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Abstract
Let E be a strong pseudorandom permutation (or SPRP) secure enciphering scheme (i.e., a length-preserving en-
cryption scheme) which can only encrypt messages of size multiple ofn, the block size of the underlying block
cipher. There are several such constructions, e.g., CBC mode or cipher block chaining mode. In this paper we
present how a secure enciphering schemeE can be obtained which can encrypt any messages of size at leastn

based onE and some other cryptographic objects such as weak pseudorandom function (or WPRF) and a universal
hash function. SoE can encrypt messages which might contain incomplete message blocks. Since an enciphering
scheme is a length preserving encryption algorithm, one can not use a padding rule to handle the incomplete mes-
sage block. In 2007, Ristenpart and Rogaway first proposed a secure method known as XLS (eXtension by Latin
Squares). It needs two invocations of a block ciphere whose key is chosen independently of the key ofE. The
SPRP security of XLS is based on the SPRP security of the block ciphere. Our proposed enciphering scheme is
SPRP and it needs only one invocation of a WPRF and two invocations of a universal hash function. Any SPRP
construction, e.g., a secure block cipher, is a WPRF. Moreover, there are other several efficient constructions for
universal hash functions and WPRF which are not SPRP. Thus, we are able to replace SPRP security by two weaker
security notions to extend the domain of a secure enciphering scheme.

Keywords: strong pseudorandom permutation, weak pseudorandom function, universal hash function, modes of
operations.

Resumen
SeaE un esquema seguro de cifrado que preserva la longitud del texto en claro y que se comporta como una
permutación pseudo-aleatoria fuerte (SPRP por sus siglas en inglés), el cual únicamente puede cifrar mensajes con
longitudes que sean múltiplos den, donden es el tamaño del bloque utilizado por el esquema de cifrado. Existen
varios ejemplos de construcciones de este tipo, por ejemplo, el modo de cifrado por bloque encadenado (CBC por
sus siglas en inglés). En este artı́culo describimos cómo construir un esquema de cifrado seguroE, capaz de cifrar
cualquier mensaje de tamaño mayor o igual quen. Mostramos queE puede ser construido conE y algunos otros
objetos criptográficos tales como una función pseudo-aleatoria débil (WPRF por sus siglas en inglés) y una función
picadillo universal. El esquemaE ası́ obtenido puede cifrar mensajes con longitudes que no son múltiplos den.
Un esquema de cifrado que preserva la longitud del texto en claro no puede rellenar el último bloque de mensaje
cuando éste está incompleto. En 2007, Ristenpart y Rogaway fuernos los primeros en proponer un método seguro
conocido como extensión de cuadrados latinos (XLS por sus siglas en inglés). XLS utiliza dos invocaciones al
cifrador por bloquese, cuya llave es escogida independientemente de la llave deE. La seguridad SPRP de XLS se
basa en la seguridad SPRP del cifrador por bloquese. El esquema de cifrado propuesto aquı́ es SPRP y necesita
únicamente una invocación de una WPRF y dos invocaciones a una función picadillo universal. Cualquier construc-
ción SPRP, esto es, un cifrador por bloques seguro, es un WPRF. Por otro lado, existen construcciones eficientes
para funciones picadillo universales y para WPRF que no son SPRP. Estas dos últimas observaciones implican que
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en este artı́culo logramos obtener seguridad del tipo SPRP al utilizar dos nociones de seguridad más débiles, al
tiempo que extendemos el dominio original del esquema de cifrado seguro.

Palabras Claves:Permutación pseudo-aleatoria fuerte, función pseudo-aleatoria débil, función picadillo universal,
modos de operación.

1 Introduction

The notion of domain extension arises in many areas of cryptography e.g., collision resistant hash function,pseu-
dorandom functionor prf, strong pseudorandom permutationor SPRP (Luby and Rackoff 1988) etc. Intuitively, a
domain extension extends the message space or domain of a cryptographic primitive. For example, the block cipher
AES (Daemen and Rijmen 2002) or Advanced Encryption Standard is a keyed permutation family defined over the
set of all 128 bits. AES can be used to encrypt of 128 bit messages only. Given any message of size multiple of 128,
one may use CBC or cipher block chaining mode (Bellare, Kilian, and Rogaway 1994) based on AES to encrypt the
message. A similar kind of treatment can be found in the hash function where a hash function is designed from a
compression function. To encrypt a message whose size is not multiple of 128, one can use a padding rule to make
the message size multiple of 128. This methods trivially can not preserve length, in particular the size of ciphertext
is more than that of plaintext. In some applications like disk encryption, length-preserving encryption is desirable.
We call a length-preserving encryption anenciphering scheme. The length-preserving property makes our task more
difficult and restricted too. In this paper we mainly study how one can obtain a length-preserving encryption scheme
or an enciphering scheme which can encrypt any messages of size at leastn wheren is the block size of the underlying
block cipher (e.g.,n = 128 in case of the AES). There are some known standard tricks like ciphertext stealing (Meyer
and Matyas. 1982), applying the underlying block cipher twice to the last full blocks (applied to EME (Halevi and
Rogaway 2004; Halevi 2004), TET (Halevi ), HEH (Sarkar. 2007)), using counter-based prf (applied to HCTR (Wang,
Feng, and Wu 2005), HCH (Chakraborty and Sarkar 2006), XCB (McGrew and Fluhrer 2004)) etc. But those ap-
proaches are not generic. There was a heuristic domain extension (D. Cook and Keromytis. 2004a; D. Cook and
Keromytis. 2004b) without any security proof. The first and so far only one concrete provable secure generic domain
extension is XLS (Ristenpart and Rogaway. 2007) (or eXtension by Latin Squares).

1.1 Discussion on SPRP, WPRF and universal hash function

The most popular and strong security notion for an encryption or enciphering scheme is strong pseudorandom permu-
tation security or SPRP-security. Intuitively, an SPRP block cipher (or an enciphering scheme) should be indistinguish-
able from an ideal random permutation with respect to chosen ciphertext attack. In other words, any distinguisher who
can make encryption or decryption queries adaptively (i.e., the queries may depend on the previous query-responses)
should not be able to distinguish block cipher or enciphering scheme from an ideal random permutation. A pseudo-
random function or prf is a similar security notion for a keyed function family (instead of permutation family). It is
hard to distinguish a prf function family from an ideal random function family with respect to chosen plaintext attack.
Note that, here distinguishers can only make forward queries. Weak pseudorandom function or WPRF is obtained by
weakening the prf distinguisher. In this case, the distinguisher is not allowed to choose the plaintext. All plaintexts will
be chosen at random and its corresponding ciphertexts for a keyed function family will be given to the distinguisher. If
it is hard to distinguish from a randomly generated ciphertexts (or outputs of an ideal random function family) then the
keyed function family is called WPRF. These randomly generate plaintext can also be generated by the distinguisher
as long as it is generated independently and uniformly.

A universal hash function is a function family where the collision probability for any two chosen plaintexts is
negligible. There exist several provably secure universal hash function (e.g., finite field multiplication based universal
hash function). In case of SPRP or prf or WPRF, we believe (without any proof) some constructions to be secure with
respect to these security notions The AES (an NIST or National Institutes of Standards and Technology standard for
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a block cipher) is a possible candidate of an SPRP defined over 128 bits. It is very efficient in both hardware and
software. There are very few papers on the practical constructions of a WPRF. It is easy to see that any SPRP or prf
construction is also a WPRF but the converse need not be true (in fact, a WPRF does not need to be a permutation).
So AES itself is also a possible candidate for WPRF. One can use keyed hash function as a WPRF since it is believed
to be a prf. There are some other possible candidates of WPRF which are very efficient (Blum, Furst, Kearns, and
Lipton 1993; Naor and Reingold 1999).

There are several examples of universal hash function. A universal hash function based on field multiplication is
very fast in hardware since a field multiplication inF2n takes only one cycle by using Karatsuba-Ofman (Karatsuba
and Ofman. ) algorithm. In software, there are several efficient examples of universal hash function (Nevelsteen and
Preneel 1999). One can also use prime field multiplication as described in (Bernstein. 2005) to make it more faster.

1.2 A comparison study of XLS and the new domain extension DE

LetE be an SPRP secure encryption scheme for the message space({0, 1}n)+ = ∪∞i=1{0, 1}ni. The XLS construction
needs two invocations of a block cipher, say AES, whose key is chosen independently from the key ofE. The
enciphering schemeE may use the same block cipher but the key should be chosen independently. Thus, in hardware
it is not easy to have a pipe line implementation. Moreover as it needs two different keys two key scheduling algorithms
have to be performed separately.

In this paper we provide a generic alternative construction of an enciphering schemeE with domain{0, 1}≥n

based on a secureE encrypting messages from({0, 1}n)+, a WPRFf and a universal hash functionH. Our new
construction is mainly motivated by the counter-based modes of operation. In a counter-based construction one first
computes counter (something like a tag) by using a polynomial hash (an example of a universal hash function) and then
the counter is used to generate a random bit sequence. In our domain extension, we use similar structure. We need one
WPRFf and a universal hash functionH to encrypt the incomplete message block. We denote it byE := DE[E, f, H].
In Section 3 we prove thatE is SPRP (or tweakable SPRP) wheneverE is SPRP (or tweakable SPRP respectively),
f is a WPRF andH is a universal hash function. In a nutshell, we are able to replace two invocations of SPRP by
one invocation of a WPRF and two invocations of a universal hash function to encrypt an incomplete message block
securely.

WPRF is much weaker security notion than prf or SPRP (Maurer and Sjdin 2007). Potentially one can have
efficient implementation of WPRF. In the worst case one can use an SPRP secure block cipher as a WPRF since any
SPRP is WPRF. So even if we use the AES, we can have faster implementation than XLS if we have an implementation
of a universal hash function which is twice as efficient as the AES. Moreover, an SPRP-weakness of AES would not
immediately threaten our construction. In Table 1, we have a comparison study.

Table 1.A comparison table of XLS and our domain extension DE. HerekBC is the key size of the underlying block
cipher key,kWPRF is the key size of a WPRF andkhash is the key size of a universal hash function

XLS DE

Key size kBC kWPRF + khash

Universal Hash 0 2
SPRP 2 0
WPRF 0 1

Organization of the paper. We first provide some definitions and notations about the security notion in section
2. Then in Section 3, we describe our new domain extension and discuss some important issues. We also provide
complete security analysis of the new construction in the same section. Finally we conclude in section 4.
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2 Preliminaries

We denotex[s] to represent the firsts bits ofx ∈ {0, 1}n wheres ≤ n. We write|x| = i wheneverx ∈ {0, 1}i. Given
anyx, 0 ≤ |x| < n, we definex = x10i wherei = n − 1 − |x|. Any n bit element is called a block and0 = 0n is
called the zero block. A bit stringx is said to be an incomplete block if|x| < n. It is easy to see that, for an incomplete
blockx, x is a nonzero block and wheneverx 6= x′, we must havex 6= x′.

We identify{0, 1}n asF2n with the field addition⊕ (bitwise addition) and a field multiplication ‘∗’. In this paper,
we fix an irreducible polynomial and hence we have a fixed multiplication operation on{0, 1}n.

In cryptography, usually a message space can be{0, 1}∗, {0, 1}≥n := ∪i≥n{0, 1}i or {0, 1}n
+

:= ∪i≥1{0, 1}ni.
Note that, all these sets can be written as∪i∈L{0, 1}i for some set (known as length set)L ⊆N := {0, 1, 2, · · ·}.

Definition 2.1 A setM ⊆ {0, 1}∗ is said to becompleteif there exists a setL ⊆ N such thatM = ∪i∈L{0, 1}i. In
this case, we also denoteM =ML. The setL is called the length-set forM.

LetML be a complete set. A function (permutation)F : ML → ML is called length-preserving(or l.p.) if
|F (x)| = |x| for all x ∈ ML (equivalently,Fi := F |{0,1}i , the functionF restricted on{0, 1}i, is a function
(permutation) from{0, 1}i to {0, 1}i for all i ∈ L).
In this paper, we mainly consider the length-setsL = {n}, or [n,∞] = {n, n+1, · · ·}, orn+ := {n, 2n, 3n, · · · , }. We
denote the corresponding complete sets asMn = {0, 1}n,M≥n = ∪i≥n{0, 1}i,Mn+ = ∪i≥1{0, 1}ni respectively.
Given a l.p. function (permutation)F defined over a complete setML, we can equivalently characterizeF by a
sequence of functions〈Fi〉i∈L, whereFi is the restricted function (permutation) on{0, 1}i (as mentioned in the above
definition). If F is a l.p. permutation then the inverse l.p. permutationF−1 can be similarly characterized by the
sequence〈F−1

i 〉i∈L.

Definition 2.2 A random function fromA to B is a random variablef taking values onFunc(A, B), the set of all
functions fromA to B whereA andB are finite sets. We say a random function is a random permutation onA if it
has support onPerm(A), the set of all permutations onA. In other words, a random permutation takes values from
the set of all permutations onA with probability one. Alength preserving random functionover a length setL is a
sequence of random functionsF = 〈Fi〉i∈L whereFi is a random function from{0, 1}i to {0, 1}i. We say thatF is a
length preserving random permutation ifFi is a random permutation on{0, 1}i for all i ∈ L.
In cryptography, one can find several examples of random functions and random permutations. LeteK be a block
cipher over the domain{0, 1}n and key space{0, 1}k. If the key K is chosen uniformly from{0, 1}k then the
block cipher is a random permutation (not necessarily the ideal random permutation or uniform random random
permutation which is going to be defined next). Similarly an enciphering scheme is nothing but a length preserving
random permutation. We use the word “uniform” to represent the ideal candidates of random functions. In fact, all
cryptographic ideal candidates of random functions have uniform distributions on a certain space of functions. Now
we define the following ideal random functions which will be considered later defining the cryptographic security
notions.

1. LetRi denote theuniform random functionfrom{0, 1}i to{0, 1}i, i.e.,Ri has uniform probability distribution on
Func({0, 1}i, {0, 1}i). Given a length-setL, we denoteRL for the tuple〈Ri〉i∈L of random functions whereRi’s
are independently distributed (more precisely, for any finite collections ofi, Ri’s are independently distributed).
We call it alength-preserving uniform random functiononML. Note that it is not a random function according
to our original definition of random function. It is rather a sequence of independent random functions. In this
paper we are interested in length-preserving uniform random functionsR≥n andRn+ over domains{0, 1}≥n

and({0, 1}n)+ respectively.

2. LetPi denote the uniform random permutation on{0, 1}i, i.e., the uniform distribution onPerm({0, 1}i). Note
that the inverse random permutation,P

−1
i , is also a uniform random permutation. We similarly definePL on
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ML and its inverseP−1
L = 〈P−1

i 〉i∈L, called length-preserving uniform random permutation onML. Similar to
uniform random function, in this paper we also consider uniform length-preserving random permutationsP≥n

or Pn+ over domains{0, 1}≥n and({0, 1}n)+ respectively.

2.1 SPRP Security Notion

LetA be an oracle algorithm which has access to two oraclesO1 (first oracle) andO2 (second oracle). For example, let
FL be a length-preserving random permutation then we writeAFL,F

−1

L to denote that the first oracle ofA is FL andF−1
L

is the second oracle. The algorithmA makes queries from the setML for both oracles. We define SPRP-advantage
of A for a length-preserving random permutationFL by

AdvSPRP
FL

(A) =
∣

∣Pr[AFL,F
−1

L = 1]− Pr[APL,P
−1

L = 1]
∣

∣.

Here oracles are considered as a sequence of random functions. When we consider the algorithmAFL,F
−1

L , for each
O1-query (orFL-query)x ∈ {0, 1}ℓ, ℓ ∈ L, FL responsesFℓ(x). Similarly, for the inverse query the oracle responses
F
−1
L (x). Here is the behavior of an oracle algorithmAFL,F−1

L .

1. A makesith queryxi ∈ {0, 1}ℓi, which is a function of(x1, y1, · · · , xi−1, yi−1), to eitherFL or F−1
L . Here

ℓi denotes the size of theith query. If it makesFL-query then the response follows the probability distribution
yi = Fℓi

(xi), otherwise it followsF−1
ℓi

(xi).

2. After makingq queries,A returns 0 or 1 based on all query-responses((x1, y1, δ1), · · · , (xq , yq, δq)) whereδi

is either1 or−1 depending on whetherith query isFL or F−1
L -query.

In general, we can define advantage for two pairs of tuples of length-preserving random functions(FL, F′L) and
(GL, G′L) as

AdvA((FL, F′L), (GL, G′L)) =
∣

∣Pr[AFL,F′
L = 1]− Pr[AGL,G′

L = 1]
∣

∣.

In this notation, we haveAdvSPRP
FL

(A) = AdvA((FL, F−1
L ), (PL, P−1

L )). In this paper, we are mainly interested
on the oracle algorithms which make bounded number of queries (say the total number of queries are bounded by
Q). Note that only information about oracles can be obtained from queries and responses. IfA interacts with a
length-preserving random permutation and its inverse then we can assume following :

1. A is not making any repetition query. Letxi denote theith query thenxi 6= xj wheneverith andjth queries are
both eitherO1-queries orO2-queries.

2. If xi isO1-query andyi is its response then there is noO2-queryxj with xj = yi for somej > i. Similarly if
xi isO2-query andyi is its response then there is noO1-queryxj with xj = yi for somej > i.

The responses of the queries which are not of this type, are completely determined from the previous query re-
sponses. A set of queries are calledpointless queriesif the above is not true. We say an adversary satisfying the above
conditions as anallowed adversary. In this paper we only consider allowed adversaries (not making pointless queries).
Now we define the insecurity of a random permutationFL as the maximum advantage over all allowed adversaries.
More precisely,

InsecSPRP
FL

(Q) = maxAAdvSPRP
FL

(A)

where maximum is taken over all allowed adversariesA which make at mostQ queries. Now we state a result which
are commonly used in analyzing SPRP.
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Theorem 2.1 (Halevi and Rogaway 2003) LetL be a length set withm = min{ℓ : ℓ ∈ L}. Let RL and R′L be
independently chosen length-preserving uniform random functions and letPL be length-preserving uniform random
permutation. Then for any allowed adversaryA which makes at mostQ queries, we have,

AdvA((PL, PL
−1), (RL, R′L)) ≤

Q(Q− 1)

2m+1
.

The above result says that a uniform length-preserving random permutation is very close to a uniform length-
preserving random function. If we want to prove that an enciphering scheme is SPRP-secure then it would be enough
to bound the distinguishing advantage from uniform random function.

AdvA((FL, F−1
L ), (PL, PL

−1)) ≤ AdvA((FL, F−1
L ), (RL, R′L)) + AdvA((PL, PL

−1), (RL, R′L))

≤ AdvA((FL, F−1
L ), (RL, R′L)) +

Q(Q− 1)

2m+1

The first inequality is true by using simple replacement argument and the second inequality is obtained by using the
Theorem 2.1. So if we can obtain an upper bound ofAdvA((FL, F−1

L ), (RL, R′L)) then we can also obtain an upper
bound ofAdvA((FL, F−1

L ), (PL, PL
−1)). In particular,

InsecSPRP
FL

(Q) ≤ maxAAdvA((FL, F−1
L ), (RL, R′L)) +

Q(Q− 1)

2n+1
(1)

where maximum is taken over all allowed adversariesA which make at mostQ queries. We consider the message
space with length set[n,∞) and hencem = n. We use the above equation to prove our main theorem.

2.2 WPRF or weak pseudorandom function
We can similarly define an adversary which interacts with one oracle. The prf-advantage of an adversaryA for a
random functionf from {0, 1}n to {0, 1}n is defined as

Advprf
f

(A) =
∣

∣Pr[Af = 1]− Pr[ARn = 1]
∣

∣

and prf-insecurity of the random functionf is defined as

Insecprf
f

(Q) = maxAAdvprf
f

(A)

where maximum is taken over all adversaryA which makes at mostQ queries. Recall thatRn is a uniform random
function defined over the set of alln bits to itself. Thus, on any distinct inputs it outputs from{0, 1}n which are
uniformly and independently distributed. Weak pseudorandom function or WPRF is a similar to prf with respect
to known plaintext attack. In particular, the plaintexts are chosen at random and given to the attacker. One can
equivalently define WPRF where attacker is choosing the queries uniformly and independently of previous query
responses. Since the query distribution is independent of the previous query-responses, it really does not matter by
whom queries have been selected. We defineweak-prf insecurity as

InsecWPRF
f

(Q) = maxAAdvprf
f

(A)

where maximum is taken over all adversaryA which makes at mostQ queries and all queries are uniformly and
independently distributed over{0, 1}n. Thus, only difference between prf and WPRF is the nature of queries of the
distinguisher. In case of prf distinguisher, the query can be made adaptively and hence it is not necessarily have
uniform and independent distribution. In fact if it is adaptive in nature then the queries are actually not independent.
Clearly, any prf or SPRP-secure construction is weak-prf but the converse need not be true (Maurer and Sjdin 2007).
So potentially we can have an efficient implementation of WPRF. In fact, achieving weak-prf may be easier than
to achieve prf or SPRP security (Maurer and Sjdin 2007). For example, letf : {0, 1}b+n → {0, 1}n be a good
compression function. We can assumef(K, ·) : {0, 1}n → {0, 1}n as a WPRF whereK ∈ {0, 1}b. Since a SPRP is
WPRF we can also consider the AES as a possible candidate of WPRF too.
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2.3 Universal Hash Function

Now we define another important object known as a universal hash function.

Definition 2.3 A random functionH from{0, 1}2n to {0, 1}n is ǫ-universal if

for all (x, y) 6= (x′, y′), Pr[H(x, y) = H(x′, y′)] ≤ ǫ.

In other words, a keyed function familyH : K×{0, 1}2n → {0, 1}n is ǫ-universal ifPr[HK(x, y) = HK(x′, y′)] ≤ ǫ
for all (x, y) 6= (x′, y′) where probability is computed w.r.t. the uniform probability distribution ofK overK.

A simple example is based on field multiplication. Let∗ denote the field multiplication over{0, 1}n. Let K be
chosen at random from{0, 1}n. DefineHK(x, y) = K ∗ x ⊕ y. Now it is easy to see thatHK is 1

2n -universal hash
function. There are several other examples of universal hash function which are much efficient in software (Nevelsteen
and Preneel 1999; Bernstein. 2005). Note that this universal hash function has the following property. Given keyK,
the value ofy is uniquely determined fromHK(x, y) andx. More precisely,y = HK(x, y)⊕ (K ∗ x).

3 The new domain extensionDE[E, f, h]

An enciphering schemeE over a complete message spaceM is a keyed permutation familyE : K×M→M where
for each keyK ∈ K, E(K, ·) is a length-preserving permutation onM. The complete message spaceM is called the
domain of the enciphering scheme. Note that if we choose the keyK uniformly from the keyspaceK then we obtain a
length-preserving random permutationE(K, ·). We also denoteEK for E(K, ·). Now we propose a generic method to
extend the domain of an enciphering scheme. More precisely, if we have a secure enciphering schemeE with domain

Mn+ then we can construct a secure enciphering schemeE with domainM≥n. Letx
$
← S represents thatx is chosen

uniformly from the setS. Recall that⊕ denote the bitwise xor over the set of alln-bits.

Algorithm E = DE[E, f, H]

1. Building blocks :

1. LetE : K1 × ({0, 1}n)+ → ({0, 1}n)+ be a keyed family of length-preserving permutations. Thus for each
keyK1 ∈ K1 the functionEK1

:= E(K1, ·) : ({0, 1}n)+ → ({0, 1}n)+ is a length-preserving permutation.

2. Letf : K2 × {0, 1}n → {0, 1}n be a keyed family of function. We denotefK2
(·) for f(K2, ·).

3. LetH : K3 × {0, 1}n × {0, 1}n → {0, 1}n be a keyed family of hash function (a universal hash function). We
also use the notationHK3

(·) for H(K3, ·). We also need to assume thatH has invertibility property. That is, the
value ofy is uniquely determined fromHK(x, y) andx. We writeH−1

K (x, y′) = y wherey′ = HK(x, y).

2. Key generation : K1
$
← K1, K2

$
← K2 andK3

$
← K3 are chosen uniformly and independently. The triple

(K1, K2, K3) is the secret key ofE. For each such triple we define a length-preserving permutationEK1,K2,K3 as given
in below.

3. Encryption : Plaintext :(M1, · · · , Mℓ, x) ∈ {0, 1}≥n where|Mi| = n, 1 ≤ i ≤ ℓ and0 ≤ |x| := s < n.
The corresponding ciphertextEK1,K2,K3(M1, · · · , Mℓ, x) is computed as follows.

step-1 M ′
ℓ = HK3

(x, Mℓ);

step-2 (C1, · · · , Cℓ−1, C
′
ℓ) = EK1

(M1, · · · , Mℓ−1, M
′
ℓ);
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step-3 y = fK2(M
′
ℓ ⊕ C′

ℓ)[s]⊕ x;

step-4 Cℓ = HK3
(y, C′

ℓ);

step-5 return (C1, · · · , Cℓ, y);

4. Decryption : Ciphertext :(C1, · · · , Cℓ, y) ∈ {0, 1}≥n where|Ci| = n, 1 ≤ i ≤ ℓ and0 ≤ |y| := s < n.

The corresponding plaintextE
−1

K1,K2,K3
(C1, · · · , Cℓ, y) is computed as follows.

step-1 C′
ℓ = H

−1
K3

(y, Cℓ);

step-2 (M1, · · · , Mℓ−1, M
′
ℓ) = E−1

K1
(C1, · · · , Cℓ−1, C

′
ℓ);

step-3 y = fK2(M
′
ℓ ⊕ C′

ℓ)[s]⊕ y;

step-4 Mℓ = H
−1
K3

(x, M ′
ℓ);

step-5 return (M1, · · · , Mℓ, x);

H

H

f

M1 Ml

M'l

C'l

M1

C1

C1 Cl

x

y

E

Fig 1. Domain ExtensionDE[E, f, H ] whereE is an enciphering scheme with domainMn+ , f : {0, 1}n → {0, 1}n

is a WPRF andH is a universal hash function

3.1 Discussion

Our construction is mainly motivated by the counter modes SPRP. In the counter mode enciphering scheme a poly-
nomial hash is evaluated over the messageM to obtain the counter sayS. The ciphertext is obtained by xoring the
plaintext with a pseudorandom bit sequence which is obtained from the counter. In this construction pseudorandom
bit sequence is obtained from the WPRF. It is also a generic construction. In other words, this method can be applied
to any enciphering schemeE which can encrypt messages of sizes multiple ofn. In the next section, we show thatE
is SPRP-secure wheneverE is SPRP-secure,fK2

is a WPRF andHK3
is anǫ-universal hash function for negligibleǫ.

A weak prf and universal hash function are both strictly weaker notions than strong pseudorandom permutation.
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In the efficiency point of view, it needs one invocation ofE, two invocations of universal hash functionH and
one WPRF invocationf . The previous generic construction XLS needs one invocations ofE and two invocations of
n-bit SPRP. Since an SPRP is always WPRF we can always implement AES as a candidate of WPRF. If we have an
implementation of a universal hash function which is twice as efficient as AES then our domain extension is more
efficient than XLS. Moreover, there is a possibility to have a more efficient implementation of WPRF than a block
cipher, e.g., a keyed hash function.

3.2 Security analysis

Now we provide a complete, simple and more straightforward security analysis of our domain extension. By abuse of
notation we usef andH to meanfK2

andHK3
whereK2 andK3 are chosen independently and uniformly from their

key spaces.

Theorem 3.1 LetE be a keyed family of length-preserving random permutation defined over({0, 1}n)+. Letf be a
keyed family of functions defined from{0, 1}n to {0, 1}n andH is anǫ-universal hash function. Then we have

InsecSPRP
E

(Q) ≤ InsecSPRP
E

(Q) + InsecWPRF
f (Q) + (2ǫ + 1/2n)×

Q(Q− 1)

2
.

Proof. Let P≥n andPn+ denote the uniform length preserving random permutation on{0, 1}≥n and ({0, 1}n)+

respectively. We denote our proposed length-preserving random permutation asE = DE[E, f, H]. Now we define

some intermediate length-preserving random functions between(G0, G
′
0) = (E,E

−1
) and (G5, G

′
5) = (P≥n, P−1

≥n).
These are namely,

1. G1 = DE[Pn+ , f, H] andG′1 = G
−1
1 . These two random permutations are obtained by replacingE by an ideal

length-preserving random permutation.

2. G2 = DE[R′
n+ , f, H] andG′2 = DE[R′′

n+ , f, H], whereR′
n+ andR′′

n+ are independently distributed length-preserving
uniform random function onn+. Thus we replace uniform random permutation and its inverse by two indepen-
dent uniform random functions. Since we only consider those adversary which make no pointless queries, there
is no loss in considering two independent uniform random functions (see Theorem 2.1).

3. Now, we replacef by anothern-bit independent uniform random functionRn. Thus,G3 = DE[R′
n+ , Rn, H] and

G
′
3 = DE[R′′

n+ , Rn, H].

4. Finally we considerG4 = R
′
≥n andG′4 = R

′′
≥n. These are independently distributed uniform length-preserving

random function defined over{0, 1}≥n.

Now we compute advantage of a distinguisher (making pointless queries only) at distinguishing(Gi, G
′
i) from

(Gi+1, G
′
i+1), 0 ≤ i ≤ 4. Then we can apply the triangle inequality for advantages to obtain our main result.

• The maximum advantage distinguishing(G1, G
′
1) from (G0, G

′
0) is bounded byInsecSPRP

E
(Q).

AdvA((G0, G
′
0), (G1, G

′
1)) ≤ InsecSPRP

E
(Q).

This follows from a straightforward replacement argument. More precisely, given an adversaryA which can
distinguish(G0, G

′
0) and(G1, G

′
1) with probabilityp, there is a distinguisherA′ which distinguishes(E,E−1)

and(Pn+ , P−1
n+) with probability at leastp. A′ first run the distinguisherA and the responses of(G1, G

′
1) or

(G0, G
′
0) can be computed based on the responses of(Pn+ , P−1

n+) or (E,E) respectively.
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• The maximum advantage distinguishing(G1, G
′
1) from (G2, G

′
2) is bounded byQ(Q−1)

2n+1 . This is true since the
distinguishing advantage between a length preserving uniform random permutation and and uniform length-
preserving random function is bounded byQ(Q−1)

2n+1 where the minimum bit size of any query is at leastn (by
using Theorem 2.1).

• A similar argument (distinguishing(G1, G
′
1) from (G0, G

′
0)) can be used to prove that

AdvA((G2, G
′
2), (G3, G

′
3)) ≤ InsecWPRF

f (Q).

Note that here we use the fact that inputs off are uniformly and independently distributed since input of
f is nothing but the last block of(M1, · · · , Mℓ−1, M

′
ℓ) ⊕ R

′
n+(M1, · · · , Mℓ−1, M

′
ℓ) or (M1, · · · , Mℓ−1, M

′
ℓ) ⊕

R
′′
n+(M1, · · · , Mℓ−1, M

′
ℓ). Thus, either the inputs are equal or these are independently distributed. This property

is true for bothf andRn and hence the above bound of advantage is true.

• WhenA is interacting with(G3, G
′
3) the probability that there is a collision among all inputs ofR

′
n+ (in case

of G3 queries) or all inputs ofR′′
n+ (in case ofG′3 queries) is bounded byǫ × Q(Q − 1)/2. This is true since

the functionH is ǫ universal hash function and we need to compare at mostQ(Q − 1)/2 pairs. Given that all
inputs ofR′

n+ andR′′
n+ are distinct the probability that there is a collision among all inputs ofRn, is also at most

ǫ×Q(Q− 1)/2. SinceRn is independently distributed fromR′
n+ andR′′

n+ , the complete responses will behave
as uniformly and independently distributed strings unless any two of the above event occurs. Thus, we have

AdvA((G3, G
′
3), (G4, G

′
4)) ≤ ǫQ(Q− 1).

Now we use triangle inequalities for advantages and Theorem 2.1 to obtain the result.

3.3 Tweakable SPRP security analysis

Strong pseudorandom permutation (Luby and Rackoff 1988)is one of the desired security notions for symmetric key
encryptions. Later, Liskov et al. (Liskov, Rivest, and Wagner 2002) followed by Halevi-Rogaway (Halevi and Rog-
away 2003) considered tweakable version of length-preserving SPRP, which allows us to process associated data or
tweak as a part of the messages. Disk-encryption is one of the important application for the length-preserving tweak-
able SPRP as mentioned in (Halevi and Rogaway 2003). Motivated by disc-encryption algorithms, there are several
tweakable SPRP proposals.

Here we briefly describe tweakable enciphering scheme or TES over domainML for some length setL. A
tweakable enciphering scheme is a functionE : K × T ×ML → ML, whereK 6= ∅ andT 6= ∅ are the key space
and the tweak space respectively. We shall writeET

K(.) instead ofE(K, T, .). The inverse of an enciphering scheme
is D = E−1 whereX = DT

K(Y ) if and only if ET
K(X) = Y .

Let PermT (ML) denote the set of all functionsπ : T × ML → ML whereπ(T , .) is a length preserving
permutation. Such aπ ∈ PermT (ML) is called a tweak indexed permutation. For a tweakable enciphering scheme
E : K × T ×ML →ML, we define the advantage of an adversaryA has in distinguishingE and its inverse from a
random tweak indexed permutation and its inverse in the following manner.

AdvtSPRP
E

(A) =
∣

∣

∣
Pr

[

K
$
← K : AEK(.,.),E−1

K
(.,.) ⇒ 1

]

− Pr
[

π
$
← PermT (ML) : Aπ(.,.),π−1(.,.) ⇒ 1

]∣

∣

∣
. (2)

Here,π
$
← PermT (ML) means that for eachℓ ∈ L andT ∈ T we choose a tweakable random permutation

πT from Perm(ℓ) independently. We defineInsectSPRP
E

(q, σ) by maxAAdvtSPRP
E

(A) where maximum is taken
over all allowed adversaries which makes at mostq queries having at mostσ many blocks. Now we define tweakable
version of SPRP security. We skip the proof as it is very similar to Theorem 3.1.
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Theorem 3.2 Let E be a keyed family of tweakable length-preserving random permutation defined over({0, 1}n)+.
Let f be a keyed family of functions defined from{0, 1}n to {0, 1}n andH is an ǫ-universal hash function. Then we
have

InsectSPRP
E

(q, σ) ≤ InsectSPRP
E

(q, σ) + InsecWPRF
f (q) + (2ǫ + 1/2n)×

q(q − 1)

2
.

4 Conclusion

This paper presents a generic method to construct an encryption algorithm defined over arbitrary messages of size
at leastn out of an encryption algorithm which only can encrypt messages of size multiple ofn. This method is
potentially more efficient than recently proposed generic construction XLS. This approach has similarity with the
approaches used in counter modes SPRP. But, those approaches are specific for counter modes SPRP and it is not clear
how it can be used for other non-counter type constructions such as HEH, TET, EME etc. It is true that this generic
approach may not give more efficient construction for variable length encryption (e.g.,EME∗ is efficient compared
with our method applied to EME). But, most of the cases it provides a similar performance as the original variants for
the specific constructions (for example, HEH and all counter based modes of operations) except the fact that it uses
more keys. It would be interesting to have a generic secure domain extension without using any extra key. As of a
theoretical interest, this result would carry a significance contribution and provides some idea how one extend domain
for a given security notion in an efficient manner based on security notions which are as much as possible weaker
security notions.
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