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Abstract 
 
The necessity of verification tools for Knowledge Based-Systems (KBSs), that help to guarantee a certain degree of 
quality and reliability of these systems will increase in the future when more critical systems are developed in areas such 
as industry, science, business, etc. One of the objectives of the KBSs verification is to assure the consistency and 
completeness of the Knowledge Base (KB).  In this paper, a technique to detect possible inconsistencies or conflicting 
situations between the objects of the KB is described, and a tool called CRIB, that implements this technique, is presented. 
The generality of this technique, based on the checking of the Integrity Constraints (ICs) declared on the KB, will allow to 
apply it to different kinds of KBSs. In addition, the flexibility and the power of the ICs specification language will make it 
possible to detect a wide range of inconsistencies in a KB. 
Keywords: Verification, Knowledge Based-System, Consistency. 

 
Resumen 
 
La necesidad de herramientas de verificación para Sistemas Basados en el Conocimiento (SBCs), que ayuden a garantizar 
un cierto grado de calidad y fiabilidad de estos sistemas aumentará en el futuro conforme más sistemas críticos sean 
desarrollados en áreas tales como la industria, la ciencia, los negocios, etc. Uno de los objetivos de la verificación de 
SBCs es asegurar la consistencia y la completitud de la Base de Conocimientos (BC). En este artículo se describe una 
técnica para detectar posibles inconsistencias o situaciones conflictivas entre los objetos de la BC, y se presenta una 
herramienta llamada CRIB, que implementa esta técnica. La generalidad de esta técnica, basada en la comprobación de las 
Restricciones de Integridad (RIs) declaradas en la BC, permite aplicarla a diferentes tipos de SBCs. Asimismo, la 
flexibilidad y la potencia del lenguaje de especificación de RIs hará posible detectar un amplio abanico de inconsistencias 
en una BC. 
Palabras Clave: Verificación, Sistema Basado en el Conocimiento, Consistencia. 

 
 
1   Introduction 
 
From the beginning of the decade of the 1980s Knowledge-Based Systems (KBSs) are being frequently used in different 
areas such as industry, science, defense, etc., mainly in complex and large applications. 

The future growth of KBSs will be seriously obstructed if developers do not firmly face the problem of reliability. The 
trustworthiness of KBSs in critical use, such as diagnostic systems, nuclear power plant management systems, spatial 
vehicles control systems, etc., and of many other systems for which the use is not as critical as in the previous ones (like 
manufacturing process control systems, traffic control systems, and so on), must be guaranteed before they can be used for 
these tasks. In addition, loss of credibility may come from fault conclusions derived from the system. This could lead to a 
decrease in the use of such systems, and finally, to their final retirement. 

One of the main components of all software development projects is, of course, to check it out as a part of the gradual 
development process. However, besides the elimination of mistakes effected during the development, a formal evaluation of 
KBSs should be performed. Verification and Validation (V&V) of such systems provide the means and mechanisms to 
effect the necessary formal evaluation. 
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Although the distinction between Validation and Verification has not been yet fully clarified [1] [2] [3], the main 
objective of both processes is to guarantee that the KBS provides the correct answer in the proper way when it is required to 
solve a problem. In addition, both terms also imply other goals such as to assure the maintenance, security and service of the 
system. To achieve this, any mistake or deficiency in the system must be first discovered and then eliminated. 

 
1.1 Verification and Validation 
 
The term “Verification and Validation” (V&V) is often used to indicate all the issues related to assuring that the software 
will perform the task which it was designed for. In this sense, the term V&V is used as a rough synonym of “evaluation”. 

There are many definitions of the term “Verification” in the literature [4] [5] [6]. The following definition is considered 
in this paper: 

The Verification confirms that the expert system is logically consistent, but it does not guarantee that its domain-
dependent knowledge agrees with that of the human expert (Suen et ál., 1990). 

When the KBSs are being verified, their main components must be considered, i.e., their Inference Engine (IE), and their 
Knowledge Base (KB). Conventional software verification procedures must be applied to the IE since this component is a 
conventional software piece. On the other hand, according to the VALID project (Cardeñosa & Juristo, 1993), the 
verification of the KB is composed of two steps: the detection of syntactic and semantic mistakes in the KB (Structural 
Verification and Verification of the content respectively). 

Regarding the term “Validation”, the literature about KBSs provides several definitions [4] [5] [7] [2]. We will adopt the 
following definition: 

The Validation is the process of evaluating an expert system during and after the development process to ensure 
compliance with the initial requirements (Suen et ál., 1990). 
 

1.2 Inconsistency Detection  
 
One of the activities that should be performed during the Verification of the KB contents is to prove the consistency of the 
KB. The current literature provides too many variants about the meaning of the term consistency [8] [9] [10] [11] [12]. We 
consider that this term implies not only the logical but also the semantic aspects. Thus, a KB is inconsistent when it is 
possible to reach conflictive situations among the KB objects from a set of valid input data. 

A set of inputs is valid if it represents a situation that is possible in the real world and, therefore,  it verifies all the 
defined integrity constraints. 

The type of conflicting situations that can appear when a KB is inconsistent depends on characteristics of the KB 
representation formalism [12]. 

 
1.3 Overview of the Paper 
 
In this paper we approach the problem of inconsistency detection in a KB. In section 2, we present a short history of some 
tools that have been built to solve this problem. With the goal of solving some of the limitations of the methods used in 
these tools, we present in this paper a solution that tries to improve them. It is based on several characteristics of some of 
those methods, but providing new ideas. 

In section 3, we will describe the hypotheses adopted in the design of the CRIB method presented in this paper. In the 
next section, we give a definition and classification of the integrity constraints that will be considered on the KB. Finally, 
the CRIB method is explained. 

 
 

2   Previous Work in this Area 
 
With the aim of detecting inconsistencies in KBs based on monotonic reasoning, several methods have been proposed to 
date. These methods can be grouped into different families, according to the approach they follow. We will review these 
families now: 
• Tabular Methods [13] [14]: tabular methods were the first ones to be designed for detecting anomalies in KBSs. The 
strategy followed by a tabular method consists on comparing in pairs the rules of the rule base, with the objective of 
discovering certain relationships among their premises and conclusions. Given that these methods only compare pairs of 
rules, all the inconsistencies in which chains of several rules are involved are beyond their scope.  
• Methods based on Petri Nets [15] [16] [17] [18]: the methods in this family are based on modeling the KB by using a 
Petri net, and applying techniques of diverse nature to the Petri net with the aim of detecting inconsistencies. These methods 
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need to test the model under all the possible initial states in order to warrant the absence of inconsistencies, which can be 
computationally very costly.  
• Methods based on Graphs [19] [20] [21] [22] [23] [24] [25]: graphs are a very attractive tool in order to represent 
conceptual dependencies. Moreover, graph theory provides us with analysis techniques to study properties such as 
conectivity or reachability in a rigorous and formal way. On the other hand, the applicability of methods based on graphs, as 
it happens with methods based on Petri nets, can be formally proved. However, they have as a disadvantage, like Petri net-
based methods, the necessity of simulating the execution of the system for every possible initial fact base. 
• Methods based on the Generation of Labels [8] [9] [26] [12] [27] [28] [29]: these methods are grounded on the ATMS 
designed by de Kleer [30]. Given that many times the generation and propagation of every possible initial FB is 
computationally intractable, these methods take the concept of context, used in the ATMS, as a means of specifying a set of 
initial FBs. Contexts that describe initial FBs which cause the deduction of an inconsistency will be specially interesting. 
Therefore, the goal of these methods will be the construction of those contexts. As the number of rules in the RB is finite, 
the specifications contained in a context will also be finite, even if the number of possible initial FBs is infinite. 
• Methods based on Algebraic Interpretations [31] [32] [33]: these are systems that are based on the transformation of 
the KB into an algebraic structure, like a boolean algebra, and the application of concepts and procedures relative to that 
algebraic structure for the verification of the KB. This family of methods is the most reliable, since they are solidly 
grounded on algebraic concepts. However, they can only be applied to propositional rule bases.  

There are not many methods that are able to deal with the verification of non-monotonic RBs. Among them, we can 
highlight Antoniou's method [34], which analyzes RBs expressed in default logic, and Wu & Lee's method [35], which tests 
RBs with production rules. While Antoniou's method is inspired on tabular methods for monotonic RBs, Wu & Lee's 
method models the RB as a high level extended Petri net.  

Analogously, only a few methods have been proposed that are able to verify systems with uncertainty management [36] 
or hybrid systems. The first work that dealt with hybrid systems was that of Lee & O’Keefe [37], which characterized a set 
of new types of anomalies that appear as a result of considering the submission relationship among literals in different rules. 
The submission relationship is a consequence of the subclass-of relationships that appear in a frame hierarchy. In order to 
detect those anomalies, Lee & O’Keefe presented a method with a tabular approach. Later on, as an extension of Lee & 
O’Keefe’s work, Mukherjee et ál. [38] proposed a similar procedure to detect dead-end and unreachable rules, considering 
the submission relationship. They also proposed a method based on the generation of labels to detect absent rules. 
Mukherjee et ál. also introduced an algorithm to detect anomalies caused by the interaction of rules and monitors (methods 
and daemons) during the execution of the KBS.  

The CRIB method presented in this paper is inspired on the KB-REDUCER [9] and TADIKS [26] tools based on the 
generation of labels. However, there are great differences in theis starting points as well as in the implementation. The 
improvements that CRIB introduces in contrast to those previous tools are essentially: more extensive scope, detection of a 
wider range of possible inconsistencies in the KB independently of the initial fact base (FB), providing more information to 
correct the potential inconsistencies in the KB, and allowing an incremental verification. These characteristics are explained 
in the section 3. 

 
 

3   Hypotheses and Goals of CRIB 
 
The main goals and hypotheses behind CRIB are the following: 
* Wider scope: CRIB has been designed to be integrated in the VALID validation environment, product of the VALID 
project [39] which will allow the tool to be applied in different kinds of  KBSs. 

In the VALID environment, a generic representation kernel called CCR (Common Conceptual Representation) and a 
validation meta-language, called VETA (Validation mETAlanguage) [40], are included. Therefore, CRIB will be applied to 
KBSs represented in CCR and it will be implemented using the set of primitives of VETA. 

The generality of the CCR representation formalism, as we will show below, allows to extend the scope of the existent 
tools. CCR allows the representation of Attribute-Value pairs, Object-Attribute-Value triplets, classes and instances of 
classes, and to organize them in hierarchies of classes. Besides, CCR supports a modular knowledge representation that 
allows to represent the rule structure of the KB, and some mechanisms to control the execution of the KBS, like metarules. 

 Regarding the limits in the CRIB scope, those are essentially determined by the limits in the CCR representation 
capability. In this way, for example, procedural knowledge is not considered in the CRIB tool since CCR cannot represent 
the semantics related to it.  

Most of the methods to detect anomalies in the content of the KB are applied only to such knowledge base, without 
taking care of the inferential and control aspects. This is the case of KB-REDUCER and TADIKS. But, many times, the 
accuracy of the results obtained will depend on the KBS inference engine properties. Though CCR cannot represent the 
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semantics related to the conflict set resolution criteria, the importance of simulating the behavior of the most used conflict 
set resolution criteria has been considered in the design of CRIB. The user of CRIB will be able to select, among these 
criteria, the one which the KBS that is being verified is actually using. In contrast, control knowledge mechanisms and 
metarules will not be considered, although some of those can be represented in CCR. 
* Detection of a wider range of possible inconsistencies in the KB: The KB-REDUCER and TADIKS tools only detect 
semantic and logic incompatibilities and incompatibilities on the cardinality of an attribute (see section 4) expressed in 
propositional logic, but they don’t detect the violation of other constraints that can be defined on the KB. CRIB allows to 
represent consistency criteria by using IC. The IC specification language used in CRIB (we will describe it further in section 
5) is characterized by its flexibility and clarity. 
* Analysis of the potential inconsistencies in the KB independently of the initial fact base: This is the key idea which has 
inspired the design of CRIB and which makes the difference with many existing tools. CRIB analysis is not limited to 
specific executions of the KBS with particular cases named initial fact bases (FBs). Therefore, it will allow to detect all the 
potential inconsistencies in the KB for all the valid inputs to the system. This feature will facilitate enormously the work of 
the user of CRIB, who will not have to execute the tool for each specific initial FB, obtaining in this way more general and 
helpful information. 
* Provide information to correct the potential inconsistencies in the KB: CRIB offers more information than previous tools 
like KB-REDUCER and TADIKS, that will help the user or knowledge engineer to find the root causes of the potential 
inconsistencies in the KB. 

 
 

4   Integrity Constraints 
 
The method we describe in this paper is based on the declaration and checking of ICs defined on a KB in order to verify its 
consistency. Consistency (or inconsistency) criteria should therefore be formulated as integrity constraints. 

An integrity constraint on a KB is defined as a set of conditions that the knowledge contained in the base must 
satisfy to be considered a consistent model of the real world. 
The integrity constraint satisfaction is defined as the fact of giving strict fulfilment to the conditions imposed by the 
constraint.  
The integrity constraint violation is defined as the fact of not giving strict fulfilment to the conditions imposed by 
the constraint. 

The causes that lead to an IC violation and, therefore, to inconsistent situations in the KB, derive from the application of 
the knowledge contained in the KB, in order to solve a specific problem (defined by an initial FB), by using the available 
inference mechanisms in the system. Some factors that are going to have considerable influence on the structure and 
satisfaction or violation of the ICs imposed on a KBS are the following:  

a) Representation formalism(s) used in the KBS (rule-based representation, semantic nets, frames, etc.): The violation of 
an IC defined on the KB can be produced not only by the firing of rules, but also by the matching in semantic nets or 
frames, by the inheritance of attribute values, by the execution of a method or daemon or by any combination of them.  
b) Type of underlying logic in the system (propositional logic, predicate logic) and the way to represent logical facts (Attribute-
Value pairs, Object-Attribute-Value triplets, etc.): According to the kind of logic, the type of facts we handle in the KBS and in 
the ICs will be different. 
c) Uncertainty management mechanism: In systems with uncertainty management, the presence of conflicts may not be 
problematic, if the expert deliberately concludes contradictory facts with different certainty values. The next figure shows 
the classification of ICs that is used in CRIB: 
 

a) Incompatibilities: ICs that express incompatibilities may appear between facts or between attribute values. 
 

a.1) Incompatibilities between facts: The constraints that define incompatibilities between facts may express logic or 
semantic incompatibilities between facts. 

- Logic Incompatibilities: They denote an assignment of truth values to facts in such a way that a fact and its negation 
are simultaneously considered true. Example (propositional logic): H and ¬H. 
- Semantic incompatibilities: They denote an assignment of truth values to facts in such a way that a set of facts that are 
semantically incompatible are simultaneously considered as certain. Example (first order logic): Is_man(a) and 
Is_inmortal(a). 
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a.2) Implicit incompatibilities in attribute values: They may appear when the fact representation formalism in the system is 
of the type Attribute-Value or Object-Attribute-Value. Two types of incompatibilities on the values of the attributes are 
possible: 

- Incompatibilities with the cardinality of an attribute: Some attributes of the KB may have related constraints on the 
minimum or maximum number of values that they may take in any moment. Example (Attribute-Value) : Weight = 70 
and Weight = 80 is an incompatibility because the Weight attribute may only have one value. 
- Incompatibilities with the set of possible values for an attribute : This kind of incompatibilities derive from the typing 
of the attributes, i.e., from the specification of a set of possible values. Example (Object-Attribute-Value): If 
(Man,Weight,300) is in the FB and it has been declared that Weight ∈ (1,150] then, (Man,Weight, 300) is an 
incompatibility. 

 
b) Specific Domain dependent constraints: Any constraint that implies specific conditions or characteristics which must be 
satisfied by the different objects of a particular KB and that cannot be included in the previous classification, such as 
conditions on the existence of the objects or relationships between them, belong to this group of  ICs. Example: “All the 
children of a marriage must be boys or girls and their age must be known”. This IC is only applicable if a marriage has 
children. In that case, they must belong to the boy or girl class (not both) and, besides, their age must be known.  

 
 

5   CRIB Method 
 
We begin this section with a short description, by using examples, of the ICs specification language used by CRIB and then 
we will explain the method proposed to solve the inconsistency detection problem. 
 
5.1 The ICs specification Language 
 
The ICs specification language used by CRIB is based on the language of the CONTROLLER tool [41], although there are 
some differences, mainly in its syntax, which has been simplified.  
 
5.1.1 Facts Representation 

 
In the CRIB method, a fact is a predicate applied to a KB object: classes, instances or instance attributes. For example1: 

 
                                                           

Notes.  
1. All the examples we show in this paper are represented with a simplified notation for the sake of clarity. 
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1) ≤ ( (car1,speed) , 200 ): It represents a fact that is true if the attribute speed of the instance car1 is lower or equal 
(predicate ≤) than 200. 
2) <>((client1,age), 40): It represents a fact that is true if the attribute age of the instance client1 of the class client is 
different (predicate <>) from 40. 

 
In addition, it is possible to represent facts using meta-predicates or special predicates that contain high-level knowledge 

about the KB objects. Example: IS_OF_CLASS (customer, John). This fact is true if John is an instance of the class 
customer. 
 
5.1.2 Scope of ICs 

 
The constraints expressed in this language will belong to one of the following types, depending on their scope: 

 
* Constraints that only deal with input data: These constraints establish consistency criteria that the KBS input data 
must satisfy. 
* Constraints that only deal with output data: These constraints establish consistency criteria that must be satisfied by 
the system output data. The initial FB must satisfy the KB input constraints (valid initial situation). 
* Constraints that deal with input and output data: These constraints establish consistency criteria that must be 
satisfied by the KB input data as well as by the KB output data. 

5.1.3 The IC Structure 
 

The main grammatical rules that define the structure of an IC are the following. They are expressed in EBNF (Extended 
Backus Naur Form) notation. 

 
< Constraint >::= < Constraint_Identification > 
    < Scope_Specification > 
     [ < Quantifications > ] 
     < Constraint_Condition_Part > 
     < Constraint_Body > 
< Constraint _Condition_Part > : :=  ”IF” < Constraint_Condition > 
< Constraint_Condition > : := ( < Local_Quantifications > )*     “(“ ( < Factors > ) “)” 
< Factors > : :=  < Factor > |  

"(" < Factor > ")" “OR" < Other_Factors > 
< Other_Factors > : :=  "(" < Factor > ")" |            

"(" < Factor > ")" “OR”  < Other_Factors > 
< Factor > : := < Conditions > | 
 ( < Local_Quantifications > )* < Conditions > 
< Conditions > : :=  “(“ (“NOT”)  < Condition > “)” | 
  “(“ (“NOT”)  < Condition > “)” <Conditions > 
< Condition> ::=  <Language_Clause>  | 
     <LISP_Clause> 
< Constraint _Body > : :=  { “THEN” | “THEN _NOT” }   “(“ < Factor > “)” 

 
In the following, the semantic of these structure fields is shortly explained: 
<Constraint_Identification>: It is the identifier of the constraint. 
<Scope_Specification>: It allows to define the type of constraint depending on its scope (see section 5.1.2). 
<Quantifications>: This field is optional. It allows to define existentially or universally quantified variables that appear in 
both IC parts (condition part and IC body). 
<Constraint_Condition_Part>: Its aim is to filter the cases in which the constraint body must be evaluated. This part is 
composed of one or several sets of conditions named factors. The factors are separated from each other by the OR operator 
and the factor conditions are implicitly separated by the AND operator. Each condition may be preceeded by the NOT 
operator. 
<Constraint_Body>: It is composed of only one factor.  
Each factor, condition part or constraint body can be also preceded by quantified variables. 
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<Condition>: The conditions can use language predicates to evaluate attribute values (e.g: BELONGS-TO, IS-
DIFFERENT-FROM, IS-EQUAL-TO, IS-GREATER-THAN, IS-LESS-THAN, etc) or language metapredicates to check if 
an instance belongs to a class (IS-OF-CLASS) or does not belong to it (IS-NOT-OF-CLASS), metapredicates to check if a 
class has instances (HAS-INSTANCES) or not (IS-EMPTY), etc. A condition can also use an S-expression of LISP with 
predefined or user functions. 

In section 5.1.2 we saw that the constraints can be classified according to their scope. Besides, depending on the 
satisfiability of the IC body, the constraints can belong to one of the following types: 

 
* Positive constraints: If their condition part is satisfied, the constraint body must also be satisfied in order to conclude 
the IC satisfaction. 
* Negative constraints: If their condition part is satisfied, the constraint body should not be satisfied in order to conclude 
the IC satisfaction. 
 

If the constraint condition part was not satisfied, its body wouldn’t be evaluated. 

5.1.4 Examples 
 

Example 1: Suppose that, between the KBS input and output the following constraint has to be satisfied: “It is not possible 
to apply two different allowances to the same child”. 

 
This IC may be written in the CRIB language as: 

 
CONSTRAINT ALLOWANCE_CHILD 
SCOPE (IO) 
WHATEVER *CHILD (I) 
IF ( ) 
THEN_NOT 
THERE_IS (*1ALLOWANCE (O) *2ALLOWANCE (O) ) 
( (THE reason OF *1ALLOWANCE  IS_EQUAL_TO  *CHILD) (THE reason OF *2ALLOWANCE IS_EQUAL_TO   *CHILD) ) 

 
The words CONSTRAINT, SCOPE, WHATEVER  (it represents the universal quantifier), THERE_IS (it represents the 

existential quantifier), IF, THE, OF and THEN_NOT are language keywords. The constraint is identified as 
ALLOWANCE_CHILD and it is an input and output constraint (this is expressed by SCOPE (IO)). The THEN_NOT 
keyword specifies that it is a negative constraint. The condition part, preceded by the IF keyword, will always be true 
because it has been defined as ( ).  

The constraint will be evaluated for each input instance of the class CHILD. *CHILD, *1ALLOWANCE and 
*2ALLOWANCE are variables that respectively take as values instances of the CHILD and ALLOWANCE classes. The 
attribute reason will be evaluated in the output instances of the ALLOWANCE class((O)). 
 
Example 2: Suppose that, in the KBS input, the following constraint has to be satisfied: “A woman whose father is unknown 
must be named as her mother “. 

 
This IC may be written in the CRIB language as: 
 

CONSTRAINT SURNAME 
SCOPE (I) 
WHATEVER *PERSON (I) 
IF 
THERE_IS *1WOMAN 
  ( (THE sex OF *PERSON IS_EQUAL_TO female) 
  (THE father OF *PERSON IS_UNKNOWN) 
  (THE mother OF *PERSON IS_EQUAL_TO *1WOMAN) 
  (THE surname OF *1WOMAN IS_EQUAL_TO ?surname_mother) )  
THEN 
 (  (THE surname OF *PERSON  IS_EQUAL_TO  ?surname_mother) ) 
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The THEN keyword specifies that this is a positive constraint. IS-UNKNOWN is a language metapredicate to check if an 
attribute is valuated. The remaining keywords were previously explained in the example 1. 

The constraint is an input constraint (this is expressed by SCOPE (I)). The variable ?surname_mother is called an 
attribute variable because it takes as its value the value of the surname attribute. In addition, this variable appears in the 
constraint body where it is instantiated by propagation, because the ?surname_mother value has already been established 
before in the condition part.  

5.2 The Method  

In this section, we are going to explain what the CRIB method of inconsistency detection consists of. Beforehand, we will 
define the concept of context that the method manages. Next, we will explain some operations on contexts. Finally, we will 
describe how the method operates. 

5.2.1 Context 
 

The objective of this method is to obtain an specification of all the initial FBs, and the rules that have to be fired (and in 
which order) from these initial FBs in order to produce the violation of an IC. A set of initial FBs will be described by an 
environment, whereas a list of rules will be described by a deductive path. 

 
* An environment Ei represents the specification of the set of all valid initial FBs in which, at least, all the facts 
included in Ei are certain. 
* A deductive path DPi associated with an environment Ei is defined as a list of rules whose firing in the specified 
order is possible, given the facts included in Ei , and lead to the satisfaction of a given goal. 
* A context C represents a set of pairs ( Ei, Pi ) such that: 
 

C = { ( Ei, Pi ); i=1,...,n }  
where Ei represents an environment and  
Pi  = { DP1 , ... , DPm } is the set of deductive paths associated with Ei . 

 
Contexts can be associated with facts, rules and integrity constraints. An example context could look like: 
 
{ ({a,b,d}, { (R2,R5), (R3,R1,R6) }),  
   ({a,f,g,s}, { (R5,R4) }) } 
 
and {a,b,d,m,t}, {a,b,f,g,h,p,s} would be initial fact bases that satisfy this context. 

 
If C is a context associated with a fact h, then any pair (E, DP) contained in C satisfies the following proposition: after 

firing the rules included in DP from E, the fact h will be true. If C is a context associated with a rule r,  then, after firing the 
rules included in DP from E, the rule r could be fired. 

If the context associated with an IC is empty, that means that such constraint is always satisfied for all valid initial FBs. 
Otherwise, if the context associated with an IC is not empty, then each pair included in the context represents a set of valid 
initial FBs that lead to the IC violation during the KBS execution. 

Thus, the objective of the method can be reformulated as computing the context associated with all the ICs declared on 
the KB, and pointing out an inconsistency whenever a non-empty context is calculated. 

5.2.2 Operations on Contexts 
 
The following operations are used during the context computing process: 

 
a) Context creation:  This operation is used when the method has to compute the context associated to an external fact. The 
context associated with the external fact h is equal to the pair (E, DP) where E = {h} and DP = ∅. An external fact is a fact 
that cannot be deduced by the KBS and therefore it has to be provided as an external input in order to be true. 
b) Combination of a pair of contexts: Let C1 and C2 be two contexts. Then each pair belonging to C1 is combined with each 
pair belonging to C2. In this way, if C1 contains n1 pairs and C2 contains n2 pairs, the resulting context will contain n1xn2 
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pairs. The form of each pair belonging to the resulting context will be (Ei∪ Ej, Pi * Pj) where (Ei, Pi) is a pair contained in 
C1 and (Ej, Pj) is a pair contained in C2. 

b.1) Union of environments (Ei ∪ Ej): this operation consists of the union of the sets Ei and Ej. If the environment 
resulting from this union is a superset of any environment included in the context associated to an input IC, then the pair 
will be discarded, since it would correspond to an invalid initial situation. Otherwise, the resulting environment is 
considered consistent, and the following operation is executed: 
b.2) Combination of sets of deductive paths (Pi * Pj): Let Pi  and Pj be two sets of deductive paths. Then each deductive 
path belonging to Pi is combined with each deductive path belonging to Pj. The result of the combination of two 
deductive paths will be another deductive path. 
b.3) Combination of deductive paths (DPs * DPt): This operation consists of two steps: 

1.Obtain DPt’ from DPs and DPt so: a certain rule r will belong to DPt’ if and only if r belongs to DPt but r does not 
belong to DPs. 
2.Append lists DPs and DPt’. 
Before combining the two deductive paths, it needs to be tested if there is a pair of contradictory actions A and B, 
such that A belongs to DPs and B belongs to DPt. Two actions are contradictory if they assign a different value to 
the same pair (object, attribute). If there is a pair of contradictory actions in DPs and DPt, then these deductive 
paths will not be combined. 

 
Let us look at an example of context combination: 
 
C1 = (E1, P1) with  

E1 = { Exists (John), ≥ ((John, allowances),15) }  
P1 = { (R1), (R3, R4, R7) } 
 

C2 = (E2, P2) with  
E2 = { Is-Of-Class (John, customer) }  
P2 = { (R1), (R7, R8) } 

 
The pair resulting from the (E1, P1) and (E2, P2) combination will be (Er, Pr) with: 

 
Er = { Exists(John), ≥ ((John, allowances),15), Is-Of-Class (John, customer)}  
Pr = { (R1), (R1,R7,R8), (R3,R4,R7,R1), (R3,R4,R7,R8) } 
  

c) Concatenation of a pair of contexts: The concatenation of contexts consists of the union of all the pairs belonging to the 
contexts to which this operation is applied.  
Example:  

 
C1 = (E1, P1)  with  

E1 = { Exists (customer1), = ((customer1, income),high) }  
P1 = { (R1) } 

 
C2 = { (E2, P2) , (E3, P3) } with 

E2 = { > ((customer1,benefits), 1) , = ((operation, period),10) }  P2 = { (R2) } 
E3 = { ≥ ((customer1, allowance),15) } 
P3 = { (R1,R3), (R4) } 

 
the context resulting from the C1 and C2 concatenation will be: 
 Cr = { (E1, P1), (E2, P2), (E3, P3) } 
  
After combining or concatenating a pair of contexts, it may happen that repeated pairs appear in the resulting context. 

These repeated pairs should be removed from the resulting context. 
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5.2.3 Operation of the Method 
 
In the following figure the general scheme of CRIB execution is shown. 

 

 
Fig. 2. General Scheme of CRIB execution 

This method consists of a process that allows the user, not only to analyze a given set of constraints (IC Base in the figure 
2), but also to add, modify or delete constraints and to study the effect of this change without having to repeat the whole 
process. The analysis is performed in an incremental fashion. 

The information that the method provides to the user is not restricted to an indication of consistency or inconsistency. 
Additional valuable information is provided to help the user to find the malformations in the KB that lead to an 
inconsistency: name and status (not applicable/satisfied/violated) of each of the selected constraints and, for each violated 
constraint: the instantiated conditions, both in the condition part and the body part, that lead to the violation of the 
constraint, together with the associated context.  
For each IC selected by the user, the following process is executed: 

 
Process to obtain the context associated to an IC  
 
1.Instantiate IC’s variables. 
2.Obtain the context associated to the IC’s condition part. 

2.1.FOR each factor in the condition part: 
2.1.1.FOR each condition in the factor: 

2.1.1.1.Obtain the context associated to the condition. 
2.1.2.Combine contexts associated to conditions. 

2.2.Concatenate contexts associated to factors to obtain the context associated to the IC’s 
condition part. 

3.IF context associated to condition part is not empty 
  THEN (* IC is applicable *)  

3.1.Obtain the context associated to the negation of the IC’s 3.2.Combine the context associated 
to the IC’s condition part and to the negation of the IC’s body to obtain the context associated 
to the IC. 

ELSE (* IC is not applicable *) 
3.3.The context associated to the IC is empty. 
 

Since the IC structure is Θ1x1º,Θ2x2,...,Θnxn (A (condition part) ⇒ B (body part)), where Θi represents either a universal or 
an existential quantification, and xi is a variable, this process is going to obtain the context associated to the formula 
Θ1‘x1º,Θ2‘x2,...,Θn‘xn (A ∧¬B), where Θ‘i represents the contrary quantification to Θi, i. e. if Θi is a universal quantification, 
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then Θ‘i is an existential quantification, and vice versa. Hence, every set of valid inputs which lead to the deduction of this 
formula will permit the violation of the IC.  

In the first step, each IC’s variable is bound to a generic constant. As the IC’s variables can have universal quantification 
or existential quantification, the generic constant will inherit the variable’s quantification. For example, if variable’s 
quantification is universal, the generic constant will make reference to any object in the FB. 

In order to generate the context associated to the IC, it is necessary to obtain the context associated to the condition part 
and the context associated to the negation of the body part (steps 2 and 3.1), and to combine them. 

The condition part contains a list of factors joined by disjunction operators; therefore the context of each factor must be 
obtained (step 2.1), and then they must be concatenated (step 2.2). Each factor contains a list of conditions joined by 
conjunction operators; thus in order to obtain the context of a factor, the context of each condition must be generated (step 
2.1.1.1). 

If the context of the condition part is empty, the IC is not applicable. Hence, there is not a context associated to the IC. 
On the other hand, if the IC is applicable, the context of the negation of the body part has to be obtained (step 3.1). 
 

Process to obtain the context associated to a condition 

1. Filter rules that confirm the condition (goal) ⇒ conflict set. 
2. IF conflict set is empty 
   THEN (* the condition is an external fact *) 

2.1. Create context associated to the condition. 
   ELSE (* the condition is a deducible fact *) 
2.2. Sort the conflict set’s rules according to the criterion selected by the user ⇒ conflict 
list. 
2.3. FOR each rule in the conflict list: 

2.3.1.Obtain the context associated to the rule. 
2.4. Concatenate the contexts associated to all the rules included in the conflict list. 

 
In the process to obtain the context of an IC, we can see that it is necessary to generate contexts associated to all the 

conditions included in the IC. Then, in order to generate the context of a condition, if the condition refers to a deducible 
fact, the contexts associated to all the rules which allow to deduce the condition must be obtained (step 2.3 in the previous 
process).  

The rules obtained in the filtering are sorted according to a criterion selected by the user (C in the figure 2). In this way, 
the conflict set is converted into the conflict list (step 2.2 in the previous process). Next, the contexts of the rules are 
obtained in the same order in which they appear in the conflict list. Finally, contexts are concatenated to generate the 
context associated to the initial goal (step 2.4 in the previous process). 

 
Process to obtain the context associated to a rule 
 
1. FOR each conjunction in the rule premise: 

1.1.FOR each condition of a conjunction: 
1.1.1. Obtain the context associated to a condition. 

1.2. Combine contexts associated to every condition included in the conjunction. 
2. Concatenate contexts associated to every conjunction included in the rule premise. 
 
Obtaining the context associated to a rule implies calculating the context of every conjunction included in the rule 

premise (step 1 in the previous process). Each conjunction contains a list of conditions. Therefore, in order to calculate the 
context of a conjunction, the context of each condition included in the conjunction must be obtained (step 1.1 in the 
previous process). Then, the context of the conjunction will be the combination of the contexts associated to every condition 
(step 1.2 in the previous process), and the context of the rule will be the concatenation of the contexts associated to every 
conjunction (step 2 in the previous process). 

These three processes represent a simulation of the firing of rules that occurs when the KBS is executed. 
The recursive calls finish, when in the process of obtaining the context of a goal, the goal is an external fact. 
The following example will show the application of the method with a positive constraint. For the sake of clarity a 

simplified notation is used. 
 
Constraint  EXAMPLE 1 
∀ xCUSTOMER   ∃ yOPERATION    
 =( (x, client-assessment),interesting) ∧ ≥ ( (y,period),8) ) ∨  
> ( (y,volume),100)  →  
 = ( (y,factor-recommendable),high) ∧  ≥ ( (x,allowance),15) 
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As it was previously explained, the first step is the instantiation of the variables and the propagation of the instances to all the 
conditions in the constraint in which those variables appear. 

∃aCUSTOMER    ∀ bOPERATION    
= ( ( (a, client-assessment),interesting) ∧ ≥ ( ( b,period),8) ) ∨  
> ( ( b,volume),100) ) ∧  
( ¬= ( ( b, factor-recommendable),high) ∨ 
 ¬≥ (( a,allowance),15) ) 
 
In order to obtain the context associated with the constraint, each of the instantiated factors in the condition part must be analyzed 

(factor1 and factor2 from now on), and each of the instantiated conditions in the body part (condition1 and condition2 from now on). Note 
that both conditions have been negated. Since the constraint is positive, it will be violated whenever its condition part is satisfied and its 
body is not satisfied. 

The context associated with the IC will contain four pairs of the type (environment, list of deductive paths), and it will be obtained by 
performing the operations shown in Figure 3 on the contexts associated to all the constraint components: 

 

 
Fig. 3. Context associated with example IC 

 
 

 
Fig. 4. Context associated with the example deducible fact 

 
As another example, we will show how to obtain the context associated with the deducible fact:  
 
 = ((a,client-assessment),interesting) 
 
given a rule base RB= {R1,R2} such that: 
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R1: = ( (x,client-type),old) ∨ > ( (x,benefits),1) →  
 assign ( (x,client-assessment),interesting) 
R2: = ( (x,faults),few) ∧ = ( (x,income),high) →  
 assign ( (x,client-assessment),interesting) 
 
The target context will be obtained as a result of the context propagation process associated with the backward chaining 

of the rules in RB shown in Figure 4. 

6   Conclusions 

The need of validation tools for KBSs and, in special, of consistency checking tools (understanding consistency in a broad 
sense), will grow in the future when more critical systems are developed to be applied in industry, science, business, 
government, etc. The method that has been described in this paper addresses that problem, improving some of the features 
of previous proposals for this kind of systems. 

The main advantages of CRIB over past consistency checking tools can be summarized as follows: 
 

• Generality: CRIB can be applied on KBSs that have been developed using different representation formalisms and 
underlying logics. The KB-REDUCER and TADIKS tools can only be applied to KBSs with propositional logic. 

• Flexibility and expressive power of its constraint specification language, that allows CRIB to detect a wide range of 
inconsistencies in a KB, in contrast to KB-REDUCER and TADIKS that only detect semantic and logic 
incompatibilities. 

• The detection of potential inconsistencies covers all the possible valid inputs to the KBS without forcing the user to 
explicitly generate all of them and to execute the tool once for each one, as KB-REDUCER and TADIKS do. 

• Incrementality: CRIB allows, in contrast to their predecessor tools, the reuse of previously derived results, when the set 
of integrity constraints imposed over a KB is incremented.  

 
We can conclude that the problem of inconsistency detection in KBSs is still far from being a solved problem, despite the 

large number of methods and tools that have been developed during the last fifteen years. No one is general enough to be 
applicable to any kind of KBS. Advances in Knowledge representation and inference mechanisms leave the V&V field 
behind. The CRIB method is just an attempt to stay aware of  and deal with all the complexity that today´s KBSs can 
encompass. 

7   Future Research 

 CRIB opens important roads for future works: 
 

- Improvement of the integrity constraint declaration process by means of an interactive editor. 
- Adaptation of the method to accept KBSs represented in CCR-2, a new common conceptual representation language that 
improves multiple characteristics of CCR [42]. This will allow the implementation of CRIB in the revised VALID 
environment. 
- The adaptation of CRIB to accept KBs represented in CCR-2 implies a complete redesign of CRIB since CCR-2 is a KB 
formalism far more powerful than CCR. As an example, this new CRIB’s design should allow us to include arithmetic 
expressions in the rules. 

7.1 Adaptation of CRIB to CCR-2 

The most important innovations (related to tools like CRIB) introduced by CCR-2 with respect to CCR are: 
 

• CCR-2 supports the representation of a higher number of object types in the FBs: frame classes and instances, relations, 
propositions, attribute values, and attribute identifiers. New predicates and actions are introduced in order to use these 
new types of objects. Besides, CCR-2 provides us with the possibility to represent variable declarations for all these 
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types of objects while in CCR and, consequently, in CRIB´s IC specification language, variables can only be of the types 
“instance” or “attribute value”. 

• In CCR-2, as well as in CCR, it is possible to represent actions to create or destroy objects while executing the KBS. 
These dynamically created objects, however, in CCR cannot be bound to variables, so it is impossible to define ICs on 
them. 

• In CCR-2 it is also feasible to bind variables with objects created by rules. This CCR-2 characteristic allows us to 
represent some types of non-monotonic reasoning. 

• In CCR-2 it is possible to include certainty factors in the rules, therefore uncertain reasoning may be represented. 
 

In order to deal with these new possibilities, some modifications have to be introduced into CRIB’s design, such as: 
 

a) A new context structure:  
• The environment will be composed of a set of objects’ patterns instead of a set of predicates and metapredicates. Each 

pattern would show all the features that one object should have in the initial FB. These features will be expressed by 
constraints. For example, if an object is a frame instance of CAR then some constraints may be: “color is white”, “the 
car is a sport car” (SPORT CAR being a category in the cars hierarchy), “John owns the car” (“own” being a binary 
relation), etc. 

• A rule could be executed once or more times consecutively, therefore it will be necessary to represent this fact in the 
patterns as well as in the deductive paths in the new CRIB’s design. Some of the conditions over the objects will have to 
be expressed as a function of the number of times that the rule is executed. 

• Because of the changes in the context structure, it will be necessary to redefine the context operations: creation, 
combination and concatenation. 

 
b) An extension of the IC grammar: since there are new types of objects in CCR-2, the IC language will have to allow us to 
include conditions over these objects in the ICs. Hence, the new grammar will permit the declaration of variables of 
whatever type of object that could appear in a CCR-2 FB. In addition, it will be possible to specify quantifications for those 
variables. 

 
c) The new process to obtain the context associated to an IC should deal with the following problems: 
1. Some types of non-monotonic reasoning. 
2. Chaining between rule actions and premises: this question will be more complex than in CRIB since in CCR-2 there are 

predicates and actions over relations, and it accepts the presence of arithmetic expressions in the rules. 
3. The creation and modification of constraints to be included in the object patterns. 
4. Dealing with arithmetic expressions like constraints. These expressions may contain references to certainty factors and 

attribute values.  
5. The detection of inconsistencies during the process: if the process to obtain the context associated to a goal builds an 

invalid deductive path, the contradiction should be detected in a subsequent process step. 
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