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Abstract
In this paper, we present theoretical constructions of Rotation Symmetric Boolean Functions (RSBFs) on odd
number of variables with the maximum possible algebraic immunity. To get high nonlinearity, we generalize our
construction to a search technique in the RSBF class. We present RSBFs with the maximum algebraic immunity
and high nonlinearity for odd number of variables. We also study the RSBFs on even number of variables for max-
imum algebraic immunity.
Keywords: Algebraic Immunity, Boolean Function, Nonlinearity, Nonsingular Matrix, Rotational Symmetry,
Walsh Spectrum.

Resumen
En este artı́culo, presentamos construcciones teóricas de funciones Booleanas de rotación simétrica (RSBFs por sus
siglas en inglés) con un número impar de variables y con máxima inmunidad algebraica. Con el objeto de obtener
funciones Booleanas de muy alta no linealidad, generalizamos nuestra construcción a una técnica de búsqueda en la
clase RSBF. Presentamos ası́ RSBFs con inmunidad algebraica máxima y alta no linealidad para un número impar
de variables, y también RSBFs con un número par de variables que exhiben inmunidad algebraica máxima.
Palabras Claves:Inmunidad algebraica, funciones Booleanas, no-linealidad, matrices no singulares, simetrı́a rota-
cional, Espectro de Walsh.

1 Introduction

Algebraic attack has received a lot of attention recently in studying the security of stream ciphers as well as block
ciphers (Armknecht 2004; Batten 2004; Braeken and Preneel 2005; Canteaut 2005; Cheon and Lee 2004; Cho and
Pieprzyk 2004; Courtois and Pieprzyk 2002; Courtois and Meier 2003; Courtois 2003; Armknecht, Carlet, Gaborit,
Künzli, Meier, and Ruatta 2006; Didier and Tillich 2006; Courtois, Debraize, and Garrido 2006). One necessary
condition to resist this attack is that the function used in the cipher should have high Algebraic Immunity (AI). It is
known (Courtois and Meier 2003) that for anyn-variable function, the maximum possibleAI is ⌈n

2 ⌉.
So far, a few theoretical constructions of functions with optimalAI have been presented in the literature. In (Dalai,

Gupta, and Maitra 2005), the first ever construction of functions with the maximumAI was proposed. Later, the
construction of symmetric functions with the maximumAI was given in (Dalai, Maitra, and Sarkar 2006). For odd

⋆This is an extended and revised version of the paper (Sarkar and Maitra 2007).
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number of input variables, majority functions are the examples of symmetric functions with the maximumAI. Recently
in (Li and Qi 2006a), the idea of modifying symmetric functions to get other functions with the maximumAI has been
proposed using the technique of (Dalai and Maitra 2006).

It is known that the class ofn-variable symmetric functions forms a subclass ofn-variable rotation symmetric
functions. Therefore, all the symmetric functions with the maximumAI are also examples of RSBFs with the max-
imum AI. However, so far there has been no known construction method available which givesn-variable RSBFs
having maximumAI which are not symmetric. It has been proved in (Li and Qi 2006b; Qu, Li, and Feng 2007), that
the majority function (up to complementation) is the only possible symmetric function on odd number of variables
which has the maximumAI. Hence, there is a need to get a theoretical construction method which provides new class
of RSBFs with the maximumAI, which are not symmetric.

We present a construction (Construction 1) that provides RSBFs on odd number of variables (≥ 5) with the
maximumAI, which are not symmetric. Note that up to3 variables, RSBFs are all symmetric, and that is the reason
we concentrate onn ≥ 5. In this construction, the complement ofn-variable majority function is considered and its
outputs are toggled at the inputs of the orbits of size⌊n

2 ⌋ and ⌈n
2 ⌉ respectively. These orbits are chosen in such a

manner that a sub matrix associated to these points is nonsingular. This idea follows the work of (Dalai and Maitra
2006), where the sub matrix was introduced to reduce the complexity for determiningAI of a function. We also show
that the functions of this class have nonlinearity2n−1−

(

n−1
⌊n

2 ⌋

)

+2 which is better than2n−1−
(

n−1
⌊n

2 ⌋

)

, the lower bound
(Lobanov 2005) on nonlinearity of anyn (odd) variable function with the maximumAI. Prior to this work (Sarkar and
Maitra 2007), the general theoretical constructions (Dalai, Gupta, and Maitra 2005; Dalai, Maitra, and Sarkar 2006)
could achieve this lower bound only. Later to the work (Sarkar and Maitra 2007), very recently in (Carlet, Zeng, Li,
and Hu 2007), construction ofn-variable functions with the maximumAI has been provided for oddn with good
nonlinearity too.

Further, Construction 1 is generalized in Construction 2 which is further generalized in Construction 3. In each
of the generalizations we release the restrictions on choosing orbits and achieve better nonlinearity of the constructed
RSBFs with the maximumAI. We find RSBFs having nonlinearities equal to or slightly less than2n−1 − 2

n−1
2 for

oddn, 7 ≤ n ≤ 11.
Contributions discussed above cover up to Section 5 of the paper which were the main contributions of the paper

(Sarkar and Maitra 2007). Section 6 is the new addition to the contributions provided in (Sarkar and Maitra 2007).
In this section, we show how one can get a construction (Construction 4) of RSBFs (which are not symmetric) on
even number of variables with the maximumAI from the construction given in (Dalai, Maitra, and Sarkar 2006,
Construction 2). We also show that the nonlinearity of these functions is equal to2n−1 −

(

n−1
n
2

)

. This nonlinearity
is equal to the nonlinearity of the functions constructed in Construction 2 of (Dalai, Maitra, and Sarkar 2006). We
discuss the recent work (Carlet, Zeng, Li, and Hu 2007), where construction of functions with the maximumAI has
been given for even number of variables. We show how RSBFs on even number variables with the maximumAI can
be obtained from this construction. Forn ≥ 8, the nonlinearity of this class of RSBFs is equal to2n−1 −

(

n−1
n
2

)

+ 4.
We also present some generalizations of this construction.

2 Basics of Boolean functions

Let us denoteVn = {0, 1}n. An n-variable Boolean functionf can be seen as a mappingf : Vn → V1. By truth table
of a Boolean function onn input variables(x1, . . . , xn), we mean the2n length binary string

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), f(0, 1, · · · , 0), . . . , f(1, 1, · · · , 1)].

We denote the set of alln-variable Boolean functions asBn. Obviously|Bn| = 22n

. The Hamming weightof a
binary stringT is the number of 1’s inT , denoted bywt(T ). An n-variable functionf is said to bebalancedif its
truth table contains an equal number of 0’s and 1’s, i.e.,wt(f) = 2n−1. Also, theHamming distancebetween two
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equidimensional binary stringsT1 andT2 is defined byd(T1, T2) = wt(T1 ⊕ T2), where⊕ denotes the addition over
GF (2). Support off denoted bysupp(f) is the set of inputsx ∈ Vn such thatf(x) = 1.

An n-variable Boolean functionf(x1, . . . , xn) can be considered to be a multivariate polynomial overGF (2).
This polynomial can be expressed as a sum of products representation of all distinctk-th order products(0 ≤ k ≤ n)
of the variables. More precisely,f(x1, . . . , xn) can be written as

a0 ⊕
⊕

1≤i≤n

aixi ⊕
⊕

1≤i<j≤n

aijxixj ⊕ . . . ⊕ a12...nx1x2 . . . xn,

where the coefficientsa0, ai, aij , . . . , a12...n ∈ {0, 1}. This representation off is called thealgebraic normal form
(ANF) of f . The number of variables in the highest order product term with nonzero coefficient is called thealgebraic
degree, or simply the degree off and denoted bydeg(f).

Let x = (x1, . . . , xn) andω = (ω1, . . . , ωn) both belonging toVn andx · ω = x1ω1 ⊕ . . . ⊕ xnωn. Let f(x) be
a Boolean function onn variables. Then theWalsh transformof f(x) is an integer valued function overVn which is
defined as

Wf (ω) =
∑

x∈Vn

(−1)f(x)⊕x·ω.

The Walsh spectrum off is the multiset{Wf (ω)|ω ∈ Vn}. In terms of Walsh spectrum, the nonlinearity off is
given by

nl(f) = 2n−1 −
1

2
max
ω∈Vn

|Wf (ω)|.

An n-variable Symmetric Boolean functions are the ones which are invariant under the action of the Symmet-
ric groupSn on Vn, i.e., for µ, ν ∈ Vn, if wt(µ) = wt(ν) then f(µ) = f(ν). In (Dalai, Maitra, and Sarkar
2006), analysis of the Walsh spectra of the Symmetric functions has been done in terms of Krawtchouk polyno-
mial. Krawtchouk polynomial (MacWilliams and Sloane 1977, Page 151, Part I) of degreei is given byKi(x, n) =
∑i

j=0(−1)j
(

x
j

)(

n−x
i−j

)

, i = 0, 1, . . . , n. It is known that for a fixedω ∈ Vn, such thatwt(ω) = k,
∑

wt(x)=i(−1)ω·x =

Ki(k, n). Thus it can be checked that iff is ann-variable Symmetric function, then forwt(ω) = k, Wf (ω) =
∑n

i=0(−1)ref (i)Ki(k, n), whereref (i) is the value off at an input of weighti. It is also known that for a symmetric
functionf onn variables andµ, ν ∈ {0, 1}n, Wf (µ) = Wf (ν), if wt(µ) = wt(ν). Note thatKi(k, n) is the(i, k)-th
element of the Krawtchouk matrix(KRM ) of order(n + 1)× (n + 1). Thus Walsh spectrum off can be determined
as(ref [0], . . . , ref [n]) × (KRM [0], . . . , KRM [n]), where eachKRM [i], (0 ≤ i ≤ n) is a column vector ofKRM .

A nonzeron-variable Boolean functiong is called an annihilator of an-variable Boolean functionf if f∗g = 0. We
denote the set of all annihilators off byAN(f). Then algebraic immunity off , denoted byAIn(f), is defined (Meier,
Pasalic, and Carlet 2004) as the degree of the minimum degree annihilator among all the annihilators off or 1 ⊕ f ,
i.e.,AIn(f) = min{deg(g) : g 6= 0, g ∈ AN(f) ∪ AN(1 ⊕ f)}. We repeat that the maximum possible algebraic
immunity off is ⌈n

2 ⌉.

2.1 Rotation Symmetric Boolean Functions

We consider the action of the Cyclic groupCn on the setVn. Let x = (x1, x2, . . . , xn−1, xn) ∈ Vn andρi
n ∈ Cn,

wherei ≥ 0. ThenCn acts onVn as follows,

ρi
n(x1, x2, . . . , xn−1, xn) = (x1+i, x2+i, . . . , xn−1+i, xn+i),

wherek+i (1 ≤ k ≤ n) takes the valuek+i mod n with the only exception that whenk+i ≡ 0 mod n, then we will
assignk + i mod n by n instead of0. This is to cope up with the input variable indices1, . . . , n for x1, . . . , xn. An
n-variable Boolean functionf is calledRotation Symmetric Boolean function (RSBF)if it is invariant under the action
of Cn, i.e., for each input(x1, . . . , xn) ∈ Vn, f(ρi

n(x1, . . . , xn)) = f(x1, . . . , xn) for 1 ≤ i ≤ n − 1. We denote the
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orbit generated byx = (x1, . . . , xn) under this action asGx, therefore,Gx = {ρi
n(x1, . . . , xn)|1 ≤ i ≤ n} and the

number of such orbits is denoted bygn. Thus the number ofn-variable RSBFs is2gn . Let φ be Euler’sphi-function,
then it can be shown by Burnside’s lemma that (see also (Stănică and Maitra 2008))gn = 1

n

∑

k|n φ(k) 2
n
k .

An orbit is completely determined by itsrepresentative elementΛn,i, which is the lexicographically first ele-
ment belonging to the orbit (Stănică, Maitra, and Clark 2004) and we define the weight of the orbit is exactly the
same as weight of the representative element. These representative elements are again arranged lexicographically as
Λn,0, . . . ,Λn,gn−1. Note that for anyn, Λn,0 = (0, 0, . . . , 0) (the all zero input),Λn,1 = (0, 0, . . . , 1) (the input of
weight1) andΛn,gn−1 = (1, 1, . . . , 1) (the all1 input). Thus ann-variable RSBFf can be represented by thegn

length stringf(Λn,0), . . . , f(Λn,gn−1) which we call RSTT off and denote it byRSTTf .
In (Stănică, Maitra, and Clark 2004) it was shown that the Walsh spectrum of an RSBFf takes the same value

for all elements belonging to the same orbit, i.e.,Wf (u) = Wf (v) if u ∈ Gv. Therefore the Walsh spectrum of
f can be represented by thegn length vector(waf [0], . . . , waf [gn]) wherewaf [j] = Wf (Λn,j). In analyzing the
Walsh spectrum of an RSBF, thenA matrix has been introduced (Stănică, Maitra, and Clark 2004). The matrix
nA = (nAi,j)gn×gn

is defined as

nAi,j =
∑

x∈GΛn,i

(−1)x·Λn,j ,

for ann-variable RSBF. Using thisgn × gn matrix, the Walsh spectrum for an RSBF can be calculated as

Wf (Λn,j) =

gn−1
∑

i=0

(−1)f(Λn,i)
nAi,j .

3 Existing results related to annihilators

Let Vn = {0, 1}n. We take the degree graded lexicographic order “<dgl” on the set of all monomials onn-variables
{xm1 . . . xmk

: 1 ≤ k ≤ n, 1 ≤ m1, . . . , mk ≤ n}, i.e.,xm1xm2 . . . xmk
< xr1xr2 . . . xrl

if either k < l or k = l
and there is1 ≤ p ≤ k such thatmk = rk, mk−1 = rk−1, . . . , mp+1 = rp+1 andmp < rp. For example, forn = 7,
x1x3x6 <dgl x1x2x4x5 andx1x3x7 <dgl x1x4x7.

Let vn,d(x) = (m1(x), m2(x), . . . , m∑

d
i=0 (n

i)
(x)), wheremi(x) is the i-th monomial as in the order (<dgl)

evaluated at the pointx = (x1, x2, . . . , xn).

Definition 1. Given a functionf onn-variables, letMn,d(f) be thewt(f) ×
∑d

i=0

(

n
i

)

matrix defined as

Mn,d(f) =











vn,d(P1)
vn,d(P2)

...
vn,d(Pwt(f))











,

where0 ≤ d ≤ n, Pi ∈ supp(f), 1 ≤ i ≤ wt(f) andP1 <dgl P2 <dgl · · · <dgl Pwt(f).

Let f(x1, . . . , xn) be ann-variable function and then-variable functiong(x1, . . . , xn) be an annihilator off , i.e.,
fg = 0 for all (x1, . . . , xn) ∈ Vn. That means,

g(x1, . . . , xn) = 0 if f(x1, . . . , xn) = 1. (1)

If the degree of the functiong is less than or equal tod, then the ANF ofg is of the form

g(x1, . . . , xn) = a0 +

n
∑

i=0

aixi + · · · +
∑

1≤i1<i2···<id≤n

ai1...id
xi1 · · ·xid

,
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wherea0, a1, . . . , a12, . . . an−d+1,...,n are from{0, 1} not all zero. Then the relation 1 gives a homogeneous linear
equation

a0 +

n
∑

i=0

aixi + · · · +
∑

1≤i1<i2···<id≤n

ai1...id
xi1 · · ·xid

= 0, (2)

with a0, a1, . . . , a12, . . . an−d+1...n as variables for each input(x1, . . . , xn) ∈ supp(f) and thus,wt(f) homogeneous
linear equations in total. If this system of equations has a nonzero solution, theng having the coefficients in its ANF
which is the solution of this system of equations is an annihilator off of degree less than or equal tod. Note that
in this system of equationsMn,d(f) is the coefficient matrix. Then it is clear that if the rank ofMn,d(f) is equal to
∑d

i=0

(

n
i

)

, i.e., the number of variables,f does not posses any annihilator of degreed. If for d = ⌊n
2 ⌋, both off and

1⊕ f do not have any annihilator of degree less than or equal tod, thenf has the maximum algebraic immunity,⌈n
2 ⌉.

Theorem 1. (Dalai and Maitra 2006) Letg be ann-variable function defined asg(x) = 1 if and only ifwt(x) ≤ d
for 0 ≤ d ≤ n. ThenMn,d(g)−1 = Mn,d(g), i.e.,Mn,d(g) is a self inverse matrix.

3.1 Existence of functions with the maximumAI on odd number of variables
We start this section with a few available results onn-variable functions with the maximumAI. Henceforth, we will
consider the<dgl ordering of the inputs ofVn unless stated for oddn.

Proposition 1. (Dalai, Gupta, and Maitra 2004) An odd variable function with the maximumAI must be balanced.

Then we have the following result.

Proposition 2. Letf be ann (odd) variable function. ThenAI of f is ⌈n
2 ⌉ if and only iff is balanced andMn,⌊n

2 ⌋(f)
has full rank.

We define then (odd) variable functionQn as follows

Qn(x) =

{

1 if wt(x) ≤ ⌊n
2 ⌋,

0 if wt(x) ≥ ⌈n
2 ⌉.

The functionQn is a balanced symmetric function and it has been proved in (Dalai, Maitra, and Sarkar 2006)
that this function has the maximum algebraic immunity, i.e.,⌈n

2 ⌉. Then both of the matricesMn,⌊n
2 ⌋(Qn) and

Mn,⌊n
2 ⌋(1 ⊕ Qn) are of the order2n−1×2n−1 and nonsingular. Now we take a look at a construction of ann-variable

function having the maximumAI by modifying some outputs ofQn.
Let {X1, . . . , X2n−1} and {Y1, . . . , Y2n−1} be the support ofQn and 1 ⊕ Qn respectively. SupposeXj =

{Xj1 , . . . , Xjk
} ⊂ {X1, . . . , X2n−1} andY i = {Yi1 , . . . , Yik

} ⊂ {Y1, . . . , Y2n−1} are twok-subsets. Construct
the functionFn as

Fn(x) =

{

1 ⊕ Qn(x), if x ⊂ Xj ∪ Y i,

Qn(x), otherwise.

The next result follows from Proposition 2.

Proposition 3. The functionFn has the maximumAI if and only if the twok-setsXj andY i be such thatMn,⌊n
2 ⌋(Fn)

is nonsingular.

This idea was first proposed in (Dalai and Maitra 2006) and using this idea, a few examples of functions on odd
number of variables with the maximumAI have been demonstrated in (Li and Qi 2006a). However, this has not been
studied in the domain of RSBFs.

Let’s have a quick look at a result from linear algebra which is a consequence of the Steinitz Exchange Lemma
(Kurosh 1955).
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Theorem 2. Let V be a vector space over the fieldF of dimensionτ and{α1, . . . , ατ} and{β1, . . . , βτ} are two
bases ofV . Then for anyk (1 ≤ k ≤ τ), there will be a pair ofk-sets{βa1 , . . . , βak

} and{αb1 , . . . , αbk
} such that

the set{α1, . . . , ατ} ∪ {βa1 , . . . , βak
} \ {αb1 , . . . , αbk

} will be a basis ofV .

The row vectorsvn,⌊n
2 ⌋(X1), . . . , vn,⌊n

2 ⌋(X2n−1) of Mn,⌊n
2 ⌋(Qn) form a basis of the vector spaceV2n−1 . Sim-

ilarly the row vectorsvn,⌊n
2 ⌋(Y1), . . . , vn,⌊n

2 ⌋(Y2n−1) of Mn,⌊n
2 ⌋(1 ⊕ Qn) also form a basis of the vector space

V2n−1 . By finding twok-sets{vn,⌊n
2 ⌋(Xj1), . . . , vn,⌊n

2 ⌋(Xjk
)} and {vn,⌊n

2 ⌋(Yi1 ), . . . , vn,⌊n
2 ⌋(Yik

)} (which always
exist by Theorem 2), one can construct ann-variable functionFn with the maximum algebraic immunity if and
only if the corresponding matrixMn,⌊n

2 ⌋(Fn) is nonsingular. Complexity of checking the nonsingularity of the

matrix Mn,⌊n
2 ⌋(Fn) is O((

∑⌊n
2 ⌋

t=0

(

n
t

)

)3). However, this task can be done with lesser effort by forming a matrix,
W = Mn,⌊n

2 ⌋(1⊕Qn)× (Mn,⌊n
2 ⌋(Qn))−1 and checking a sub matrix of it. Since(Mn,⌊n

2 ⌋(Qn))−1 = Mn,⌊n
2 ⌋(Qn),

thenW = Mn,⌊n
2 ⌋(1 ⊕ Qn) × Mn,⌊n

2 ⌋(Qn). We have the following proposition.

Proposition 4. (Dalai and Maitra 2006) LetA be a nonsingularm × m binary matrix where the row vectors are
denoted asa1, . . . , am. LetB be ak×m matrix,k ≤ m, where the vectors are denoted asb1, . . . , bk. LetZ = BA−1,
be ak × m binary matrix. Consider that a matrixA′ is formed fromA by replacing the rowsai1 , . . . , aik

of A by the
vectorsb1, . . . , bk. Further consider thek × k matrixZ ′ is formed by taking thej1-th, j2-th, . . ., jk-th columns ofZ.
ThenA′ is nonsingular if and only ifZ ′ is nonsingular.

From the construction ofFn, it is clear that it is balanced. Now construct the matrixW = Mn,⌊n
2 ⌋(1 ⊕ Qn) ×

Mn,⌊n
2 ⌋(Qn). ConsiderA to be the matrixMn,⌊n

2 ⌋(Qn) and letB be the matrix formed byi1-th, . . . , ik-th rows of
Mn,⌊n

2 ⌋(1 ⊕ Qn) which are the row vectorsvn,⌊n
2 ⌋(Yi1 ), . . . , vn,⌊n

2 ⌋(Yik
) respectively. Replace thej1-th, . . ., jk-th

rows ofMn,⌊n
2 ⌋(Qn) which are respectively the row vectorsvn,⌊n

2 ⌋(Xj1), . . . , vn,⌊n
2 ⌋(Xjk

) by the rows ofB and form
the new matrixA′. Note thatA′ is exactly theMn,⌊n

2 ⌋(Fn) matrix. LetW|Y i|×|Xj | be the matrix formed by taking
i1-th, . . . ,ik-th rows andj1-th, . . ., jk-th columns ofW . ThenMn,⌊n

2 ⌋(Fn) is nonsingular if and only ifW|Y i|×|Xj|

is nonsingular. Thus, we have the following result.

Proposition 5. The functionFn has the maximum algebraic immunity if and only if the sub matrixW|Y i|×|Xj| is
nonsingular.

The next proposition characterizesW .

Proposition 6. (Dalai and Maitra 2006) The(q, p)-th element of the matrixW is given by

W(q,p) =















0, if WS(Xp) 6⊆ WS(Yq),
⌊n

2 ⌋−wt(Xp)
∑

t=0

(

wt(Yq) − wt(Xp)

t

)

mod 2, else;

whereWS((x1, . . . , xn)) = {i : xi = 1} ⊆ {1, . . . , n}.

4 New class of RSBFs with the maximumAI for odd n

Proposition 7. Given oddn, all the orbitsGµ generated byµ = (µ1, . . . , µn) ∈ Vn of weight⌊n
2 ⌋ or ⌈n

2 ⌉ haven
elements.

Proof : From (Stănică and Maitra 2008), it is known that ifgcd(n, wt(µ)) = 1, then the orbitGµ containsn
elements. Sincegcd(n, ⌊n

2 ⌋) = gcd(n, ⌈n
2 ⌉) = 1, the result follows.
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Construction 1.

1. Take oddn ≥ 5.

2. Take an elementµ ∈ Vn of weight⌊n
2 ⌋ and generate the orbitGµ.

3. Choose an orbitGν by an elementν ∈ Vn of weight⌈n
2 ⌉ such that

for eachx′ ∈ Gµ there is a uniquey′ ∈ Gν whereWS(x′) ⊂ WS(y′).

4. Construct

Rn(x) =

{

Qn(x) ⊕ 1, if x ∈ Gµ ∪ Gν ,

Qn(x), otherwise.

We have the following theorem.

Theorem 3. The functionRn is ann-variable RSBF with the maximumAI.

Proof : Rn is obtained by toggling all outputs ofQn corresponding to the inputs belonging to the two orbitsGµ

andGν . Therefore,Rn is an RSBF onn variables. By Proposition 7, we have|Gµ| = |Gν |. It is also clear that
Qn(x) = 1 for all x ∈ Gµ andQn(x) = 0 for all x ∈ Gν . Sowt(Rn) = 2n−1 − |Gµ| + |Gν | = 2n−1. Thus,Rn is a
balanced RSBF onn-variables.

Let us now investigate the matrixW|Gν |×|Gµ|. We reorder the elements inGµ andGν asx(1), . . . , x(|Gµ|) and
y(1), . . . , y(|Gν |) respectively whereWS(x(p)) ⊂ WS(y(p)), for all 1 ≤ p ≤ |Gµ| = |Gν |. As WS(x(p)) 6⊆
WS(y(q)) for all q ∈ {1, . . . , |Gν |} \ {p}, then by Proposition 6, the value ofW(q,p) = 0, for all q ∈ {1, . . . , |Gν |} \
{p}. Again by Proposition 6, the value ofW(p,p) can be determined as

W(p,p) =

⌊n
2 ⌋−wt(x(p))

∑

t=0

(

wt(y(p)) − wt(x(p))

t

)

=

⌊n
2 ⌋−⌊n

2 ⌋
∑

t=0

(

⌈n
2 ⌉ − ⌊n

2 ⌋

t

)

= 1.

Thus, the matrixW|Gν |×|Gµ| is a diagonal matrix where all the diagonal elements are all equal to 1. Hence,W|Gν |×|Gµ|

is nonsingular. Therefore, Theorem 5 implies thatRn has the maximumAI.

Example 1. Taken = 5. Considerµ = (1, 0, 0, 1, 0) andν = (1, 0, 0, 1, 1) and generate the orbits

Gµ = {(1, 0, 0, 1, 0), (0, 1, 0, 0, 1), (1, 0, 1, 0, 0), (0, 1, 0, 1, 0), (0, 0, 1, 0, 1)} and
Gν = {(1, 0, 0, 1, 1), (1, 1, 0, 0, 1), (1, 1, 1, 0, 0), (0, 1, 1, 1, 0), (0, 0, 1, 1, 1)}.

Here, for eachx′ ∈ Gµ, there is a uniquey′ ∈ Gν such thatWS(x′) ⊂ WS(y′). Therefore, by Theorem 3, the
function

Rn(x) =

{

Qn(x) ⊕ 1, if x ∈ Gµ ∪ Gν ,

Qn(x), otherwise,

is a5-variable RSBF with the maximumAI 3.

It is known (Lobanov 2005) that for ann (odd) variable functionf with the maximumAI, we havenl(f) ≥
2n−1−

(

n−1
⌊n

2 ⌋

)

. Therefore, nonlinearity of the functionRn will be at least2n−1−
(

n−1
⌊n

2 ⌋

)

. Let us now examine the exact
nonlinearity ofRn. In the rest of the paper, we denote an orbit representative for ann-variable RSBF byΛn for both
odd and evenn. We also consider the weight of an orbit as the weight of the elements it contains.
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Theorem 4. The nonlinearity of the functionRn is 2n−1 −
(

n−1
⌊n

2 ⌋

)

+ 2.

Proof : As per the assumptions of Construction1, n ≥ 5 and it is odd; and weights of the orbitsGµ andGν

are respectively⌊n
2 ⌋ and ⌈n

2 ⌉. Now Qn being a symmetric function, it is also an RSBF. SoRn can be viewed as a
function, which is obtained by toggling the outputs of the RSBFQn corresponding to the orbitGµ andGν . From
(Dalai, Maitra, and Sarkar 2006), we know thatnl(Qn) = 2n−1 −

(

n−1
⌊n

2 ⌋

)

. It is also known that the maximum absolute

Walsh spectrum value ofQn, i.e.,2
(

n−1
⌊n

2 ⌋

)

occurs at the inputs corresponding to the orbits of weight1 andn. Note

that when,wt(Λn) = n, the value ofWQn
(Λn) is −2

(

n−1
⌊n

2 ⌋

)

or 2
(

n−1
⌊n

2 ⌋

)

according as⌊n
2 ⌋ is even or odd, and for

wt(Λn) = 1, WQn
(Λn) = −2

(

n−1
⌊n

2 ⌋

)

.

Let us first find the relation between the values ofWRn
(Λn) andWQn

(Λn). We have

WRn(Λn) =
∑

ζ∈Vn\{Gµ∪Gν}

(−1)Rn(ζ)(−1)ζ·Λn

+
∑

ζ∈Gµ

(−1)Rn(ζ)(−1)ζ·Λn

+
∑

ζ∈Gν

(−1)Rn(ζ)(−1)ζ·Λn

=
∑

ζ∈Vn\{Gµ∪Gν}

(−1)Qn(ζ)(−1)ζ·Λn

+
∑

ζ∈Gµ

(−1)1⊕Qn(ζ)(−1)ζ·Λn

+
∑

ζ∈Gν

(−1)1⊕Qn(ζ)(−1)ζ·Λn

=
∑

ζ∈Vn\{Gµ∪Gν}

(−1)Qn(ζ)(−1)ζ·Λn

−
∑

ζ∈Gµ

(−1)Qn(ζ)(−1)ζ·Λn

−
∑

ζ∈Gν

(−1)Qn(ζ)(−1)ζ·Λn

=
∑

ζ∈Vn

(−1)Qn(ζ)(−1)ζ·Λn

− 2
∑

ζ∈Gµ

(−1)1(−1)ζ·Λn

− 2
∑

ζ∈Gν

(−1)0(−1)ζ·Λn

= WQn(Λn) + 2
∑

ζ∈Gµ

(−1)ζ·Λn

− 2
∑

ζ∈Gν

(−1)ζ·Λn

(3)

Consider thatwt(Λn) = 1. It can be proved that for any two orbitsGγ andGδ of weight⌊n
2 ⌋ and⌈n

2 ⌉ respectively,
∑

ζ∈Gγ
(−1)ζ·Λ = 1 and

∑

ζ∈Gδ
(−1)ζ·Λ = −1. Thus,

∑

ζ∈Gµ
(−1)ζ·Λ = 1 and

∑

ζ∈Gν
(−1)ζ·Λ = −1. Therefore,

from Equation 3 we get,WRn
(Λn) = −2

(

n−1
⌊n

2 ⌋

)

+ 4.

Let us now check the Walsh spectrum valueWRn
(Λn) for wt(Λn) = n. We do it in the following two cases.

CASE I: ⌊n
2 ⌋ is even.

We have,
∑

ζ∈Gµ
(−1)ζ·Λn

= |Gµ| = n, sinceζ · Λn is ⌊n
2 ⌋ which is even. Again forζ ∈ Gν , we have,

ζ · Λn = ⌈n
2 ⌉ which is odd, so

∑

ζ∈Gν
(−1)ζ·Λn

= |Gν | = −n. Therefore, from Equation 3, we getWRn
(Λn) =

−2
(

n−1
⌊n

2 ⌋

)

+ 2n + 2n = −2
(

n−1
⌊n

2 ⌋

)

+ 4n.

CASE II: ⌊n
2 ⌋ is odd.

Using the similar argument as we have applied in the previous case, we can show that
∑

ζ∈Gµ
(−1)ζ·Λn

= −n and
∑

ζ∈Gν
(−1)ζ·Λn

= n. Then from Equation 3, we getWRn
(Λn) = 2

(

n−1
⌊n

2 ⌋

)

− 2n − 2n = 2
(

n−1
⌊n

2 ⌋

)

− 4n.

Note that2
(

n−1
⌊n

2 ⌋

)

> 4n, except for the casen = 5. Therefore, for both of the cases and forn ≥ 7, |WRn
(Λn)| =

2
(

n−1
⌊n

2 ⌋

)

− 4n. Moreover,2
(

n−1
⌊n

2 ⌋

)

− 4n < 2
(

n−1
⌊n

2 ⌋

)

− 4, for n ≥ 7. This implies that|WRn
(Λn)| ≤ |WRn

(∆n)| for

n ≥ 7, where∆n ∈ Vn is an input of weight1. Forn = 5, 2
(

n−1
⌊n

2 ⌋

)

= 12 and thus,WRn
(Λn) = −8 = WRn

(∆n).

Therefore,|WRn
(Λn)| ≤ |WRn

(∆n)| for all n ≥ 5.
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Let us check the Walsh spectrum values ofRn at the other inputs, i.e., except inputs of weight1 andn. Forn ≥ 7,
the second maximum absolute value in the Walsh spectrum ofQn occurs at the inputs of weight3 andn − 2. The
exact value at weight3 input isC = [

(

n−3
n−1

2

)

− 2
(

n−3
n−1

2 −1

)

+
(

n−3
n−1

2 −2

)

], whereas at the input of weightn − 2, the exact

value isC when⌊n
2 ⌋ is even and it is−C when⌊n

2 ⌋ is odd. Equation 3 implies that whenwt(Λn) = 3 or n − 2,
|WRn

(Λn)| can attain value maximum up to|WQn
(Λn)| + 4n, i.e.,

(

n−3
n−1

2

)

− 2
(

n−3
n−1

2 −1

)

+
(

n−3
n−1

2 −2

)

+ 4n. But it is

clear that,
(

n−3
n−1

2

)

− 2
(

n−3
n−1

2 −1

)

+
(

n−3
n−1

2 −2

)

+ 4n ≤ 2
(

n−1
⌊n

2 ⌋

)

− 4 = |WRn
(∆n)|. Therefore, for alln ≥ 7, the maximum

absolute Walsh Spectrum value ofRn is 2
(

n−1
⌊n

2 ⌋

)

− 4.
For n = 5, it can be verified that for any choice of a pair of orbitsGµ andGν assumed in Construction 1, the

absolute Walsh spectrum value ofRn, for all the inputsΛn of weight3 is 8 which is equal to|WRn
(∆n)|.

Hence,nl(Rn) = 2n−1 −
(

n−1
⌊n

2 ⌋

)

+ 2.

5 Generalization of Construction 1

Construction 2. Take orbitsGz1 , . . . , Gzk
with Qn(zi) = 1, for zi ∈ Vn, 1 ≤ i ≤ k and Gw1 , . . . , Gwl

with
Qn(wi) = 0 for wi ∈ Vn, 1 ≤ i ≤ l. Assume that,

1.
∑k

t=0 |Gzt
| =

∑l
t=0 |Gwt

|.

2. For eachx′ ∈ ∪k
t=0Gzt

there is a uniquey′ ∈ ∪l
t=0Gwt

s.t.WS(x′) ⊂ WS(y′).

3.
∑⌊n

2 ⌋−wt(x′)
t=0

(

wt(y′)−wt(x′)
t

)

is odd, for anyx′ ∈ ∪k
t=0Gzt

and correspondingy′∪l
t=0Gwt

such thatWS(x′) ⊂
WS(y′). Then construct,

R′
n(x) =

{

Qn(x) ⊕ 1, if x ∈ {∪k
t=0Gzt

}
⋃

{∪l
t=0Gwt

}

Qn(x), otherwise.

Theorem 5. The functionR′
n is ann-variable RSBF with the maximumAI.

Proof : Following the same argument as used in Theorem 3, we can show that the matrixW|∪k
t=0Gzt |×|∪l

t=0Gwt |
is

diagonal whose diagonal elements are all equal to1, i.e., it is nonsingular. This proves the theorem.

Example 2. Let n = 7. Takez1 = (0, 0, 0, 1, 1, 0, 1), z2 = (0, 0, 1, 0, 1, 0, 1) and w1 = (0, 0, 0, 1, 1, 1, 1), w2 =
(0, 0, 1, 0, 1, 1, 1) and generate the orbits

Gz1 = {(0, 0, 0, 1, 1, 0, 1), (0, 0, 1, 1, 0, 1, 0), (0, 1, 1, 0, 1, 0, 0), (1, 1, 0, 1, 0, 0, 0),
(1, 0, 1, 0, 0, 0, 1), (0, 1, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 1, 0)};

Gz2 = {(0, 0, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 1, 0), (1, 0, 1, 0, 1, 0, 0), (0, 1, 0, 1, 0, 0, 1),
(1, 0, 1, 0, 0, 1, 0), (0, 1, 0, 0, 1, 0, 1), (1, 0, 0, 1, 0, 1, 0)};

Gw1 = {(0, 0, 0, 1, 1, 1, 1), (0, 0, 1, 1, 1, 1, 0), (0, 1, 1, 1, 1, 0, 0), (1, 1, 1, 1, 0, 0, 0),
(1, 1, 1, 0, 0, 0, 1), (1, 1, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 1, 1)};

Gw2 = {(0, 0, 1, 0, 1, 1, 1), (0, 1, 0, 1, 1, 1, 0), (1, 0, 1, 1, 1, 0, 0), (0, 1, 1, 1, 0, 0, 1),
(1, 1, 1, 0, 0, 1, 0), (1, 1, 0, 0, 1, 0, 1), (1, 0, 0, 1, 0, 1, 1)}.

Here for eachx′ ∈ Gz1 ∪ Gz2 , there exists a uniquey′ ∈ Gw1 ∪ Gw2 such thatWS(x′) ⊂ WS(y′) and
∑⌊n

2 ⌋−wt(x′)
t=0

(

wt(y′)−wt(x′)
t

)

is odd. Then construct,
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R′
n(x) =

{

Qn(x) ⊕ 1, if x ∈ {Gz1 ∪ Gz2}
⋃

{Gw1 ∪ Gw2}

Qn(x), otherwise.

Then by Theorem 5,R′
n is an7-variable RSBF with the maximumAI 4.

As in Construction 2, outputs ofQn are toggled at more inputs, one can expect better nonlinearity than the Con-
struction 1.

For 7-variable functions with the maximumAI, the lower bound on nonlinearity is 44 (Lobanov 2005) and that
is exactly achieved in the existing theoretical construction (Dalai, Gupta, and Maitra 2005; Dalai, Maitra, and Sarkar
2006). Our Construction 1 provides the nonlinearity 46. Further we used Construction 2 to get all possible functions
R′

n and they provide the nonlinearity 48.

5.1 Further generalization

Construction 3. Taken ≥ 5 and odd. Consider the orbitsGz1 , . . . , Gzk
andGw1 , . . . , Gwk

such that the sub matrix
W|∪k

t=0Gzt |×|∪l
t=0Gwt |

is nonsingular. Then construct,

R′′
n(x) =

{

Qn(x) ⊕ 1, if x ∈ {∪k
t=0Gzt

}
⋃

{∪l
t=0Gwt

}

Qn(x), otherwise.

Clearly, the functionR′′
n is ann-variable RSBF with the maximumAI. Construction 3 will provide all the RSBFs

with the maximumAI. In this case we need a heuristic to search through the space of RSBFs with the maximumAI

as the exhaustive search may not be possible as the number of input variablesn increases. One may note that it is
possible to use these techniques to search through the space of general functions, but that space is much larger(22n

)

in comparison with the space of RSBFs(≈ 2
2n

n ) and getting high nonlinearity after a small amount of search using a
heuristic is not expected. We present a simple form of heuristic as follows that we run for several iterations.

1. Start with an RSBF having the maximumAI using Construction 1.

2. Choose two orbits of the same sizes having different output values and toggle the outputs corresponding to both
the orbits (this is to keep the function balanced).

3. If the modified function has the maximumAI and having better nonlinearity than the previous ones, then we
store that as the best function.

By this heuristic, we achieved 7, 9, 11 variable RSBFs with the maximum possibleAI having nonlinearities 56,
240, 984 respectively with very small amount of search. Note that these nonlinearities are either equal or close to
2n−1 − 2

n−1
2 .

Later to the work (Sarkar and Maitra 2007), a construction has been shown in (Carlet, Zeng, Li, and Hu 2007)
for Boolean functions (in general, i.e., not in RSBF class) on odd number of variables with good nonlinearity and
the construction works for higher number of variables, i.e., for oddn ≥ 15. The nonlinearity is given as (Carlet,
Zeng, Li, and Hu 2007, Theorem 4.4)2n−1 −

(

n−1
⌊n

2 ⌋

)

+ Θ(n), where the value ofΘ(n) is as follows. Θ(n) =

2⌊
∑k−1

i=0

(

3k−2
k+i−1

)

k−i
k

⌋ for n = 4k + 1, k ≥ 4 and2⌊
∑k+1

i=0

(

3k−1
k+i

)

k+2−i
k+2 ⌋ for n = 4k + 3, k ≥ 5. Further,Θ(15) =

268 and Θ(19) = 2436. One should note that the nonlinearity of 15-variable function with the maximumAI is
16384− 3432 + 268 = 13220 in (Carlet, Zeng, Li, and Hu 2007), but a much sharper search result is available which
gives nonlinearity 16272 (Sarkar and Maitra 2008).
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6 RSBFs with the maximumAI on even number of variables

Let us start with an existing construction of functions with the maximumAI for even number of variablesn provided
in (Dalai, Maitra, and Sarkar 2006, Construction 2).

Pn(x) = 1 for wt(x) <
n

2
,

= 0 for wt(x) >
n

2
,

= cx ∈ {0, 1} for wt(x) =
n

2
.

This construction directly gives a construction of ann-variable symmetric function (Dalai, Maitra, and Sarkar
2006) with the maximumAI for evenn as follows.

Sn(x) = 1 for wt(x) ≤
n

2
,

= 0 for wt(x) >
n

2
.

From Pn, we can also get a construction ofn-variable RSBFs (which are not symmetric) with the maximumAI

for evenn. Since all then-variable RSBFs are also symmetric forn ≤ 3, we consider evenn ≥ 4.

Construction 4.

1. Taken ≥ 4 and even.

2. LetGλ be any orbit generated byλ ∈ Vn such thatwt(λ) = n
2 .

3. Construct

Hn(x) =

{

Sn(x) ⊕ 1, if x ∈ Gλ,

Sn(x), otherwise.

It is clear thatHn is RSBF and not symmetric.

Theorem 6. The functionHn is ann-variable RSBF with the maximumAI.

Proof : SincePn can have any output corresponding to all the inputs of weightn
2 , the proof follows.

In Theorem 7, we analyze the nonlinearity of the functionHn. First we need the following lemma.

Lemma 1. Let n be even andGx be the orbit generated byx ∈ Vn such thatwt(x) = n
2 . Then the number of

occurrence of1’s and0’s at any coordinate position among all the elements ofGx are the same.

Proof : The orbits generated by the elements of weightn
2 can be divided into two classes, say,C1 andC2. Let C1

contains orbits such that the complement of each of the elements in an orbit situates in the same orbit, otherwise the
orbits are inC2. The proof is clear ifGx ∈ C1.

Next we consider thatGx belongs toC2 and containsn number of elements. Sincex hasn different cyclic
permutations inGx, then each bit ofx appears exactly once at any fixed coordinate position among all the elements of
Gx. Since,wt(x) = n

2 , the proof follows.
Finally we consider thatGx belongs toC2 and containsk < n elements. One may note thatk|n andk is even.

Now in x, all the adjacentn
k

-blocks (each of lengthk) will be the same. Sincewt(x) = n
2 , the proof follows.

Construction of Rotation Symmetric Boolean Functions with...   277

Computación y Sistemas Vol. 12 No. 3, 2009, pp 267-284 
                                                                 ISSN 1405-5546 



Therefore, according to this lemma, for an orbit of weightn
2 , the number of occurrence of1′s and0′s in any

coordinate position among all the elements are equal ton
2 . For example, forn = 4, we take the following orbit

{(0, 0, 1, 1), (0, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 1)}. Consider the last coordinate position. The number of occurrence of
1’s in the last coordinate position is2. It is clear that for this orbit, this happens for any coordinate position.

Theorem 7. The nonlinearity of the functionHn is 2n−1 −
(

n−1
n
2

)

.

Proof : It is known from (Dalai, Maitra, and Sarkar 2006) thatnl(Sn) = 2n−1 −
(

n−1
n
2

)

. Moreover, the maximum

absolute Walsh spectrum value occurs at the inputs of weight zero, one andn and the value is
(

n
n
2

)

.
First we find the relation between the Walsh spectrum values ofHn andSn. We have,

WHn(Λn) =
∑

ζ∈Vn\Gλ

(−1)Hn(ζ)(−1)ζ·Λn

+
∑

ζ∈Gλ

(−1)Hn(ζ)(−1)ζ·Λn

=
∑

ζ∈Vn\Gλ

(−1)Sn(ζ)(−1)ζ·Λn

+
∑

ζ∈Gλ

(−1)1⊕Sn(ζ)(−1)ζ·Λn

=
∑

ζ∈Vn\Gλ

(−1)Sn(ζ)(−1)ζ·Λn

−
∑

ζ∈Gλ

(−1)Sn(ζ)(−1)ζ·Λn

=
∑

ζ∈Vn

(−1)Sn(ζ)(−1)ζ·Λn

− 2
∑

ζ∈Gλ

(−1)1(−1)ζ·Λn

= WSn(Λn) + 2
∑

ζ∈Gλ

(−1)ζ·Λn

(4)

Now we investigate the values ofWHn
(Λn) for different weights ofΛn.

CASE I: wt(Λn) = 0.
From (Dalai, Maitra, and Sarkar 2006), we have,WSn

(Λn) = −
(

n
n
2

)

. Since,|Gλ| ≤ n, the maximum value that can

be attained by
∑

ζ∈Gλ
(−1)ζ·Λn

is n. Therefore,|WHn
(Λn)| ≤ −

(

n
n
2

)

+2n, if
(

n
n
2

)

≤ 2n and |WHn
(Λn)| ≤

(

n
n
2

)

−2n,
otherwise.
CASE II: wt(Λn) = n.
From (Dalai, Maitra, and Sarkar 2006), it is known thatWHn

(Λn) = ∓
(

n
n
2

)

according asn
2 is even or odd. Ifn2 is

even, the scaler productζ · Λn will be even for allζ ∈ Gλ and hence, the maximum value that
∑

ζ∈Gλ
(−1)ζ·Λn

can
attain isn. Therefore,|WHn

(Λn)| ≤ −
(

n
n
2

)

+ 2n, if
(

n
n
2

)

≤ 2n and |WHn
(Λn)| ≤

(

n
n
2

)

− 2n, otherwise.

If n
2 is odd, the scaler productζ ·Λn will be odd for allζ ∈ Gλ and hence, the minimum value that

∑

ζ∈Gλ
(−1)ζ·Λn

can attain is−n. Therefore,|WHn
(Λn)| ≤

(

n
n
2

)

− 2n, if
(

n
n
2

)

≥ 2n and |WHn
(Λn)| ≤ −

(

n
n
2

)

+ 2n, otherwise.

CASE III: wt(Λn) = 1.
From Lemma 1, we have

∑

ζ∈Gλ
(−1)ζ·Λn

= −n
2 + n

2 = 0. Therefore,WHn
(Λn) =

(

n
n
2

)

.

CASE IV: 2 ≤ wt(Λn) ≤ n − 1.
From (Dalai, Maitra, and Sarkar 2006), it is known that, the second maximum value ofWSn

is attained at the inputs of
weights2, 3, n−2 andn−1 respectively and that value is equal to1

n−1 ·
(

n
n
2

)

. Since,|Gλ| ≤ n, toggling outputs ofSn

at the orbitGλ can increase the absolute value at most by2n. However, it can be checked that1
n−1 ·

(

n
n
2

)

+ 2n ≤
(

n
n
2

)

for n ≥ 6.
Therefore, forn ≥ 6, the maximum absolute value ofWHn

is
(

n
n
2

)

.
For n = 4, it can be checked from the corresponding Walsh spectrum matrix is that the maximum absolute value

of WHn
is also

(

n
n
2

)

.

Hence, forn ≥ 4, the maximum absolute value ofWHn
is

(

n
n
2

)

andnl(Hn) = 2n−1 − 1
2

(

n
n
2

)

= 2n−1 −
(

n−1
n
2

)

.
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Note that the nonlinearity ofHn is equal to that ofSn.
As per the construction ofPn, for toggling outputs ofSn at any number of orbits of weightn2 , AI will not drop.

Moreover, for each modified functions, nonlinearity would be the same, which follows from the proof of Theorem 7.
Very recently in (Carlet, Zeng, Li, and Hu 2007), construction of functions with the maximumAI has been given

for even number of variablesn. Let W d be the set of all elements of{0, 1}n with weight d andW<d = W 0 ∪
W 1 ∪ . . . ∪ W d−1 andW>d = W d+1 ∪ W d+2 ∪ . . . ∪ Wn. Let T = {α1, . . . , αl} ⊆ W< n

2 , S = {β1, . . . , βs} ⊆
W> n

2 , U = {u1, . . . , ul} ⊆ W
n
2 andV = {v1, . . . , vs} ⊆ W

n
2 . Then the construction is as follows.

Construction 5.

1. ChooseT, S, U, V such that

U ∩ V = ∅,
∀ 1 ≤ i ≤ l, WS(αi) ⊂ WS(ui) and ∀ 1 ≤ j < i ≤ l, WS(αi) 6⊂ WS(uj),
∀ 1 ≤ i ≤ s, WS(vi) ⊂ WS(βi) and ∀ 1 ≤ j < i ≤ s, WS(vi) 6⊂ WS(βj).

2. Construct

In(x) =











0, if x ∈ W< n
2 ∪ S ∪ U \ T,

cx, if x ∈ W
n
2 \ U ∪ V,

1, if x ∈ W> n
2 ∪ T ∪ V \ S,

wherecx ∈ {0, 1}.

In the following construction, we show hown-variable RSBFs with the maximumAI for evenn can be obtained
using Construction 5. LetA = {x|x ∈ A}, thenGα = {x|x ∈ Gα} = Gα.

Construction 6.

1. Chooseα1 ∈ W
n
2 −1.

2. Chooseu1 ∈ W
n
2 such that

(a) |Gα1 | = |Gu1 |,

(b) u1 /∈ Gu1 and

(c) WS(α1) ⊂ WS(u1).

3. Construct

I ′n(x) =











0, if x ∈ W< n
2 ∪ Gα1 ∪ Gu1 \ Gα1 ,

0 if x ∈ W
n
2 \ Gu1 ∪ Gu1 ,

1, if x ∈ W> n
2 ∪ Gα1 ∪ Gu1 \ Gα1 .

For n = 4, it is not possible to get such pair of orbitsGα1 andGu1 which satisfy all the conditions of Construction
6. So we have the following preposition.

Proposition 8. The functionI ′n is ann-variable function with the maximumAI for n ≥ 6.

Proof : Since,wt(α1) = n
2 − 1, wt(u1) = n

2 andWS(α1) ⊂ WS(u1), the setsGα1 , Gu1 , Gu1 andGα1 have the
property as required by for the setsT, U, V, S in Construction 6. This proves the result.
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Example 3. Letn = 8. Takeα1 = (0, 0, 0, 1, 0, 0, 1, 1)andu1 = (0, 0, 0, 1, 0, 1, 1, 1). Form the orbitsGα1 , Gu1 , Gα1

andGu1 . Then constructI ′n as in Construction 6.I ′n will have the maximumAI.

Though the proposition works forn ≥ 6, the following theorem is valid forn ≥ 8 only. Forn = 6, nonlinearity
obtained for the RSBFs from Construction 6 are 18 and 22 respectively.

Theorem 8. For n ≥ 8, the nonlinearity ofI ′n is 2n−1 −
(

n−1
n
2

)

+ 4.

Proof : The functionI ′n is the function obtained from1 ⊕ Sn by complementing its outputs corresponding to the
inputs which belong to the orbitsGα1 , Gα1 andGu1 respectively. We have,

WI′

n
(Λn) =

∑

ζ∈Vn\Gα1∪Gu1∪Gα1

(−1)I′

n(ζ)(−1)ζ·Λn

+
∑

ζ∈Gα1

(−1)I′

n(ζ)(−1)ζ·Λn

=
∑

ζ∈Vn

(−1)1⊕Sn(ζ)(−1)ζ·Λn

+
∑

ζ∈Gα1

(−1)I′

n(ζ)(−1)ζ·Λn

+
∑

ζ∈Gu1

(−1)I′

n(ζ)(−1)ζ·Λn

+
∑

ζ∈Gα1

(−1)I′

n(ζ)(−1)ζ·Λn

−
∑

ζ∈Gα1

(−1)1⊕Sn(ζ)(−1)ζ·Λn

−
∑

ζ∈Gu1

(−1)1⊕Sn(ζ)(−1)ζ·Λn

−
∑

ζ∈Gα1

(−1)1⊕Sn(ζ)(−1)ζ·Λn

=
∑

ζ∈Vn

(−1)1⊕Sn(ζ)(−1)ζ·Λn

+ 2[
∑

ζ∈Gα1

(−1)I′

n(ζ)(−1)ζ·Λn

+
∑

ζ∈Gu1

(−1)I′

n(ζ)(−1)ζ·Λn

+
∑

ζ∈Gα1

(−1)I′

n(ζ)(−1)ζ·Λn

]

( sinceI
′
n(ζ) = 1 ⊕ Sn(ζ) for ζ ∈ Gα1 ∪ Gα1 ∪ Gu1)

= W1⊕Sn(Λn) + 2[
∑

ζ∈Gα1

(−1)ζ·Λn

−
∑

ζ∈Gα1

(−1)ζ·Λn

−
∑

ζ∈Gu1

(−1)ζ·Λn

]

(5)

From (Dalai, Maitra, and Sarkar 2006), we know thatnl(1 ⊕ Sn) = 2n−1 −
(

n−1
n
2

)

. Moreover, the maximum

absolute Walsh spectrum value occurs at the inputs of weight zero, one andn and the value is
(

n
n
2

)

.

Following results are required for the analysis of the Walsh spectrum ofI ′n. Since,wt(α1) = n
2 − 1, wt(u1) = n

2

and WS(α1) ⊂ WS(u1), we can easily conclude that|Gα1 | = n which implies that|Gα1 | = n. Moreover, as the
number of1’s at any coordinate position among all the elements ofGu1 is n/2 (by Lemma 1), we can say that the
number of1’s at any coordinate position among all the elements ofGα1 andGα1 are n

2 − 1 and n
2 + 1 respectively. In

the following cases, we analyze the Walsh spectrum ofI ′n.
CASE I: wt(Λn) = 0.
Since|Gα1 | = |Gα1 | = |Gu1 | = n, from Equation 5, we getWI′

n
(Λn) =

(

n
n
2

)

+ 2[n − n − n] =
(

n
n
2

)

− 2n.

CASE II: wt(Λn) = n.
From (Dalai, Maitra, and Sarkar 2006), it is known thatWI′

n
(Λn) = ±

(

n
n
2

)

according asn
2 is even or odd. Forn2

even, weight of bothGα1 andGα1 is odd. Then for both the cases,ζ ∈ Gα1 andζ ∈ Gα1 , the scalar productζ · Λn

will be odd. Obviously, forζ ∈ Gu1 , the scalar productζ · Λn will be even. Therefore, from Equation 5, we get
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WI′

n
(Λn) =

(

n
n
2

)

+ 2[−n + n− n] =
(

n
n
2

)

− 2n. On the other hand, forn2 is odd, using similar argument we get from

Equation 5,WI′

n
(Λn) = −

(

n
n
2

)

+ 2[n − n + n] = −
(

n
n
2

)

+ 2n.

CASE III: wt(Λn) = 1.
Since the number of1’s at any coordinate position among all the elements ofGα1 andGα1 are n

2 − 1 and n
2 + 1

respectively, then
∑

ζ∈Gα1
(−1)ζ·Λn

= −(n
2 +1)+(n

2−1) = −2 Similarly,
∑

ζ∈Gα1
(−1)ζ·Λn

= −(n
2−1)+(n

2 +1) =

2. Since, the number of1’s and the number of0’s are the same at any coordinate position among all the elements of
Gu1 , then

∑

ζ∈Gu1
(−1)ζ·Λn

= −n
2 + n

2 = 0. Therefore, from Equation 5, we getWI′

n
(Λn) =

(

n
n
2

)

+2[−2−2−0] =
(

n
n
2

)

− 8.

CASE IV: 2 ≤ wt(Λn) ≤ n − 1.
From (Dalai, Maitra, and Sarkar 2006), it is known that, the second maximum absolute value ofW1⊕Sn

is attained
at the inputs of weights2, 3, n − 2 andn − 1 respectively and that value is equal to1

n−1 ·
(

n
n
2

)

. Toggling outputs of
1 ⊕ Sn at three orbits can increase the absolute value at most by6n. However, it is easy to check that forn ≥ 8,

1
n−1 ·

(

n
n
2

)

+ 6n ≤
(

n
n
2

)

− 8.

Asn ≥ 8, the maximum absolute Walsh spectrum value ofI ′n is
(

n
n
2

)

−8. Therefore,nl(I ′n) = 2n−1− 1
2 (

(

n
n
2

)

−8) =

2n−1 −
(

n−1
n
2

)

+ 4.
For example, nonlinearities of this class of RSBFs forn = 8, 10, 12 are respectively97, 390, 1590. For n = 6,

the maximum and the second maximum absolute Walsh spectrum values of1 ⊕ Sn are 20 and 4 respectively. From
Theorem 8, we know that the values ofWI′(Λn) will be 8, 12,−12 for wt(Λn) = 0, 1, n respectively. SinceI ′n is
constructed by toggling outputs ofSn at three orbits, the second maximum Walsh spectrum value ofI ′n can reach
maximum up to4 + 36, i.e., 40. Therefore, the functionI ′n may not have 12 as the maximum absolute value in its
Walsh spectrum. Hence, the nonlinearity may not be equal to2n−1 −

(

n−1
n
2

)

+ 4. We constructed all the6-variable
RSBFs using Construction 6 and found the nonlinearities obtained in this class are18 and22 respectively.

Construction 6 can be generalized as follows.

Construction 7.

1. Chooseα1 ∈ W< n
2 −1.

2. Chooseu1 ∈ W
n
2 such that

(a) |Gα1 | = |Gu1 |,

(b) u1 /∈ Gu1 and

(c) WS(α1) ⊂ WS(u1).

(d) Gα1 andGu1 have the property thatT andU respectively have in Construction 5 have.

3. Construct

I ′′n(x) =











0, if x ∈ W< n
2 ∪ Gα1 ∪ Gu1 \ Gα1 ,

0 if x ∈ W
n
2 \ Gu1 ∪ Gu1 ,

1, if x ∈ W> n
2 ∪ Gα1 ∪ Gu1 \ Gα1 .

This is clear that such pair of orbitsGα1 andGu1 can not be available forn = 4. It follows from Construction 7 that
the orbitsGα1 , Gu1 , Gu1 , Gα1 follow the same property as required by the setsT, U, V, S respectively in Construction
6. Therefore, we have the following result.
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Proposition 9. For n ≥ 6, the functionI ′′n is ann-variable function with the maximumAI.

Example 4. Letn = 8. Takeα1 = (0, 0, 0, 0, 0, 0, 1, 1)andu1 = (0, 0, 1, 0, 1, 0, 1, 1). Form the orbitsGα1 , Gu1 , Gα1

andGu1 . Then constructI ′′n as in Construction 7.I ′′n will have the maximumAI.

In this class we obtained better nonlinearity thanI ′n. For example, the maximum nonlinearity we obtained for
n = 8, 10, 12 are respectively101, 394, 1598. The8-variable function described in Example 4 has nonlinearity101.

Construction 6 can be generalized further as follows. Instead of choosingT, S, U, V arbitrarily but only satisfying
the conditions of Construction 5, if we choose such four orbits in{0, 1}n, then Construction 5 will directly give us the
construction of an RSBF with the maximumAI.

In (Carlet, Zeng, Li, and Hu 2007), nonlinearity analysis of functions constructed for some particular cases of
Construction 5 has been given. It has been shown that for particular parameters,In can achieve nonlinearity higher
thanHn. The setsT, U, V, S were chosen as follows. TakeT = {x|wt(x) = n

2 − wt(u), WS(x) ∩ WS(u) = ∅}

and U = {x ⊕ u|x ∈ T }, whereu is any fixed element inW< n
2 . Then takeS = T and V = U . For this,

In can achieve nonlinearityΓk = 2n−1 −
(

n−1
n
2 −1

)

+
k( n−k

n
2

−k)
n−k

for 3 ≤ wt(u) = k ≤ n
2 − 1. Taking an element

u ∈ W< n
2 \ W 0, one cannot generate an orbitU ⊂ W

n
2 by XORing u with each element of another orbitT such

thatT = {x|wt(x) = n
2 − wt(u), WS(x) ∩ WS(u) = ∅}. Thus, this construction cannot directly give any RSBF

with the maximumAI and nonlinearity equal toΓk. Further, constructions of balanced functions with the maximum
AI and nonlinearityΓk for 2 ≤ k ≤ n

2 − 1, have also been presented by a little modification of the setsT andU . For
example, they have shown that it is possible to get balanced functions onn-variables, (n ≥ 8) with the maximumAI

and nonlinearityΓ2, i.e.,2n−1 −
(

n−1
n
2 −1

)

+
2( n−2

n
2

−2)
n−2 .

7 Conclusions

We have given theoretical constructions of RSBFs which do not belong to the class of symmetric functions and have
the maximum algebraic immunity for odd number of variables. We further generalize our construction idea to an
efficient search technique in the RSBF class to find functions with the maximum possible algebraic immunity and very
high nonlinearity. We have studied the case for even number of variables too. We would like to point out that random
functions have very high nonlinearity (Olejar and Stanek 1998) and also possess optimalAI (Meier, Pasalic, and Carlet
2004). Therefore, theoretical constructions of Boolean functions with very high nonlinearity and maximumAI will be
a great interest of research.
Acknowledgments: The authors would like to thank the anonymous reviewer for his comments and suggestions on
this paper.
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