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Abstract 
This paper proposes a novel and practical model-based learning approach with iterative refinement for solving 
continuous (and hybrid) Markov decision processes. Initially, an approximate model is learned using conventional 
sampling methods and solved to obtain a policy. Iteratively, the approximate model is refined using variance in 
the utility values as partition criterion. In the learning phase, initial reward and transition functions are obtained by 
sampling the state–action space. The samples are used to induce a decision tree predicting reward values from 
which an initial partition of the state space is built. The samples are also used to induce a factored MDP. The state 
abstraction is then refined by splitting states only where the split is locally important. The main contributions of 
this paper are the use of sampling to construct an abstraction, and a local refinement process of the state 
abstraction based on utility variance. The proposed technique was tested in AsistO, an intelligent recommender 
system for power plant operation, where we solved two versions of a complex hybrid continuous-discrete 
problem. We show how our technique approximates a solution even in cases where standard methods explode 
computationally.   
Keywords: Recommender systems, power plants, Markov decision processes, abstractions.  
 
Resumen 
Este artículo propone una técnica novedosa y práctica de aprendizaje basada en modelos con refinamiento 
iterativo para resolver procesos de decisión de Markov (MDPs) continuos. Inicialmente, se aprende un modelo 
aproximado usando métodos de muestreo convencionales, el cual se resuelve para obtener una política. 
Iterativamente, el modelo aproximado se refina con base en la varianza de los valores de la utilidad esperada. En 
la fase de aprendizaje, se obtienen las funciones de recompensa inmediata y de transición mediante muestras del 
tipo estado-acción.  Éstas primero se usan para inducir un árbol de decisión que predice los valores de recompensa 
y a partir del cual se construye una partición inicial del espacio de estados. Posteriormente, las muestras también 
se usan para inducir un MDP factorizado. Finalmente, la abstracción de espacio de estados resultante se refina 
dividiendo aquellos estados donde pueda haber cambios en la política. Las contribuciones principales de este 
trabajo son el uso de datos para construir una abstracción inicial, y el proceso de refinamiento local basado en la 
varianza de la utilidad.  La técnica propuesta fue probada en AsistO, un sistema inteligente de recomendaciones 
para la operación de plantas generadoras de electricidad, donde resolvimos dos versiones de un problema 
complejo con variables híbridas continuas y discretas. Aquí mostramos como nuestra técnica aproxima una 
solución aun en casos donde los métodos estándar explotan computacionalmente.  
Palabras clave: Sistemas de recomendaciones, plantas generadoras, procesos de decisión de Markov, 
abstracciones.  

 
1 Introduction 
 
Markov Decision Processes (MDPs) [18] have developed as a standard method for decision-theoretic planning. 
Traditional MDP solution techniques have the drawback that they require an explicit state representation, limiting 
their applicability to real-world problems. Factored representations [6] help to address this drawback via compactly 
specifying state-spaces in factored form by using dynamic Bayesian networks or decision diagrams. Given that 
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algorithms for planning using MDPs still run in time polynomial in the size of the state space, they do not guarantee 
that a factored model for high dimensional domains will be solved efficiently. Abstraction and aggregation methods 
give us the tools to deal with these difficulties so that planning in real world problems can become tractable. 
However, these techniques generally apply only to problems with discrete state and action spaces.  

The problem with continuous MDPs (CMDPs) is that if the continuous space is discretized to find a solution, 
the discretization causes yet another level of exponential blow up. This “curse of dimensionality” has limited the use 
of the MDP framework, and overcoming it has become a relevant topic of research.  

Two recent methods to solve CMDPs are grid-based MDP discretizations and parametric approximations. The 
idea behind the grid-based MDPs discretizations technique is to discretize the state-space in a set of grid points and 
approximate value functions over such points. Unfortunately, classic grid algorithms scale up exponentially with the 
number of state variables [5]. An alternative way to solve a continuous-state MDP is to approximate the optimal 
value function  with an appropriate parametric function model [4]. The parameters of the model are fitted 
iteratively by applying one step Bellman backups to a finite set of state points arranged on a fixed grid or obtained 
through Monte Carlo sampling. A least squares criterion is used to fit the parameters of the model. In addition to 
parallel updates and optimizations, on-line update schemes based on gradient decent [4] can be used to optimize the 
parameters. The disadvantages of these methods are their instability and possible divergence [3].  

( )V s

Several authors, e.g., [17], use the notions of abstraction and aggregation to group states that are similar with 
respect to certain problem characteristics to further reduce the complexity of the representation or the solution. Feng 
[11] proposes a state aggregation approach for exploiting the structure of MDPs with continuous variables. The state 
space is dynamically partitioned into regions where the value function is the same throughout each region. Li et al. 
[15] address hybrid state spaces using a discretization-free approach called lazy approximation and present a 
comparison with the Feng’s work finding that their method produced reasonable and consistent results in a more 
complex version of the planet rover domain (also used by Feng). Hauskrech [13] shows that approximate linear 
programming is able to solve factored continuous MDPs. Similarly, Guestrin [12] presents a framework to model 
and solve factored MDPs for both discrete and continuous problems in collaborative settings.  

Our approach is related to this work; however it differs on several aspects. First, it is based on qualitative 
models, which are particularly useful for domains with continuous state variables. It also differs in the way in which 
the abstraction is built. We use training data to learn a decision tree for the reward function, from which we deduce 
an abstraction called qualitative states. There has been other work on variable-resolution grids [16,7], however, most 
of them start from a uniform grid. The idea of refining an initial abstraction for discrete state spaces has been also 
suggested in [1], however we introduce a different refinement criteria. The initial abstraction is refined and improved 
via a local iterative process. States with high variance in their value with respect to neighboring states are partitioned, 
and the MDP is solved locally to improve the policy. At each stage in the refinement process, only one state is 
partitioned, and the process finishes when any potential partition does not change the policy. In our approach, the 
reward function and transition model are learned from a random exploration of the environment, and can work with 
both, pure continuous spaces; or hybrid, with continuous and discrete variables.  

Algorithms such as like Dyna-Q or prioritized sweeping (e.g., see [21]) from the reinforcement learning 
community, have been used to learn a transition model while exploring the environment. In contrast to these and 
other previous approaches, our method learns automatically both an abstraction and a model by just sampling the 
environment. This abstraction is iteratively refined based on local information, making the refinement very efficient. 
Thus, our method is, on one hand, simpler than other abstraction and refinement approaches; and on the other hand, 
it automatically builds the model and abstraction. The main contributions are the use of sampling to construct an 
abstraction, and a local refinement of the initial abstraction based on utility variance.  

We have tested our method in a high-dimensional problem in the power plant domain, in which the state space 
can be either continuous or hybrid continuous-discrete. We show how our technique approximates a solution even in 
cases where standard methods explode computationally.  

The rest of the paper is organized as follows. The next section describes our domain of interest and the 
associated planning problem. Section 3 gives a brief introduction to MDPs and their factored representation. 
Section 4 develops the abstraction process and a procedure to learn such abstraction from data. Section 5 explains the 
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refinement stage. Section 6 presents AsistO, a recommender system for power plant operation, which implements the 
notion of qualitative MDPs in its planning subsystem; and the empirical evaluation is described. We conclude with a 
summary and directions for future work.  
 
2 Application Domain 
 
Our domain of interest lies on the steam generation system of a combined-cycle power plant. This system, which is 
aimed to provide superheated steam to a steam turbine, is basically composed by a recovery steam generator, a 
recirculation pump, control valves and interconnection pipes. A heat recovery steam generator (HRSG) is a process 
machinery capable of recovering residual energy from a gas turbine exhaust gases to generate high pressure (Pd) 
steam in a special tank (steam drum). The recirculation pump is a device that extracts residual water from the steam 
drum to keep a water supply in the HRSG (Ffw). The result of this process is a high-pressure steam flow (Fms) that 
keeps running a steam turbine to produce electric energy (g) in a power generator. The main control elements 
associated are the feed-water valve (fwv) and the main steam valve (msv). The complete process control domain is 
shown in figure 1.  

During normal operation, a three-element feed–water control system (eCS) commands the feed-water control 
valve (fwv) to regulate the level (dl) and pressure (pd) in the drum. However, this traditional controller does not 
consider the possibility of failures in the control loop (valves, instrumentation, or any other process devices). 
Furthermore, it ignores whether the outcomes of executing a decision will help in the future to increase the steam 
drum lifetime, security, and productivity. So, the problem is to obtain a function that maps plant states to 
recommendations that considers all these aspects. Under the MDP framework, the potential failures are considered 
implicitly in a transition function, and the security and productivity goals are included in the reward. Thus, MDPs 
provide an adequate model for this problem; however, standard solutions explode computationally and can not deal 
with continuous variables. Next we give a brief review of MDPs, and then we present our method for solving 
continuous and complex MDPs, required for the power plan domain.  

 

 
Fig. 1. A simplified diagram of steam generation process. Aimed to provide superheated steam to a turbine, the 
steam generation system is basically composed of a recovery steam generator, a recirculation pump, control valves 
and interconnection pipes 
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3 Factored Markov Decision Processes 
 
A Markov decision process (MDP) [18] models a sequential decision problem, in which a system evolves in time and 
is controlled by an agent. The system dynamics is governed by a probabilistic transition function Φ  that maps states 

 and actions  to new states . At each time, an agent receives a reward S A ′S R  that depends on the current state  
and the applied action a . Thus, they solve the problem of finding a recommendation strategy or policy that 
maximizes the expected reward over time and also deals with the uncertainty on the effects of an action.  

s

Formally, an MDP is a tuple M S A R=< , ,Φ, > , where  is a finite set of states . S 1 n{s … s }, , A  is a finite 

set of actions for all states. A S SΦ : × ×  is the state transition function specified as a probability distribution. The 
probability of reaching state  by performing action  in state  is written as s′ a s ( )a s s′Φ , , .  is the 
reward function. 

R S A: × → ℜ
( )R s a,  is the reward that the agent receives if it takes action  in state .  a s

For the discrete discounted infinite-horizon case with any given discount factorγ , there is a policy π ∗  that is 
optimal regardless of the starting state and that satisfies the Bellman equation [2]:  

 
( ) ( ) ( ) ( )a

s
V s max {R s a a s s V s }π πγ

∈

′ ′= , + Φ , ,∑
S

 (1) 

 
In Continuous Markov Decision Processes (CMDPs) the optimal value function satisfies the Bellman fixed 

point equation:  
 

( ) [ ( ) ( ) ( ) ]a s
V s max R s a a s s V s dsγ

′
′ ′ ′= , + Φ , ,∫  (2) 

 
Two methods for solving these equations and finding an optimal policy for an MDP are: (a) dynamic 

programming [18] and (b) linear programming.  
In a factored MDP, the set of states is described via a set of random variables 1 n{X … X }= , ,X , where each 

iX  takes on values in some finite domain . A state  defines a value ( )iDom X s ( )i ix Dom X∈  for each 

variable iX . The transition model can be exponentially large if it is explicitly represented as matrices, however, the 
frameworks of dynamic Bayesian networks (DBN) [10] and decision trees [19] give us the tools to describe the 
transition model and the reward function concisely.  

 

  
Fig. 2. A simple DBN with 5 state variables for one action (left). Influence Diagram denoting a reward function 
(center). Structured conditional reward (CR) represented as a binary decision tree (right) 
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Let iX  denote a variable at the current time and 'iX  the variable at the next step. The of 

a DBN is a two–layer directed acyclic graph  whose nodes are

transition graph

TG { }1 1' 'nX … X X … X, , , , , n , see figure 2 (left). 

Each node 'iX  is associated with a conditional probability distribution (CPD) , which 
is usually represented by a matrix (conditional probability table) or more compactly by a decision tree. The 
transition probability  is then defined to be 

( ' | ( ' ))i iP X Parents XΦ

( iia s sΦ , , ′ ) ( ' | )i iP xΦΠ iu  where  represents the values of the 

variables in .  The next value X', often depends on a small  subset of variables (Parents(X')) 
simplifying the transition  function. 

iu
( ' )iParents X

The reward associated with a state often depends only on the values of certain features of the state. The 
relationship between rewards and state variables can be represented with value nodes in influence diagrams, as 
shown in figure 2 (center). The conditional reward tables (CRT) for such a node is a table that associates a reward 
with every combination of values for its parents in the graph. This table is locally exponential in the number of 
relevant variables. Although in the worst case the CRT will take exponential space to store the reward function, in 
many cases the reward function exhibits structure allowing it to be represented compactly using decision trees or 
graphs, as shown in figure 2 (right).  
 
4 Qualitative MDPs 
 
Although factored MDPs provide important reductions in the representation of transition and reward functions, in 
cases of problems with high dimensionality there can still be a large number of states involved. On the other hand, 
defining a suitable partition of the state space by a human expert is not an easy task. In this paper, we propose a 
novel approach to automatically define abstract states, and a procedure to approximate a decision model from data.  
In the proposed method, we gather information about the rewards and the dynamics of the system by exploring the 
environment. This information is used to build a decision tree [20] representing a small set of abstract states (called 
the qualitative partition) with equivalent rewards, and then is used to learn a probabilistic transition function using a 
Bayesian network learning algorithm [9]. The resulting approximate MDP model can be solved using traditional 
dynamic programming algorithms.  
 
4.1. Qualitative states 
A qualitative state1 (or q–state), , is a set of states (or a partition of the state space in the continuous case) that 

share similar immediate rewards. A qualitative state space, , is a set of q–states: , also called the 
qualitative partition.  

iq
Q 1 2 nq q q, , ..

Similarly to the reward function in a factored MDP, the qualitative constrains that distinguish regions of the 
state space with different reward values, can be represented by a decision tree called Reward Decision Tree (RDT). 
Since a qualitative state maps directly a reward value, a qualitative partition  can also be represented by a binary 
decision tree (Q–tree). In order to obtain a Q–tree, a reward decision tree (RDT) is first induced from simulated data 
and then transformed by simply renaming the reward values to q-state labels. Each leave in the Q–tree is labeled with 
a new qualitative state. Even for leaves with the same reward value, we assign a different qualitative state value. This 
produces more states but at the same time creates more guidance that helps to produce more adequate policies. 
Figure 3 illustrates this tree transformation for a simple two dimensional case that represents a Temperature-Volume 
diagram for an ideal gas.  

Q

                                                 
1Although other authors have used the term qualitative in a temporal sense, this work refers to “qualitative” in a relational spatial sense. 
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Fig. 3. Transformation of the reward decision tree (left) into a Q-tree (right). Internal nodes in both trees represent 
continuous variables and edges evaluate whether this variable is less or greater than a particular bound. Leaf nodes 
in the RDT represent rewards, and in the Q-tree are q-states 

 
Each branch in the Q–tree denotes a set of constraints for each q–state, , that bounds a continuous region. For 

example, a qualitative state could be a region in a Temperature
iq

Volume−  diagram bounded by the constraints: 
 and . Figure 4 illustrates the constraints associated to the example presented above, and its 

representation in a 2-dimensional space. It is evident that a qualitative state can cover a large number of states (if we 
consider a fine discretization) with similar properties.  

306Temp > 48Vol >

 

 
Fig. 4. In a Q-tree (left), branches are constraints and leaves are qualitative states. A graphical representation of 
the tree is also shown (right). Note that when an upper or lower variable bound is infinite, it must be understood as 
the upper or lower variable bound in the domain 

 
4.2. Qualitative MDP Model Specification 
We can define a qualitative MDP as an MDP with a qualitative state space. A hybrid (or qualitative–discrete) MDP 
is a factored MDP with a set of qualitative and discrete factors. In this case, we have a set of discrete variables, and 
the qualitative state space Q , which is an additional factor that concentrates all the continuous variables. Initially, 
only the continuous variables involved in the reward function are considered in the learning algorithm. Other 
continues variables are discretized arbitrarily; however, this initial discretization is improved in the refinement stage, 
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as described in Section 5. Thus, a hybrid qualitative-discrete state is described in a factored form as 

{ }1 nX … X Q= , , ,hs , where 1 nX … X, ,  are the discrete factors, and  is a factor that represents the relevant 
continuous dimensions in the reward function.  

Q

 
4.3. Learning Qualitative MDPs 
The Qualitative MDP model is learned from data based on a random exploration of the environment that allows 
recording state transitions, actions taken, and the associated reward values. To better understand how a training data 
set is recorded, consider the bi-dimensional domain described above, but now assuming that the system state can be 
modified by changing the temperature and volume values. The possible actions are increase/decrease the 
temperature, increase/decrease the volume, and do nothing (the null action). Figure 5 shows graphically a possible 
data trace produced by the random application of different actions on the system. Each dot in the figure represents a 
particular state (volume and temperature) that results after the application of a particular action. Each state is 
associated also to a reward value, which corresponds to the different regions in figure 5. Thus, after exploring the 
environment we obtain a data set that records for each action, sequentially from 1t =  to , the action, resulting 
state and reward. So for the gas example, each data record will contain: =(Temperature, Volume, Action, 
Reward). From this data set, a decision model is obtained, and then solved using the value iteration algorithm.  

N
iData

Formally, this idea can be described as follows. Given a set of state transitions represented as a set of random 
variables, { }1

jO += , ,t tX A X , for , for each state and action 1 2j = , ,..., N A  executed by an agent, and a 

reward (or cost) jR  associated to each transition, we learn a qualitative factored MDP model:  
1. From a set of simulated transitions { }O R,  induce a reward decision tree, RDT , that predicts the reward 

function R  in terms of continuous and discrete state variables, 1 kX … X Q, , , . For the gas example, this tree 
corresponds to the one shown in Figure 3, left.  
2. Obtain from the decision tree ( RDT ) the set of constraints for the continuous variables relevant to 
determine the qualitative states (q–states) in the form of a Q-tree. In terms of the domain variables, we obtain a 
new variable Q  representing the reward-based qualitative state space whose values are the q–states. This 
transformation is illustrated in Figure 3 for the ideal gas example, with the resulting Q-tree (right). This Q-Tree 
is shown again in Figure 4 (left), which also shows the qualitative partition obtained (right), where the state 
space is divided into 5 qualitative states, 0 1 4q q …q, , .  

3. Qualify data from the original sample in such a way that the new set of attributes is the  variable, the 
remaining discrete and continuous variables not included in the decision tree, and the action

Q
A . The continuous 

variables not considered in the RDT tree are discretized in a coarse way with equal size intervals (this initial 
discretization is improved in the refinement stage). This transformed data set is called the qualified data set. 
For the example, the state in each record in the data set will be represented by the corresponding qualitative 
state, , instead of the numeric values of the original state variables, Vol. and Temp. These q–states are 
determined in terms of the partition of the state space, as shown in Figure 4.  

0q …q4

4. Format the qualified data set in such a way that the attributes follow a temporal causal ordering. For 
example variable  must be set before tQ 1tQ + , 1tX  before 1 1tX + , and so on. The whole set of attributes 

should be the variable Q  in time , the remaining system variables, t 1 kX … X, , , in time t , the variable Q  in 

time , the remaining system variables in time 1t + 1t + , and the action A . Thus, for the gas example, each 
record in the qualified data set will be: ( i i i tq a r ), , , where  is the q–state,  is the action,  is the reward, 

and t  is time, from  to t N  (  is the number of steps in the exploration).  
iq ia ir

0t = = N
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5. Prepare data for the induction of a 2-stage dynamic Bayesian net. According to the action space 
dimension, split the qualified data set into A| |  sets of samples, one for each action. In the gas case there will 
be 5 sets, one for each possible action: increase/decrease the temperature, increase/decrease the volume, and do 
nothing.  
6. Induce the transition model for each action, jA , using a Bayesian network learning algorithm [9]. So for 
our running example, we will induce a DBN to represent the transition model for each of the 5 actions, all in 
terms of the q–state variables.  

 
Fig. 5. Exploration trace for the ideal gas domain. Each dot in the figure represents a data point in the exploration, 
with its corresponding state (Vol. and Temp.), reward (determined by the region), and action applied to reach this 
state. Thus, by applying random actions on the system, it is possible to capture the effects of these actions (new 
states) and the immediate reward received per state 

 
At the end of this process we have learned a qualitative MDP model of the problem based on a random 

exploration of the environment, and the qualitative partition obtained from the reward decision tree. In this model, 
the transition function is represented as a set of 2–stage DBNs, one per action, and the reward by a decision tree; 
both in terms of the q–state variables. As mentioned before, if there are additional variables that are not part of the 
reward function, these are just incorporated into the model.  
This initial model represents a high-level abstraction of the continuous state space and can be solved efficiently using 
a standard technique, such as value iteration, to obtain the optimal policy. For instance, in the ideal gas example, the 
resulting policy will give the optimal action for each q-state, .  0 4q …q

This approach has been successfully applied in several domains; however, in some cases the initial abstraction 
can miss some relevant details of the domain and consequently produce sub-optimal policies. We improve this initial 
partition through a refinement stage described in the next section.  
 
5 Qualitative State Refinement 
 
We have designed a value-based algorithm that recursively selects and partitions abstract states with high utility 
variance. If there are continuous dimensions that were not included in the initial Q-tree (because they do not affect 
the reward), these are incorporated at this stage. For this, we simply extend the Q-tree with the additional dimensions 
with an initial, coarse discretization. Before we see in detail the refinement algorithm, we need to define some 
relevant concepts.  
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The border of state, , is defined as the set of states, is { }1j nS s … s= , , , such that  is a neighbor of ; 

that is, they are adjacent in at least one dimension. A region is defined as 
ks S∈ j

j

is

i ir s S= ∪ , that is, a state and its border 

states. For instance, in the ideal gas example,  and  are the border states of , and 0q 4q 3q { }3 3 0 4r q q q= , , , see 
figure 4.  

The utility variance of a region, , that corresponds to state , is defined as:  ir is
 

2 2

1

1 ( )i n

n

r qk
k

S V
n =

= −∑ rV  (3) 

 
 where n  is the number of border states for ,  is the value of each state, , in the region, and  is the 
average value of the states in the region. The value for each state is obtained when we solve the qualitative MDP, as 
described in the previous section.  

is qkV ks nrV

The utility gradient gives the difference in utility between one state, , and one of its border states, , and it 
is defined as follows:  

is ks

 
| |i i kV Vδ = −  (4) 

      
The hyper-volume of a state, , corresponds to the space occupied by the state and its obtained by the product 

of its  dimensions:  
is

d
 

1

d

i l
l

hv x
=

= ∏  (5) 

     
where lx  is the value for each dimension l .  

The refinement algorithm has as input the initial qualitative partition obtained in the learning stage and an initial 
solution for this qualitative MDP. It also requires a minimum hyper-volume for a state defined by the user, as this 
depends on the application. It proceeds as follows:  

1. Initialize all the states as unmarked.  
2. While there is an unmarked qualitative state greater than the minimum hyper-volume:  

(a) Save a copy of the previous MDP (before the partition) and its solution.  
(b) Obtain the utility variance for each state in its corresponding region.  
(c) Select a qualitative state with the highest variance in its utility value with respect to its neighbors, 
name it .  iq
(d) For the qualitative state  select a continuous dimension to split it, from (iq 0 1 nx x … x, , , ), such that 
it has the highest utility gradient with respect to its border states along this dimension.  
(e) Bisect the q-state  over the selected dimension (divide the state in two).  iq
(f) Solve the new MDP, which includes the new partition, using value iteration.  
(g) If the new MDP has the same policy as before, mark the original state  before the partition, and 
return to the previous MDP, otherwise, accept the refinement and continue.  

iq

3. Return the final partition and its solution.  
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The refinement process is now described for the ideal gas example. Figure 6 illustrates 3 steps in the abstraction 
process for the example in figure 4. The initial partition is shown at the top–left. Let us assume that the state  has 

the highest variance in utility with respect to its neighbors, 
0q

1 2 3 4q q q q, , , ; and that Vol  is the dimension with the 

highest difference in utility. A bisection is then inserted to split state  in the new states  and  (Step 1, top–
right). The remaining states are relabeled to preserve a progressive numbering. After solving the new MDP and 
verifying that the policy has changed, the bisection is accepted and the algorithm proceeds to Step 2 (bottom-left). In 
this case  is the state with the highest variance and it is split on the Te

.

0q 0q 1q

1q mp.  dimension which is the dimension 
with the highest difference in utility. However, after solving the new MDP, the policy does not change, so the 
division is canceled and it returns to the previous partition, as depicted in the bottom-right of figure 6. Thus, this state 
will be marked and not considered for subsequent partitions.  
 

 
Fig. 6. An example of the qualitative refinement process for a two-dimension state space. Initial partition: the 
initial solution obtained before, for each q–state its value and optimal action are shown. Step 1: the state with 
highest variance  is bisected along the dimension with highest variance, Vol. Note that the q–states have been 

renamed. Step 2: now  is partitioned along the Temp. dimension. Step 3: as there is no change in policy for the 
partition in Step 2, it returns to the partition in Step 1 

0q

1q

 
Next we describe how the qualitative MDP approach was applied in the power plant domain.  
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6 AsistO: A Recommender System for Power Plants 
 
AsistO is an intelligent assistant that provides useful recommendations for training and on-line assistance in the 
power plant domain. AsistO was built specially to demonstrate the potential of the qualitative MDP approach to 
solve planning problems in complex domains. The recommender system is coupled to a power plant simulator 
capable to partially reproduce the operation of a combined cycle power plant (CCPP), in particular, the steam 
generation process (HRSG), described in section 2.  

The simulator (figure 7) is provided with controls for setting up the power conditions in the gas and steam 
turbines (nominal load, medium load, minimum load, hot standby condition, low speed, and start-up). It includes an 
operation panel to configure load demands, unit trips, shutdowns, and other high level operations in different plant 
subsystems. It also includes a visualization tool for tracking the behavior in time of a set of variables selected by the 
user, and a function for recording historical data.  
 

 
Fig. 7. A screen shot of human–computer interface of the steam generation simulator. The simulator provides 
controls, an operation panel, and data visualization tools 

 
6.1. General Architecture 
The AsistO recommender system is composed by a decision model base, a simulation data base, and the following 
subsystems: i) data management, ii) model management, iii) planning subsystem, and iv) user interface. Figure 8 
shows AsistO’s general architecture.  

The simulation data base allocates the process signals generated by the simulator (outputs), and the control 
signals (inputs) sent by an instructor to set up a specific electric load or failure condition in the process. On the other 
hand, the decision model base stores the qualitative MDP model of the process and its solution in form of a policy. 
That is, it has the optimal action that will be recommended to the operator for every state of the plant subprocess 
considered. The policy is based on a factored representation of the plant q-states (see section 4.2), and represented in 
the form of algebraic decision diagrams (ADDs) [14].  
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Fig. 8. AsistO’s general architecture. Given a state of the plant obtained from the simulation data base, the 
planning subsystem queries a recommendation to the decision model base. This recommendation is presented to 
the operator via the user interface 

 
The data management subsystem is composed by a set of tools for data administration and analysis. The model 

management subsystem manipulates the transition and reward models, and the utility and policy functions stored in 
the decision model base. The transition model management system was implemented in Elvira [8] (which also was 
adapted to compute Dynamic Bayesian Networks), and the reward model management system using Weka [22]. The 
management of the policy and utility models is carried out using SPUDD [14], which includes model query and 
printing capabilities.  

The planning subsystem in AsistO is also based on SPUDD [14], which implements a very efficient version of 
the value iteration algorithm for MDPs as inference method. The planning subsystem first approximates the decision 
models using the data allocated in the simulation data base. Transition and reward models are respectively learned 
using the K2 [9] algorithm available in Elvira, and the C4.5 algorithm available in Weka (J4.8) [20]. Then it uses 
these models and its inference algorithms to obtain an optimal policy, from which the recommendations that will be 
given to the operator are obtained. The resulting transition and reward functions, and policy and utility functions are 
then stored in the decision model base. The planning subsystem transforms the continuous plant state into the 
qualitative representation described in sections 4 and 5 for problem specification and policy query purposes.  

The user interface provides the communication with the environment. In this case, the power plant simulator is 
the environment, and the operator is the actor that executes the recommendations that modify the environment. The 
user interface provides controls for command execution, load selection, failure simulation, and recommendation 
display. This module, which can also be used as a supervision console, includes the controls for random exploration 
and system sampling for the learning purposes described in section 4.3. It also provides a graphical interface to 
observe how fast the correct execution of recommendations impact on the plant operation. The main screen of the 
user interface is shown in Figure 9.  

Currently AsistO is used for operator training. In a training session, the planning subsystem obtains the plant q-
state from the simulation data base. Then it queries the policy function for the current q-state in the model base to 
obtain a recommendation. Both, current q-state and recommendation are shown graphically to the operator through 
the user interface, who finally decides whether or not to execute the recommended command. The sequential 
execution of these recommendations will help the operator to get the plant to an optimal operating condition.  
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Fig. 9. User Interface. It is the graphical link between the recommender system and the operator. It includes 
supervision features, problem specification utilities, display console, and manual control capabilities 

 
6.2. Experimental Results 
We used AsistO to run two sets of experiments with different complexities. In the first set of experiments, we 
specified a 5-action hybrid problem with 5 variables ( Fms Ffw Pd g d, , , , ). We also defined a simple binary 
reward function based on the safety parameters of the drum (  and ). The relationship between their values 
and the reward received can be seen in figure 10 (left). Central black squares denote safe states (desired operation 
regions), and white zones represent non-rewarded zones (indifferent regions). To learn the model and the initial 
abstraction, samples of the system dynamics were gathered using simulation. Black dots in figure 10 (right) represent 
sampled states with positive reward, red (gray) dots have no reward, and white zones were simply not explored. 
Figure 10 (left) shows the state partition and policy found (arrows) by the learning system. For this simple example, 
although the resulting policy is not very detailed (  are quite large), it directs the plant to the optimal 
operating condition (black region in the middle). When analyzed by an expert operator, this control strategy is near-
optimal in most of the abstract states.  

Pd Fms

qstates

We solved the same problem but adding two extra variables, the position for valves  and msv fwv , and using 
9 actions (all the combinations of open-close valves  and msv fwv ). We also redefined the reward function to 
maximize power generation, , under safe conditions in the drum. Although the problem increased significantly in 
complexity, the policy obtained is “smoother” than the 5-action simple version presented above. To give an idea 
about the computational saving, for a fine discretization (15,200 discrete states) this problem was solved in 859.2350 
seconds, while our abstract representation (40 q-states) took only 14.2970 seconds. In both cases, the solutions were 
found using the SPUDD system [14].  

g

In summary, the first experiment shows that the proposed approach obtains approximately optimal policies; 
while the second experiment demonstrates a significant reduction in the solution time in comparison to a fine 
discretization of the state space.  
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Fig. 10. Process control problem. Left: qualitative state partition in terms of the Steam Flow and Drum Pressure. 
For each q–state it shows the optimal action (arrows). The black region represents the desired operating state (high 
reward). Right: an image of the exploration trace, where black dots represent sampled states with positive reward, 
red dots (gray) are sampled states with no reward, and white regions are unexplored zones 

 
7 Conclusions and Future Work 
 
In this paper, we presented a novel and practical model-based learning approach with iterative refinement for solving 
continuous and hybrid Markov decision processes. In the first phase we use an exploration strategy of the 
environment and a machine learning approach to induce an initial state abstraction. We then follow a refinement 
process to improve the initial abstraction by performing local tests on the variance of utility values. Our approach 
creates significant reductions in space and time allowing to solve efficiently continuous and hybrid problems. We 
tested our method in a power plant domain using AsistO, showing that this approach can be applied to complex 
domains where a simple dicretization approach is not feasible or computationally too expensive.  

Since AsistO is aimed either for operation assistance and operator training, we are currently developing an extra 
module that explains the recommended commands generated by the planning subsystem and, provides, after a bad 
decision, the reason why a recommendation should have been followed. We plan to extend the planning subsystem to 
support partially observable MDPs, and use the AsistO architecture in other power plant applications.  

As future research work we will like to improve our refinement strategy to select a better segmentation of the 
abstract states and consider alternative search strategies. We also plan to test our approach in other domains.  
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