Denote these evaluations by d* and
d~v, respectively. These values are found from the fol-
lowing relations:

d.-l d. * d.¿k=O nk < N ~ ¿k=O nk, dav = ¿k=l knk/N, (1)
where nk = Xk + yk + Zk.

It follows from Theorems 1 and 2 that on all the lay-
ers ofthe optimal L(N,v,g) graph up to the layer [g/2]
the number of nodes is equal to the maximal possible
one for the given value of v. The optimal graph is cho-
sen among L(N,v,g) graphs 'i'lith the maximal possible
girth 9 for the given N and v. These structures have
the minimal possible diameter and the minimal possi-
ble average distance among all the graphs with N nodes
whose degree is equal to v.

Lemma 2. If two nodes a E ~, i E ~, and
c E V of the gmph R8(N,v) are connected by the edge
(a,c) E E with the mark l, then the edge (b,d) E E
with the mark l is incident to each node b E ~.

Proof. Since a, b E ~ it is seen from (3) that there
exists an automorphism ofthe graph RB(N,v) such that
I{>(a) = b and congruence (3) is true. Let I{>(c) = d, then

we have

Definition and

Rs(N, v, g) graphs

properties of3

(4)d = c + js(mod N), j=~

If (a,c) E E, we obtain (lIJ(a),IIJ(c)) E' E, i.e.

(b,d) E E. From expressions (3) and (4) we have

d- b = c- a(mod N), and since c- a = l(mod N),

then d- b = l(mod N). Q.E.D.

We now distinguish a subclass ofthe graphs L(N,v,g)
that has a symmetry of connections, and consider its

properties.
Let RJ1(N,v,g) be a subclass from the class of

L(N, v, g) graphs with the set of nodes V = {1,2..., N},
the set of edges E ~ V2, the group of automorphisms
Aut(R), and the equivalence relation JL forming a par-
tition of the set of nodes V into m ~ N classes ~, such
that for each pair of nodes k, j E ~, i = ~, an
automorphism 'P E Aut(R) exists, that transforms k to

J:

Corollary. Let in the graph R8(N,v) the

node a E ~, i E I;-8. We denote by

Li = {lik}, i E ~, k E ~, the set of marks

of edges incident to the node a. Then the set of marks

of the edges incident to any node b E ~, is Li.
V(k,j E Vi)3(1.p E Aut(R))(I.p(k) = j).

The equivalence .u on the set of nodes V of the graph
Rs(N, v,g), which will be considered further, is the con-
gruence modulo of some natural number s dividing com-
pletely N, i.e.

We call the set L = {lik}, i = ~, k = r;-v, a set
of marks of edges of the graph R8(N, V). Two nodes a
and b ofthe graph R8(N,v) are connected by the edge
(a, b) E E, if and only if there exists a natural number
li.k < N, where lik E L, i E ~, k E r;-v, such that
if a = i(mod s), then b -a = lik(mod N), i.e..u = {(a,b) E V2 a= b(mod s)}, (2)

(a, b) E E <=> (3lik E L)(a = i(mod s))&where s ~ N, N = O(mod s).
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where tik is the number of edges with the mark lik ,
which belong to the path from a to b.

The graph RB(N,v,g) (as it has been shown in
Monakhov (1979)), is described by a semigroup and
it is isomorphic to the graph of the semigroup of
transformations of the classes of equivalence.

&(b- a = lik(mod N)).

ThU8, if the number of nodes N, the number of equiv-
alence classes s, and the set of marks L are given, then
R8 ( N, v, g) graph is completely defined.

Let Eik denote the set of edges with the mark lik:

Eik = {(a,b) E E I a = i(mod s),

3.1 Connectivity of RB(N, V) graphs

As far as we are interested only connected graphs as in-
terconnection networks of multicomputer systems let us
consider the question on the connectivity of the graphs
RB(N,v). Let r = N/s. Let H(R) denote a graph with
the set of nodes V H = {1,2..., r} and the set of edges
EH which is obtained from the graph RB(N,v) with
the set of marks L for homomorphism <t> : i -4 j, where
i E V, j E VH, and j = [i:¡!] + 1; [x] is integral

part of x. Here

where i E.~,
also the mark

b = a + lik(mod N)},

k E ~. Edges from the set Eik have

rjm = N -lik, (5)

where j = i + lik(mod s), i,j E ~, k,m E ~,
and, hence, the sets Ejm and Eik coincide.

Let L * denote the minimal necessary set of marks.
In order to go from the set L to the set L * , we must to

delete from the set L one mark from each pair of marks
cóñnected by relation (5). For the inverse transition
from L* to L it is necessary to find an additional mark
by relation (5) for each mark from L*.

Example I. Let us consider Petersen's graph
(Figure 2), in which N = 10, v = 3, 9 = 5, s = 2,
i.e., it is the graph ,R2(10, 3,5) with the ~t of marks
L = {1,2,8j 4,6,9} (the minimal set of marks
L* = {1,2j 4}).

(a,c) E EH <=> (31mk E L)

(c = a + bmk(mod r), (6)

[ dmk -1 ]bmk = 8 ' dmk = m+lmk(mod N»,

where m E ~, k E I:"V, dmk E ~, bmk E ~.
Denote B = {bmk}, m = ~, k = ~, and rewrite

expression (6) in the form:

(a,c) E EH <=> (3bmk E B)(c = a + bmk(mod r)),

9 3

~

where m E ~, k E ~.
Note that the obtained definition ofthe graphs H(R)

coincides with that of circulant graphs with the set B as
a set of marks provided all closed loops are eliminated.

Using property on connectivity of circulants (Vorob-
jev, 1974), we obtain the condition of connectivity of
the graph H(R).

8 4

6

Lemma 3. To make the graph H(R) un"th the

number of nodes r and the set of marks B a connected

graph, it is necessary and sufficient that the numbers

{r,B} be mutually prime.Figure 2: Petersen's graph and its H(R) graph

Example 2. For Petersen 's graph (see Figure 2)
H(R) graph is complete graph K s with the number oí
nodes r = 5. In this case B = {1,2,3,4}.

Let us present some properties of the graphs RB ( N, v) :
1. V = U:=l ~, ~ n V; = 0 for i # j,

I ~ 1= r, where i = ~.
2. E = U:=l U~=l Eilc, I Eilc 1= r,

where i=~, k=~, IEI=8rV/2.
3. If the nodes a, b E V of the graph RB(N, V) are

connected,then

Let r(R/s) denote a graph with the set of nodes
vr = {1,2..., s} and the set of edges Er, obtained

from the graph R8(N,v) with the set of marks L for
homomorphism c: : í -t j, where í E V, j E vr and
í = j(mod s), hereB "

b- a = LLliktik(mod N),

i=l k=l (a, b) E Er <:} (3lmk E L)(a + lmk = b(mod s))&
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Proof. The proof is analogously to the proof of
Theorem 4 under condition that we consider the
isomorphism 1/J : a-+ a', where a E V, a' E V', a' =

a+d(mod N),and d=c(mod s). Q.E.D.

&(a = m(mod 8)),

where m E ~, k E ~. We assume that the set of
marks of edges of the graph r(R/s) coincides with the
set of marks of the initial R8(N, v) graph.

Theorem 6. The graphs R8(N,v) and R~(N,v)

with the sets of marks L = {lmk} and L' = {l~k}'

respectively, are isomorphic if l~k = clmk(mod N)
provided that N and c are mutually prime numbers and
i = cm(mod s) for i,m = r;s, k = ~.

Example 3. In Figure 2, right, the graph r(R/2) oí
Petersen's graph is presented (see Example 1).

Proof. The pro oí is analogously to the pro oí oí Theo-
rem 4 under condition that we consider the isomorphism
111 : a -1- a', where a E V, a' E V', a' = ca(mod N),
and c and N are mutually prime numbers. Q.E.D.

The graph r(R/s) is a regular graph ofthe degree v
if the initial graph was R8 ( N, v) with the set of marks
L, except for the case when 1 E L and 1 = N /2. In this
case the degree of a node incident to the edge with the
mark 1 in the graph r(R/s) is v + 1.

Let us consider the connectivity ofthe graph r(R/s)
constructed from the graph R8(N,v) with the set of
marks L. Let L' C L be a subset such that for any
m E r;-s and some k E ~, if lmk E L', then lmi E L'
for all i E ~ .Denote by I the set of first indexes of

I --
the marks lmk E L, where m E 1,s, k = 1,v.

Along with the solution of the connectivity and iso-
morphism problems, the upper bound on girth of con-
sidered structures is defined in Monakhov (1979) by
means of parametric description of such structures, at
that the oppotunity of semigroup assignment of these
structures is used.

Lemma 4. The graph r(R/8) is connected if and

only if for each L' C L there is a mark lmk E L'

such that m + lmk = i(mod 8) and i ~ I for

m,i E ~, k E r;-v.

Theorem 3. The graph Rs(N,v) is connected ifand

only if the graphs H(R) and r(R/s) are connected.

3.2 Isomorphism of Rs(N, v) graphs

Let us consider some sufficient conditions of isomor.
phism for the graphs Rs(N, v).

3.3 Optimization problem for Rs(N, v, g)

graphs

The optimization problem considered in the paper is to
found an optimal graph Rs(N, v, g) having the minimal
diameter and the minimal average distance for the given
number of nodes N, degree v, girth g, and number of
equivalence classes s. The given optimization problem
is a problem of integer-valued programming with a non-
linear object function.

The following algorithms were proposed and realized
for solving the problem: exhaustive search algorithm,
an algorithm using the idea of branches and bounds,
a genetic algorithm, simulating anealing and random
search algorithm. These algorithms were used to obtain
the graphs Rs(N,v,g) for the values of N ~ 16384,
v ~ 12, 9 ~ 8, s ~ 4. Parametric descriptions of some
optimal or nearly optimal Rs(N,v,g) graphs are given
in Table 1.

Theorem 4. The graphs R8(N, v) and
R~(N,v) with the sets of marks L {lmk}
and L' = {l~k}' respectively, are isomorphic if
l~k = N -lmk for i = s + c -m(mod s) for

i,m=~, k=~, CEO,s-l.

Proof. The proof is ba.ged on the following: the
mapping 1/! is an isomorphism, where 1/! : a-+ a' , a E

V, a'EV', a'=N+d-a(mod N), d=c(mod s).
Q.E.D.

In Figure 3 the graph R2 (20,4,5) is presented. It
has two equivalence classes and the set of marks L =

{1,3,4,16; 8,12,17,19}.Corollary. The choice of the values of marks 1 E L*
of the graph R8(N, V) can be restricted by the interval
from 1 to s([r/2] + 1), where r = N/s. Circulant graphs4

Theorem 5. The graphs R8(N, V) and R~(N, v) with
the sets of marks L = {lmk} and L' = {l~k}' respec-
tively, are isomorphic if lmk = l~k for m = i:f:c(mod s),
where i, m = r;-s, k = I:V, c E O, s -1.

Note, that for 9 = 4 the class of R8(N, v,g) graphs
includes known network topologies such as hypercubes
and circulant graphs.

The hypercubes can be described as R8(21J,v,4)
graphs with s = 21J-2. For example, for N = 23 the
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Table 1:
I N I v IsI9Id(D)14,12,...,12v I

-
58 63

54 63

1
1

6 13 41

10 23 51
64

~

45 246 277 460 479 543 564 593 701 778
68 308 323 431 481 545 716 747 956 979

4096

6 (4)

777 927 1508 2150 2157 2393 3971
6042 6684 7019 7947
245 1173 1330 3990 4096 4202 4221
6035 6862 7265 7415

5799

v/2'\ /

i
) 2vl2

morphisms connected to the graph. Circulant graphs
G(N;1,s2,...,Sv/2), with the identity generator, are
known as loop networks.

Let nk determine the number of nodes on the layer k
of the circulant G with the degree v, nk being the upper
bound for nk. Let Uk = ¿:=O ni, denote the number of
nodes in G, which are reachable by at most k steps from
the node O, and uk being the upper bound for Uk. Re-
current relationships and formulas for calculation of nk
and uk have been obtained in Wong and Coppersmith,
1974; Korneyev, 1974; Boesch and Wang, 1985:
n* -1

o- , /
* -~v/2-1 k -1

nk -L..i=O /2 . 1v -z-

k > 1.
-,

* ~v/2Uk = L..i=O I
Figure 3: R2 (20,4,5) graph (V(2) ( k .) 2v/2-i

Z v/2-z

pa;rametric description ofthe hypercube R2(23,3, 4) has
the form {1,2,6; 2,6,7}.

F9r s = 1 and 9 = 4 the class of R8(N,v,g) graphs
includes the class of circulant graphs with the dimension
equal to v /2, if the degree v is even.

Circulant graphs a;re intensively researched in com-
puter science, graph theory and discrete mathematics.
They a;re realized as interconnection networks in some
computer systems (MPP, Intel Paragon, Cray T3D,

etc.).

A circulant graph G is called extreme optimal if nk =
nk for any O ~ k ~ d* -1 and nd. = N -U~.-l' where
the diameter d* is defined by the correlation U~.-l <
N ~ u~. .A graph G is called optimal, if d( G) = d* .
The diameter d* is the exact lower bound for d(N) =

mins {d(G(N; S))}.
Extreme optimal and optimal circulants have the

minimum d (and the minimum dav for extreme opti-
mal circulants), the maximum reliability and connectiv-
ity (Korneyev, 1974; Boesch and Wang, 1985) and the
minimum number of steps for a realization of commu-
nication algorithms (Monakhova and Monakhov, 1997)
, but do not exist for some values N and v > 4 (Du
et. al., 1990; Monakhova 1991; Bermond and Tzvieli,

1991).

A circulant is an undirected graph
G(N;Sl,S2,...,Sv/2) with N nodes, labeled as
OJ1,2,...,N- 1, having i ::I:: sl,i ::I:: S2,...,i ::I:: Sv/2
(moa N)bodes, adjacebt to each node i.

The numbers S = (Si) (O < Sl < ...< Sv/2 <N/2)
are generators of the finite Abelian group of auto-
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5 Comparison of Rs(N, v, g) graph

subclasses by the diameter and

the average distance

For n = 2, an analytical solution of a problem of
existence and synthesis of optimal circulants has been
found in Monakhova, 1981; Boesch and Wang, 1985;
Bermond et. al., 1985.

Theorem 7. For any N > 4 an extreme optimal

circulant G(N; 81, 8~) exi8t8 and ha8 the generators

{s,s + 1}, 8 = l(.¡2N=-f-1)/2J, where LxJ is the

nearest integer to x.

In Du et. al., 1990; Bermond and Tzvieli, 1991; Mon-
akhova, 1991; Mukhopadhyaya and Sinha, 1995 some
conditions have been found for an existence of optimal
loop circulant graphs with v = 4, and dense infinite

families of values of N, which are optimal, have been
defined by analytical formulas. For v > 4 these prob-
lems are known as N p -hard. Search algorithms and
heuristics are used to synthesize nearly optimal circu-
lants. The detailed review (without the results of Rus-
sian researches) of problems of a construction of optimal
circulants ( directed and undirected) and their general-
izations is made in Bermond et. al., 1995.

In this section the PRS graphs with the girth 9 = 6 and
multidimensional circulants are compared by the struc-
tural properties with a popular structure for parallel
computer architectures such as hypercubes.

In Table 2 partial results of a comparison of hyper-
cubes, L(orR8)(N,v,g) graphs (g = 6) and circulants
by the degree v, the diameter d and the average dis-
tance datl for the same number of graph nodes N = 2t1
are presented. The value of d*(N) is the exact lower
bound on a diameter of L(orR8)(N, v, 6) graphs. It is
calculated from expression (1). In the case of circulants,
the value of d* ( N) is calculated from the expression for
the values of uk. For realization of a correct compar-
ison a degree of a circulant is equal to a degree of a
hypercube (or less by one unit).

In Figure 4 the diagrams are represented for the diam-
eter of hypercubes and exact lower bounds on diameters
of L( v, 6) graphs and circulants as the functions of the
values of N .

For all the values of N :$: 2163 the character of vari-
ation of exact lower bound on a diameter of circulant
graphs is expressed by the following approximating for-
mula: d*(N) = a + blnN = a + b1v, where a = 2.123,
b = 0.467, b1 = 0.324.

9}
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