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Abstract 
 
A semiglobal chaotification problem of n-dimensional polynomial continuous-time systems satisfying one special 
condition is examined. This problem is solved in two steps. Firstly, by using some polynomial mapping we transform 
the initial system to some n-th order explicit scalar ordinary differential equation with a rational nonlinearity. On the 
second step we apply the anticontrol feedback proposed by Wang, Chen and Yu. Our results are applied to nonlocal 
chaotification of three systems: the Lorenz system, the Burke-Shaw system and the Liu system. 
Keywords: Polynomial systems, rational nonlinearity, chaos, anticontrol. 
 
Resumen 
  
En este artículo es examinado el problema de caotificación para sistemas polinomiales continuos de n-dimensiones 
satisfaciendo una condición especial. Este problema es resuelto en dos pasos. Primero, a través del uso de un mapeo 
polinomial, se transforma el sistema inicial en una ecuación diferencial ordinaria escalar de orden n con una no 
linealidad racional. En el segundo paso se aplica el anticontrol por retroalimentación propuesto por Wang, Chen y Yu. 
Los resultados de caotificación no local son aplicados a tres sistemas, el sistema de Lorenz, el sistema de Burke- 
Shaw y el sistema de Liu.  
Palabras clave: Sistemas polinomiales, no linealidad racional, caos, anticontrol. 

 
1 Introduction 
 
Control of chaos has received considerable interest during the last ten years. The corresponding literature is very vast and 
contains many papers, see e.g. books on this area (Chen et al., 1998; Chen, 1999; Fradkov et al., 1999; Judd et al., 1997). 
Contrary to this, anticontrol of chaos is a topic being investigated intensively only since the end of nineties. The term 
''anticontrol of chaos'' means chaotification of a dynamical system, i.e. creating chaos in a system by introducing a proper 
controller. Now it is well- recognized that chaos is beneficial in some important areas like as secure communication, 
liquid mixing, information processing and others. In the most of papers chaotification of discrete-time systems were 
studied. Local chaotification of nonlinear continuous-time systems via a time-delay feedback was considered in (Wang 
and Chen, 2000; Wang and Chen, 2000; Wang et al., 2000). Chaotification around the limit cycle was described in (Chen 
and Wang, 2003). Global chaotification problem for nonlinear continuous-time systems via a time-delay feedback was 
examined in (Starkov and Chen, 2004) and in (Chen et al., 2004). Other related references are (Chen et al., 2002; Tang et 
al., 2003; Yang et al., 2002). In papers cited here one can find also references on chaotification of discrete-time systems. 
In this paper we examine the semiglobal chaotification problem for polynomial systems with applications to one class of 
three-dimensional systems with a quadratic right side. Comparing with (Starkov and Chen, 2004), we apply here another 
way of transforming the initial system to some n-th order explicit scalar ordinary differential equation with a rational 
nonlinearity. This paper is a reworked and enlarged version of the paper (Starkov, unpublished). Our approach is 
illustrated by examples of the Lorenz system, the Burke- Shaw system and the Liu system. Results of numerical 
simulation are provided as well. 
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2 Preliminary on chaotification of continuous-time systems by a time-delay feedback 
  
In (Wang et al., 2000) Wang, Chen and Yu suggested one chaotification method of stable linear systems and its 
application to nonlinear systems possessing a locally stable equilibrium. Their method allows to create chaos in an 
originally nonchaotic system and to enhance areas of parameters values for which a chaotic system remains chaotic. In 
briefly, their idea is as follows. They consider the n-th order single-input linear time-invariant ordinary differential 
equation:   with a Hurwitz system matrix. It is shown that the 
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time-delay feedback ))(sin( τξε −= txu  makes this n-th order differential equation chaotic for a sufficiently large 

τ ; here ./ 000 aεβε =  Then by application of local exact linearization condition for a locally stable linear-in-control 
system and this time-delay feedback they get chaotification. The neighborhood of a locally stable equilibrium where the 
chaos is obtained by this approach is not described explicitly. So one can talk that this is the case of local chaotification. 
Our main contribution concerns nonlocal chaotification of polynomial systems satisfying some special condition called 
the invertibility condition; this chaotification in some cases is occurred to be global. In addition of using this time-delay 
feedback, the underlying idea is related to the fact that a system of the type considered can be mapped into a system 
which can be written as a n-th order explicit scalar ordinary differential equation with a rational nonlinearity. 
  
3 Semiglobal chaotification of one class of polynomial systems 
  
Firstly, let us take a polynomial system )()(: xugxfxn +=∑ & ,  and any real polynomial  of n 
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condition called below the invertibility condition: there is a n-variate polynomial 
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we note that if each of pairs of polynomials   is uncancellable, ,, ss qp ,2,1=s  then n∑′  constructed by this method is 

defined on the largest open set in nR . 
  

This result gives only sufficient conditions for obtaining n∑′ .  Below we shall use ''almost'' global elimination of x in 

order to construct . n∑′
  

Proposition 2. Let n=ρ . We introduce a polynomial )()()(:)( 212 yqyqypyw = . Assume that there is an 

equilibrium point  of the system  with u be fixed, such that *x n∑ ),()(: ** wxHy C∈=  with  be a connected 
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which makes the system  chaotic in U with n∑ .* Ux ∈  
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Arguing like in (Wang et al., 2000), we can take  as a controller, while v uδ  is considered as a coordinate 
transformation (2).  

 

4 Application 1: The Lorenz system with the control parameter  b
 
Let us take the uncontrolled Lorenz system ∑ +−=−−=+−=

L xxbxxxxxrxxxxx
3 213331212211 ,;;: &&& σσ   written as 

. In this section we study the possibility to chaotify the Lorenz system by using b as a control parameter; here )(xfx =&
1;0, >> rbσ . We remind here that in (Starkov and Chen, 2004) the chaotification of the Lorenz system by using r as 
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The equation of the controller is given by the formula 
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11 )( yyq =  
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Using the formula for  and (2) and collecting terms with b  we compute the singular set. It is 

described by equations 
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Thus the Lorenz system restricted on any open domain +∋ ZD  inside the quadrant  exhibits chaos 

for the enhanced area of parameters provided the time-delay feedback 
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Let us choose  11,6 10 == γγ  and 62 =γ .We take 1=τ  with 10,1 == ba  and . 28=r

  
 Fig. 1 shows the chaotic attractor generated by the linear system 
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where 63,1 == ξε . Fig. 2 contains the chaotic attractor of the Lorenz system using chaotification, with as the 

control parameter and the initial point 

b
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Fig. 1. The chaotic attractor of the linear system. 

 
Fig. 2. The chaotic attractor of the Lorenz system, with b as the control parameter. 

  
5 Application 2: The Burke-Shaw system with the control parameter κ 
  
In this section we take the Burke-Shaw system which was described in (Shaw, 1981) in the context of the qualitative 
study of the Lorenz attractor 
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The equation of the controller has the form 
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Using the formula for )()( yByA κ+  and (2) and collecting terms with κ  we compute the singular set. It is 

described by equations  or in ;01 =y 01
2 =ys x -coordinates by  

 
0;0 1

2
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Thus the Burke-Shaw system restricted on any open domain +∋ ZD  inside the semispace or the semispace  

, exhibits chaos for the enhanced area of parameters provided the time-delay feedback 
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(κ  is replaced by )(tκ  in ) is used for sufficiently large L
3∑ 0>τ .  

Let us choose 3,1 10 == γγ , 32 =γ , 25=κ  and 1=s .We take 1=τ . Fig. 3 shows the chaotic attractor generated 
by the linear system 
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where 68,1 == ξε . Fig. 4 contains the chaotic attractor of the Burke- Shaw system using chaotification, with κ  as 

the control parameter and the initial point )01.0,01.0,01.5())0(),0(),0(( 321 =yyy . 
 
 
 

 
Fig. 3. The chaotic attractor of the linear system. 
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Fig. 4. The chaotic attractor of the Burke- Shaw system, with κ  as the control parameter. 

 
6 Application 3: The Liu system with the control parameter b  
  
Very recently, the new chaotical system was proposed, see in (Liu et al.,2004). We denote it by   
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The equation of the controller 
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In x -coordinates we have 
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Using the formula for  and (2) and collecting terms with b  we compute the singular set. It is 

described by equations  or in 

)()( ybByA +
0;0 11 == acyy x -coordinates by  

 
0;0 11 == acxx  

Thus the Liu system restricted on any open domain +∋ ZD  inside the semispace  or the semispace 01 >x 01 <x  
exhibits chaos for the enhanced area of parameters provided the time-delay feedback ))(,()( txtbbtb δ+= ( b  is 

replaced by  in ) is used for sufficiently large )(tb L
3∑ 0>τ . 
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Let us choose ,60 =γ  112 =γ , and 61 =γ .We take 1=τ  with 1=a , 40=b , , and 1=k 5.2=c 4=θ .  

Fig. 5 shows the chaotic attractor generated by the linear system 
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32 yy =&  

−−−= )))((sin( 13 k
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θ

τξε& )(6 1 k
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θ
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where 30,1 == ξε . Fig. 6 contains the chaotic attractor of the Liu system using chaotification, with  as the control 

parameter and the initial point 

b
)001.0,001.0,025.5())0(),0(),0(( 321 =yyy  

  

 
Fig. 5. The chaotic attractor of the linear system 

 

 
Fig. 6.The chaotic attractor of the Liu system, with b as the control parameter. 
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7 Conclusions 

  
Semiglobal chaotification problem of one class of polynomial continuous- time systems is studied. Its solution is based 
on transforming of a system of this type into a n-th order explicit scalar differential equation with a rational nonlinearity 
and application of a time-delay feedback proposed by Wang, Chen and Yu. It is shown that our approach is efficient to 
different three-dimensional systems with a quadratic right- side. As examples, the Lorenz system, the Burke- Shaw 
system and the Liu system are considered. Our future researching challenge is to apply these ideas to some class of 
hybrid polynomial systems (polynomial systems having discontinuities of a special type). 
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