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Abstract 
An automatic synthesis method based on the application of genetic algorithms (GAs) is described for the synthesis of 
voltage followers (VFs), which are designed using CMOS integrated circuit technology of 0.35µm. It is shown the 
usefulness of the nullor element to model the ideal behavior of the VF, and to codify its topology using a 
chromosome which is divided into four genes: gene of small-signal (genSS), gene of synthesis of the MOSFET 
(genSMos), gene of bias (genBias), and gene of synthesis of current mirrors (genCM); this last one to synthesize ideal 
current sources used in the biasing of the circuits with CMOS current mirrors. 
The proposed synthesis method has been programmed in MatLab, and it uses T-SPICE to evaluate the fitness of the 
VFs at the transistor level of abstraction. In this manner, the method selects the more appropriated VFs by elitism. 
Finally, it is shown the behavior of the GA to synthesize practical VFs. As a result, it is shown the synthesis of eight 
CMOS compatible VFs, and their applications are briefly discussed. 
Keywords: Evolutionary electronics, circuit synthesis, voltage follower, nullor. 

 
Resumen 
Se describe un método de síntesis automática basado en la aplicación de algoritmos genéticos (GAs) para la síntesis 
de seguidores de voltaje (VFs), los cuales son diseñados usando tecnología CMOS de circuitos integrados de 0.35µm. 
Se demuestra la utilidad del elemento anulador para modelar el comportamiento ideal del VF, y para codificar su 
topología usando un cromosoma que es dividido en cuatro genes: gen de pequeña señal (genSS), gen de síntesis del 
MOSFET (genSMos), gen de polarización (genBias), y gen de síntesis de espejos de corriente (genCM); este último 
para sintetizar las fuentes de corriente ideales utilizadas en la polarización de los circuitos por espejos de corriente 
CMOS. 
El método de síntesis propuesto se ha programado en MatLab, y usa T-SPICE para evaluar la aptitud de los VFs en el 
nivel de abstracción de transistor. De esta manera, el método selecciona los VFs más apropiados por elitismo. 
Finalmente, se muestra el comportamiento del GA para sintetizar VFs prácticos. Como resultado, se muestra la 
síntesis de ocho VFs compatibles con CMOS, y sus aplicaciones se discuten brevemente. 
Palabras clave: Electrónica evolutiva, síntesis de circuitos, seguidor de voltaje, anulador. 

 
1 Introduction 
 
Nowadays, the design of electronic circuits is accomplished by using a great variety of circuit simulation programs to 
evaluate their performance before their physical implementation [1]. This design process is well known as computer 
aided design (CAD). For the case of the design of integrated circuits (ICs), several CAD tools have been developed 
to perform the automatic synthesis of digital, analog, and mixed-signal circuits [1]-[6]. However, the development of 
analog CAD tools is advancing very slowly compared to the development of the digital ones. The main reason is that 
the design of an analog circuit can not be performed from the interconnection of basic cells, as it occurs in the design 
of digital circuits, where the digital functions are represented with two binary levels, while for an analog circuit all 
the levels should be considered so that the functions are represented by real numbers. In this manner, it can be 
appreciated that the automation and development of CAD tools in the digital domain have been matured because the 
digital design can be performed in a structured process, while analog design does not have regular structures. 
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Besides, in some circumstances, several analog circuits, such as amplifiers, voltage followers (VFs), and current 
mirrors (CMs), they can be synthesized automatically [1]-[7]. 

On the other hand, analog circuit design is much amenable for evolutionary techniques, where contrasting with 
digital design, there is no solid set of design rules or procedures to automate analog circuit synthesis [2]-[5]. For 
instance, as stated in [3], if an optimization technique could be found that modified both circuit topology and 
component values then this could form the basis of an analog synthesis method. Furthermore, Genetic Algorithms 
(GAs) are just such an optimization technique [8]. GAs operate on the principle of "survival of the fittest", in this 
manner a GA has the capability to generate new design solutions from a population of existing solutions, and 
discarding the solutions which have an inferior performance or fitness.  

As shown in [2], a GA starts from high-level descriptions to automatically synthesize analog circuits. However, 
automatic synthesis of analog circuits from high-level specifications is recognized yet as a challenging problem, 
because the analog IC design process is characterized by a combination of experience and intuition and requires a 
thorough knowledge of the process characteristics and the detailed specifications of the actual product. Design in the 
analog domain requires creativity because of the large number of free parameters and the sometimes obscure 
interactions between them [1]-[7]. Besides, this work introduces guidelines to synthesize practical circuits by 
applying GAs, and by including rules from the human domain knowledge. The proposed synthesis method begins 
with high-level descriptions of the analog circuit using nullors [9]-[10], and a refinement process is executed to 
synthesize CMOS compatible VFs by exploiting the regularity, symmetry, and modularity of the nullor-based 
descriptions. The proposed GA begins with the creation of random solutions called initial population. Each 
individual in the population is called chromosome and represents a possible solution to the problem. The 
chromosome consists of four ordered genes represented by binary strings, and it evolves through iterations called 
generations. In each generation the chromosomes are evaluated using SPICE to verify their aptitude. The next 
population is formed by descendents created by combining two chromosomes of the current generation using the 
crossover and the mutation operators [4]. The synthesized VFs are designed using standard CMOS technology of 
0.35µm. 
 
2 VF representation using nullors 
 
The nullor is an ideal element which consists of a nullator (O) and a norator (P) [9]. Furthermore, the ideal behavior 
of the VF can be represented by using nullators, as shown in Fig. 1 [5],[10]. Each O-element must be joined with a 
P-element, so that 3 combinations are possible as shown in Fig. 2. Each O-P pair can be synthesized by a MOSFET 
as shown by Fig. 2(d), where the O-P joined-point is associated to the source (S), the free terminal of the O-element 
to the gate (G), and the free terminal of the P-element to the drain (D). 
 
 

 
 

Fig. 1. Modeling the ideal behavior of the VF using nullators 
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Fig. 2.  Addition of a P-element: (a) Between nodes i and j, (b) at node i, and (c) at node j. (d) synthesis of an O-P pair by a 
MOSFET 

 
Three practical VF topologies by beginning from Fig. 1(c), are shown in Fig. 3. These VFs has been already 

synthesized in [5], and they are shown herein with ideal biases. The biases can be synthesized further using CMOS 
compatible CMs as the ones shown in Fig. 4. For instance, in [7] is shown the design and application of a VF which 
was designed using the VF topology shown in Fig. 3(c) and the CM shown in Fig. 4(a) to synthesize current biases. 
 

 
 

Fig. 3. Synthesis of three practical VFs with ideal biases by beginning from Fig. 1(c) 
 

 
 

Fig. 4. Current mirrors: (a) Simple, (b) Wilson, (c) Improved-Wilson, and (d) Cascode 
 
3 Genetic codification of the VF 
 
From Fig. 2, the possibilities to add a P to an O-element to form O-P pairs can be represented by a gene of two bits 
of length (a0a1). This codification creates the gene of small-signal (genSS), which is described in Table 1. 
The synthesis of each O-P pair by a MOSFET, as shown in Fig. 2(d), can be represented by a gene of one bit of 
length (a2). This codification creates the gene of synthesis of the MOSFET (genSMos) to describe the type of 
transistor, thus when genSMos is ‘0’ the O-P pair is synthesized by an N-MOSFET and when it is ‘1’ by a P-
MOSFET.  

Each O-P pair should be biased with voltage and current sources, as shown in [5]. The addition of voltage 
sources is trivial, but the addition of current biases leads to four combinations in each P-element, so that the biasing 
process can be represented by a gene of two bits of length (a3a4). This codification creates the gene of bias 
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(genBias), which is described in Table 2. The combination 00 means that the D-terminal of the MOSFET is 
connected to the most positive voltage (VDD), while a current bias (Iss) is connected between the S-terminal of the 
MOSFET and the less negative voltage (VSS). The combination 01 means that D is connected to VSS, while a current 
bias (Idd) is connected between VDD and S. The combination 10 means that a current bias (Idd) is connected between 
VDD and D, while another current bias (Iss) is connected between S and VSS. Finally, the combination 11 is similar to 
10 but by interchanging Iss and Idd. 

By using the four kinds of CMs shown in Fig. 4, the synthesis of current biases can be represented by a gene of 
two bits of length (a5a6). This codification creates the gene of synthesis of CMs (genCM). 
 

Table 1. Codification of genSS 

a0 a1 Union  
0 0 Pij Union point i (Fig. 2a) 
0 1 Pi (Fig. 2b) 
1 0 Pj (Fig. 2c) 
1 1 Pji Union point j (Fig. 2a) 

 
Table 2. Addition of biases to a MOSFET 

genBias Connection 
a3a4 Drain Source 
0 0 VDD Iss 
0 1 VSS Idd 
1 0 Idd Iss 
1 1 Iss Idd 

 
As a result, the VF can be codified by using the four genes described above. The length of a chromosome 

depends on the length of the four kinds of genes. For instance, to codify a VF by beginning from Fig. 1(a), which is 
related to a one MOSFET circuit, the chromosome consist of seven bits (a0..a6), as shown in Table 3. This means 
that exist 27=128 topologies (candidates) which can be synthesized to generate a practical VF. Besides, GAs can be 
applied to eliminate those topologies which are not functional, e.g. those in which the input-port or the output-port is 
connected to VDD or to VSS, as demonstrated in [5]. In the same manner, to codify a VF by beginning from Fig. 1(b) 
(2 MOSFETs) and Fig. 1(c) (4 MOSFETs), the associated chromosomes grow in number of bits, as shown in Table 
3. In this case, genSS is divided by pairs of bits as described in Table 1, genSMos is divided by one bit for each O-P 
pair to be synthesized by a N-MOSFET or P-MOSFET, genBias is also divided by pairs of bits according to Table 2, 
and genCM does not change if for Figs 1(a), 1(b), and 1(c), there are only four CMs, e.g. those shown in Fig. 4. It is 
worthy to mention that the genes can be interchangeable, so that the search strategy is not affected. Furthermore, this 
new genetic representation improves the one introduced in [10], which requires 25 bits to codify a VF synthesized by 
4 MOSFETs, for instance. 
 

Table 3. Number of bits for each chromosome consisting of four genes 

VF genSS genSMos genBias genCM TOTAL From Figure 
1 MOSFET 2 1 2 2 7 bits 1(a) 
2 MOSFETs 4 2 4 2 12 bits 1(b) 
4 MOSFETs 8 4 8 2 22 bits 1(c) 

  
4 Intelligent system for the synthesis of VFs 
 
The structure and the steps that execute the proposed intelligent system based on GAs are highlighted in the flow 
graph depicted in Fig. 5. The GA begins with an initial population called first generation of individuals which is 
randomly created (spontaneous generation). This generation and the subsequent ones are evaluated three times: the 
first evaluation selects a correct topology by verifying that neither the input-port nor the output-port of the VF be 
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connected to either or both VDD or VSS. This first selection does not evaluate a mathematical expression, but it 
minimizes CPU time since it eliminates the execution of simulations using SPICE for the chromosomes which will 
not behave as a VF. On the other hand, the second and third evaluations are associated to the fitness functions 
Vo>k1*Vi and Vo>k2*Vi, where k1 and k2 can be provided by the user and their default value is 0.8 and 0.7, 
respectively. Basically, the second and third selections are performed using SPICE to calculate the frequency 
response of the VF and by verifying that the output voltage is between 0.7 and 1.3 volts. Further, an optimization 
process can be executed to met Vo≈1*Vi to obtain an ideal VF. 

As sketched in Fig. 5, the initial population (Generation 1) is passed through a first selection process. The system 
verifies the topology, so that it discriminates the codes of those chromosomes whose input or output port is 
connected to VDD or VSS. The selection of a valid topology is accomplished by decoding genSS and genBias, so that 
if all the individuals have their input or output port connected to VDD or VSS, then it is not necessary to evaluate 
Fitness1 (Vo>k1*Vi) and Fitness 2 (Vo>k2*Vi), and the system creates a new population. A counter is then 
incremented to count the number of generations. If at least one individual accomplishes the first selection, that 
chromosome is a valid topology and the system decodes genSS, genSMos and genBias to generate the SPICE-netlist 
F1 of the VF topology by adding the CMOS technology. The file F1 includes ideal biases, and it is executed by 
SPICE to calculate the voltage transfer-function. 

A second selection is associated to a fitness function (Fitness 1), which selects all the VF topologies 
accomplishing Vo>0.8*Vi, where Vo=output voltage and Vi=input voltage. For an ideal VF, Vo=Vi [5]. The SPICE 
simulation is done by setting Vi=1, so that Vo is plotted by SPICE and the GA verifies if Vo>0.8 at three 
frequencies: 100Hz, 1KHz, and 100KHz. If any VF is selected, the system eliminates drastically all chromosomes 
and creates a new population. If at least one VF topology is selected, the system decodes genCM to generate the 
SPICE-netlist F2 by synthesizing all current biases by CMs from F1. The file F2 is executed by SPICE to calculate 
the voltage transfer-function. 

 
 

Fig. 5. Flow graph of the proposed synthesis system 
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A third selection is associated to a fitness function (Fitness 2), which selects all the full-CMOS VF topologies 
accomplishing Vo>0.7*Vi. Since F1 includes ideal biases, the SPICE simulation of F2 may differ drastically 
evaluating F1 versus F2. Again, the SPICE simulation of F2 is done by setting Vi=1, Vo is plotted by SPICE and the 
GA verifies if Vo>0.7 at three frequencies: 100Hz, 1KHz, and 100KHz. If any VF is selected, the system eliminates 
drastically all chromosomes and creates a new population by applying crossover and mutation operations among the 
chromosomes in the actual generation. If one CMOS VF is selected, the system finishes its search, i.e. it evaluates by 
elitism.  

An important thing is that if the genes are reordered in Table 3, the mutation operation is not affected since this 
is a random operation. However, the crossover operation should be modified because this operation combines genes 
in the parent population with the same significant, e.g. for parents 1 and 2: genSS1 is combined with genSS2, 
genBias1 with genBias2, and so on. Besides, the reordering of the genes position in a chromosome does not affect 
the search strategy. 
 
5 Results 
 
The proposed synthesis method has been programmed in MatLab. The fitness functions Vo>k1*Vi and Vo>k2*Vi 
can be established by the user, and since an ideal VF accomplishes that Vo=1*Vi, the values of k1 and k2 can be 
between 0.7 and 1.3. Further, an optimization procedure can be executed to tune the value near to the unity. 
However, Vo=Vi cannot be guaranteed since analog design imposes noise, distortion, gain, bandwidth, impedances 
and other restrictions [1]. For instance, good VFs can be designed between (Vo/Vi) > 0.98 and (Vo/Vi) <1.02, 
besides [5].  

By setting k1>0.8 and k2 >0.7 to evaluate Fitness 1 and Fitness 2, in Fig. 6 is shown the behavior of the 
proposed GA by beginning with 30 individuals. In Fig. 6(a) is shown the behavior of the number of individuals. 
Although from generation 2 to generation 11 the population is constant (4 individuals), the CPU time (normalized) 
varies as shown in Fig. 6(b). As one sees in generation 2 and 9 the system wasted the high CPU time, but any 
individual was selected. In Fig. 6(c) is shown the behavior of Fitness 1 and Fitness 2. It can be noted that some 
individuals passed Fitness 1 (K1>0.8), but they did not pass Fitness 2 (K1>0.7), except at generation 11, where the 
system finishes its search. In Fig. 7 is shown another execution of the proposed GA by beginning with 20 
individuals. Again, the GA holds constant the number of individuals from generation 1 to generation 15. However, 
the CPU time is different as shown in Fig. 7(b), and the evaluation of Fitness 1 and Fitness 2 is shown in Fig. 7(c).  

In Fig. 8 is shown a good behavior of the GA, it begins with 30 individuals and the system finds a solution at 
generation 4. The population is decreasing as shown in Fig. 8(a), and also the CPU time as shown in Fig. 8(b). In 
Fig. 8(c) it can be noted that the evaluation of Fitness 2 is better that from Fig. 6(c) and Fig. 7(c).  

Finally, the execution of the GA by beginning from Fig. 1(a) generates the four CMOS VFs shown in Fig. 9, in 
each VF is shown its corresponding binary-chromosome and its corresponding number of combination. In the same 
manner, by beginning from Fig. 1(b), in Fig. 10 are shown four CMOS VFs along with its corresponding number of 
combination. In Fig. 11 are shown the SPICE simulation results for the CMOS VFs from Fig. 10, where the 
chromosome 2567 corresponds to the binary string 101000000111, which is divided into genSS=1010, genSMos=00, 
genBias=0001, and genCM=11. By beginning from Fig. 1(c), in [5] are shown six CMOS VFs, three of them are 
shown herein in Fig. 3. In particular the CMOS compatible VF shown in Fig. 3(c) has been used in [7] to design a 
sinusoidal oscillator. Most important is that a VF can be evolved to design more complex circuits such as current 
conveyors (CCs), and current-feedback operational amplifiers (CFOAs), as already shown in [11]. In this manner, it 
is possible to synthesize single resistance controlled oscillators (SRCOs) by applying GAs, as already shown in [6], 
by using novel difference-differential CCs (DDCCs) which can be designed by combining novel VFs and CMs. 
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(a)           (b)          (c)    

 
Fig. 6. (a) Number of individuals, (b) Average CPU time, and (c) Evaluation of fitness 1 and fitness 2 
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(a)          (b)          (c)    

 
Fig. 7. (a) Number of individuals, (b) Average CPU time, and (c) Evaluation of fitness 1 and fitness 2 
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(a)          (b)          (c) 

    
Fig. 8. (a) Number of individuals, (b) Average CPU time, and (c) Evaluation of fitness 1 and fitness 2 
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Fig. 9. VF topologies synthesized by beginning from Fig. 1(a) 
 
 

 
Fig. 10. VF topologies synthesized by beginning from Fig. 1(b) 
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Fig. 11. SPICE simulation results for the VFs shown in Fig. 10. The VFs are associated to the combinations: Fig. 10(a) to 184, 
10(b) to 2567, 10(c) to 2893, and 10(d) to 3112 

 
6 Conclusions 
 
It was introduced an automatic system to synthesize VFs by applying GAs. The system was programmed in MatLab, 
and it interfaces with SPICE to evaluate the behavior of the CMOS VFs by using standard CMOS technology of 
0.35µm.  

It was proposed a binary codification method (chromosome) to represent a VF by four kinds of genes: gene of 
small-signal (genSS), gene of synthesis of the MOSFET (genSMos), gene of bias (genBias), and gene of synthesis of 
current mirrors (genCM). In this manner, the length of the chromosome depends on the length of the four genes. The 
initial description begins by using nullators (O) to model the ideal behavior of a VF (genSS). Further, each O is 
connected with a norator (P) to form O-P pairs which can be synthesized by a MOSFET (genSMos). The last step 
adds current biases (genBias), which are also synthesized by MOSFETs using CMs (genCM). The synthesis process 
is performed by three evaluations: valid topologies, valid biased topologies (Vo>k1*Vi), and valid CMOS topologies 
(Vo>k2*Vi). At each evaluation a new population may be created, but the system finishes its search process when a 
CMOS VF topology accomplishes the third fitness, i.e. when (Vo>k2*Vi). As a result, the synthesis of some new 
CMOS VF topologies has been shown at the end of this work. An important thing is that the synthesized VFs can be 
evolved to design more complex circuits such as CCs and CFOAs.  
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