

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

Model Based Testing for Workflow Enabled Applications

Pruebas Basadas en Modelos para Aplicaciones Basadas en Workflows

Mario E. Sánchez
1
, Camilo H. Jiménez

2
 and Jorge A. Villalobos

3

1
Departamento de Ingeniería de Sistemas y Computación, Universidad de los Andes

Bogotá, Colombia
Software Languages Lab, Vrije Universiteit Brussel

Bruselas, Bélgica
mar-san1@uniandes.edu.co

2
Departamento de Ingeniería de Sistemas y Computación, Universidad de los Andes

Bogotá, Colombia
camil-ji@uniandes.edu.co

3
Departamento de Ingeniería de Sistemas y Computación, Universidad de los Andes

Bogotá, Colombia
jvillalo@uniandes.edu.co

Article received on October 22, 2009; accepted on May 18, 2010

Abstract. In recent years, workflow enabled applications
have been used in an increasing number of contexts. This
has required the swift development of new workflow
languages and of their corresponding engines. However,
the tools available to support the development of these
engines are insufficient. In particular, the tools to test the
implementation of engines have serious limitations, and
are not well suited to test workflows. To address this
problem we have developed ATF, a framework to build
test environments and test suites for workflow engines.
ATF is complemented by TDR, a roadmap that specifies the
steps to adapt ATF to specific workflow languages and
engines; TDR also specifies the steps to develop a complete
test suite. This paper presents both the ATF and the TDR,
and illustrates their usage in the context of a workflow
engine built using the Cumbia platform.
Keywords: Model-based Testing, Workflow Testing, Test
Scenarios, Trace-based Execution Analysis, Model Driven
Engineering, Cumbia.

Resumen. La aplicación de la tecnología de los workflows a
un gran número de contextos ha traído consigo la
necesidad de desarrollar rápidamente nuevos lenguajes de
workflow con sus correspondientes motores. Sin embargo,
las herramientas para apoyar este desarrollo son
insuficientes y en particular lo son las que servirían para
probar que los motores implementen correctamente la
semántica de los lenguajes. Para enfrentar esta limitación,
hemos desarrollado ATF, un framework abstracto para el
desarrollo de entornos de prueba y escenarios de prueba
para nuevos motores y nuevos lenguajes de workflow. ATF
es complementado por TDR, una hoja de ruta que
especifica los pasos para construir un nuevo ambiente de
pruebas basada en ATF. Este artículo presenta tanto ATF
como TDR e ilustra la forma en la que se utilizaron para
probar un motor de workflow construido sobre la
plataforma Cumbia

Palabras clave: Pruebas basadas en modelos, pruebas de
workflows, escenarios de prueba, análisis de ejecución
basado en trazas, ingeniería basada en modelos, Cumbia.

1 Introduction

Workflow enabled applications is a term to describe
applications whose functionalities strongly depend
on a workflow engine. Very broadly, this means that
these applications use workflow modeling languages
to describe workflow models, and also that workflow
engines are used to instantiate, enact, control, and
monitor these workflow models. Nowadays, these
applications are gaining more and more popularity
because of the benefits they bring, such as flexibility
and efficiency gains related to increased control and
visibility of business processes. This can be seen in
the large number of domains where these
applications are used, which include business
process management (BPM), complex scientific
applications, computer aided design and
engineering, and e-learning. In order to use
workflows to solve problems in all those different
domains it has been necessary to define hundreds
of workflow modeling languages. Consequently,
engines for enacting those languages have also
been developed as well. This trend is not stopping,
and new languages and engines continue to be
developed every month.

Furthermore, it must be considered that
workflows are only useful as long as the concepts
and structures in the language reflect the concepts

336 Mario E. Sánchez, Camilo H. Jiménez

 and Jorge A. Villalobos

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

and structures of the domains. Thus, changes to the
domains have a direct impact on the workflow
languages. Because of this, workflow enabled
applications should be capable of quickly evolving to
accommodate new requirements. This makes it
necessary for workflow developers to adopt
techniques, tools and processes that enable the
quick development and modification of languages
and engines.

From the point of view of software development,
having tools to automatically test workflow engines
is an important requirement to support their
continuous evolution. This is true for the majority of
applications, but in the case of workflows there are
two factors that make it even more important. First of
all, new versions of a workflow engine are usually
required to be backwards compatible, in order to
support old workflow models. Thus, automatically
performing regression tests is an important concern.
Secondly, the development cycles tend to be very
short: new features should be implemented and
ready to deploy in merely weeks, and it might be
impossible to extensively test an entire application
without automatized tools.

Automatically testing workflow engines poses
interesting requirements and challenges. First of all,
it is necessary to have test suites capable of
evolving with the workflow languages. This means
that changes to the languages or to the engines
should not invalidate existing test suites unless it is
totally unavoidable. Furthermore, when workflows
engines are developed it is critical to assert the
consistency between languages semantics and
engines implementations. Thus, testing tools should
ease these kinds of verifications. Finally, most
workflows include constructs to express parallelism
and are inherently concurrent. Thus, tools to
automatically test workflows should take into
account many concurrency-related issues that
increase the complexity of test cases. As section 2
shows, existing testing tools are fairly limited in their
support for the described requirements.

Cumbia is an advanced platform to build
workflow enabled applications based on executable
models (18). This platform has been used to develop
ad hoc workflow languages like XPM or
PaperXpress (19), and also for common workflow
languages such as BPEL or BPMN. One important
goal of Cumbia is to support the development of
workflow languages and engines that are highly
extensible. Thus, Cumbia's developers quickly faced
the problem of testing the engines and, in particular,
testing the conformance of the engines with

language semantics. Their initial approach involved
a test framework based on JUnit, but it was too
limited and had many problems when dealing with
concurrency. A different approach was soon
proposed, which was inspired by model-based
testing (MBT) and relied on the definition of
complementary test languages. This paper presents
the results of studying, developing and applying this
approach.

The contributions presented in this paper are
two. In the first place, it introduces the set of tools
developed to test Cumbia-based workflows. These
tools are called ATF – Abstract Test Framework,
and they are a framework to develop model-based
test environments and test suites for specific
workflow applications. Throughout the paper ATF is
presented and its usage is illustrated by showing
how to test the implementation of JCumbia.
JCumbia is a Cumbia-based workflow engine that
executes processes described using the workflow
languages called XPM. Although it was originally
developed for Cumbia, the ATF can also be used to
test other workflows, provided that they offer the
necessary interfaces to query and control their state.

The second contribution of this paper is the TDR-
Test Development Roadmap. This roadmap offers
guidelines to select, design, and develop test cases
for the ATF. It also specifies a set of steps to adapt
the ATF to test particular workflow languages and
engines.

The paper is structured as follows. Section 2
describes the problems associated to testing
workflow engines, and shows how this problem has
been tackled in the past and how it can be tackled
using an MBT approach. Next, the paper presents
the proposed testing approach in detail: section 3
presents the generalities of the strategy and of the
ATF; then, section 4 presents the TDR. Finally, the
previously presented concepts are illustrated using
JCumbia as a case study.

2 Model Based Testing in Workflows

Testing workflow engines in general and,
specifically, testing workflow engines to verify its
compliance to workflow language semantics, must
take into account particular requirements. In the first
place, it is not enough to check the outputs of an
execution to assert the correctness of the
implementation. Instead, it is necessary to verify
intermediate results, and the correct execution and
interaction of every element involved. Another

 Model Based Testing for Workflow Enabled Applications 337

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

characteristic of workflows is a high degree of
concurrency that opens the possibility of having
inconsistencies and de-synchronizations caused by
invasive testing techniques. In addition, workflow
languages and engines tend to evolve and it is thus
necessary to have test suites and testing
environments that can be grown and evolved easily
to accommodate new requirements. Finally, it is
critical for workflow engines to support multiple
concurrent instances of the processes. Thus, testing
environments must support multiple, concurrent
instances, and offer capabilities to check that they
are correctly isolated.

The general topic of testing workflows can be
addressed from two perspectives. In the first place,
there has been works on testing workflow models,
that is, testing specific processes and verifying their
correct structure and execution. These works
assume that the engines used to execute the
models are properly implemented. Several
techniques have been applied to this end, including
colored Petri-nets analysis (8), model-checking (2,4)
or unit testing (12,16). Some more concrete
examples are BPELUnit and the Oracle BPEL Test
Framework (5,14): these two tools offer the means
to instantiate BPEL processes and provide the
necessary stimuli to control their execution.

The second testing perspective is related to
testing workflow engines; that is, verifying that the
engines do implement the language semantics.
Unfortunately, to the best of our knowledge there
has been little specific research on this topic.
Nevertheless, there are at least two examples of
testing workflow implementations that focus on
verifying that specific features of the engines are
correctly implemented. The first example is an
engine executing processes defined using BPEL
(17), called Apache ODE

1
. As part of this project, a

framework was constructed to automatically run test
processes and evaluate their results against some
expected values. They already have more than 50
different processes that test features such as flows,
if constructions, fault handlers, timers, and others.
The downside of this approach is that these are only
black-box tests, that rely on final outputs, and that
can oversee internal errors. The second example is
that of JBoss jBPM

2
, which is open-source and

provides a set of JUnit tests. These tests include
many aspects of the engine, but they are low level.

1 Apache ODE: http://ode.apache.org

2 JBoss jBPM: http://www.jboss.org/jbossjbpm/

However, it doesn’t show how concurrency issues
are dealt, since they use an x-Unit test framework.

Testing of workflow engines is hindered by two
characteristics fundamental to workflow applications,
namely concurrency and non-determinism. The
problem of testing applications with these
characteristics has been studied in other contexts,
and special attention has been applied to the
mechanisms to get relevant information about the
execution without creating interference. For
instance, it has been argued that in concurrent
applications the success of a JUnit test does not
imply the validation of the code (3). Because of this,
a framework called Concutest -JUnit

3
 was developed

to fix problems of the original JUnit implementation.
The approach to testing concurrent applications
presented Kortenkamp et al. in (11) was an
important inspiration for our work. Their work is
based on traces, which are captured during the
execution of the system and are analyzed offline
with respect to formal correctness requirements. On
the contrary, works such as Java-MaC (9) and
Temporal Rover (18) show that capture and analysis
of execution information can happen online using
specially instrumented code.

The problem of testing non-deterministic
applications has been tackled in works such as (13),
(10) and (7). These three works address the
problem in the context of multithreaded Java
applications, and they put particular attention on the
problem of exploring every possible execution path.

Model Based Testing (MBT) is an approach for
testing by comparing the behavior and outputs of a
system under test (SUT) with the behavior and
outputs of a model of the SUT (1). Thus, in a typical
MBT scenario there is a model that abstracts the
SUT’s intended behavior. Even though the SUT and
the model are built on the grounds of the same set
of requirements, the model is expected to be simpler
than the SUT and leave out details that are not
relevant for the tests. With MBT, testing proceeds as

follows (see figure 1). First, a set of test cases is

selected according to certain criteria. Then, a testing
infrastructure applies the inputs described in each
test case to the SUT and to the model. Note that
these inputs (inputs and inputs’ in figure 1) are not
exactly the same, because there may be differences
in format or level of detail. The last step of the
testing procedure compares the outputs produced
by the SUT and the outputs produced by the model.

3 Concutest: http://www.concutest.org/

338 Mario E. Sánchez, Camilo H. Jiménez

 and Jorge A. Villalobos

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

The result of the comparison is a verdict that states
whether the SUT passed the tests, if it failed them,
or whether the results were inconclusive (20).

Fig. 1. Model Based Testing

MBT has been applied in many different

contexts using different tools. As a result, different
specific techniques have been used in each step, as
the taxonomy proposed in (20) shows. In this
taxonomy, one variation point is the modeling
technique used to abstract the SUT: it may involve
different amounts of detail, different paradigms, or
different characteristics such as non-determinism.
Another variation point is the technique used to
build the test cases, which ranges from manual to
various automated generative approaches.This is
closely related to the criteria used in the selection of
test cases, which rely on how they are built.

Based on the aforementioned works, and on the
experience with JCumbia, we designed an approach
based on MBT to test workflow engines and, in
particular, test Cumbia-based workflow engines.
This strategy specializes the elements shown in

figure 1 to address specific problems of the workflow
context (see figure 2): In the first place, the main
requirement of a workflow engine is the semantics of
the workflow modeling language. This kind of
semantics is usually expressed informally, although
a few languages also have formal specifications. For
example, BPEL has an informal specification (17)
but it has been formalized using pi-calculus (15).
The language semantics is the main guideline for
the engine’s construction, and it is complemented by
other functional and non-functional requirements.

Fig. 2. Testing workflow engines using MBT

Every workflow language has an associated

abstract machine. This abstract machine determines
the behavior of any test case execution, although it
is not necessarily concretized as a software artifact.
In many cases, the role of the abstract machine can
be fulfilled by someone that manually calculates and
documents the expected behavior of a workflow
process. Nevertheless, if a language specification is
formalized, the role of the abstract machine can be
automatized, for instance with a Petri-nets simulator,
or with a pi-calculus interpreter. Moreover, even

 Model Based Testing for Workflow Enabled Applications 339

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

when the language specification is not formally
defined, it is possible to write small programs to
analyze test cases and produce information about
particular aspects of the expected behavior. Note
that these programs should be kept as simple as
possible, and they shouldn’t match the
implementation of the engine (the SUT) in
complexity.

In the workflow context, test cases are formed by
workflow models (processes) complemented with
information such as initial data, stimuli, instantiation
information and others. In the implementation of our
testing tools, we have strived to keep the definition
of test cases as high-level as possible: this facilitates
understanding and simplifies maintenance and
evolution. Using the information included in a test
case, the testing infrastructure controls the
execution of a process instance and produces
analyzable outputs that include the process’ final
results and information about the execution. Finally,
a verdict is issued based on a comparison of the
expected and the actual behavior of the system.
Since workflows are inherently non-deterministic,
this comparison has to take into account every
possible execution path.

3 Defining and Executing Test Cases in
the Abstract Test Framework

The ATF (Abstract Test Framework) is a framework
to develop model-based test environments and test
suites for workflow based applications. The ATF
offers two things to be shared by every environment
built using it. Firstly, it specifies the structure of test
cases and supplies the basic mechanisms to
execute them. Secondly, it specifies a mechanism to
analyze the execution of test cases, and provides
tools to perform these analyses.

3.1 The structure of a Test Case

Fig. 3. Elements of a Test Case

ATF’s test cases are formed by the five elements
shown in figure 3: a set of workflow models, an
instantiation schema, an animation program, an
observation structure, and an assertion program.
Workflow models are the definitions of the
processes executed during the test case’s run.
Normally, a test case only includes one workflow
model, but in some situations it is necessary to have
several.

The instantiation schema, describes how to
instance each workflow model in the test case and
how many instances to create. For instance, the
schema may specify that a workflow model has to
be instantiated three times in parallel or three times
in a sequence.

The third element in a test case is an animation
program, written with an animation language. The
objective of this program is to control the execution
of a workflow considering that it depends on some
initial input data and on the behavior of its activities.
Input data is easily specified, and in some cases the
expected behavior of a test case can be derived
entirely from this initial data. On the other side,
activities’ behavior depends both on external
elements and on its own logic. For instance, the
behavior of a workflow that consumes web-services
depends on the responses obtained from the
services, and on the internal activities of the
workflow that process the information or use it to
take decisions. Because of this, animation programs
include statements to ‘simulate’ responses and
signals coming from external systems, and they also
include statements to control the behavior of
activities.

Part of the complexity of testing workflows lies in
the fact that verdicts are not only about the final
results of a workflow, but they may also involve
intermediate states. To solve this, the strategy used
in the ATF involves gathering information during the
execution, and analyzing it after the execution has
finished. The first part, gathering the information, is
achieved with an observation structure that creates
traces with execution data. An observation structure
describes the elements to monitor the execution of a
test case, and also describes how to organize in
separated traces the results of the monitoring. To
avoid altering the execution, these observation
structures should be implemented to be as non-
intrusive as possible.

The fifth element in a test case, the assertion
program, is used to analyze the data gathered with
the observation structure. An assertion program
specifies how to derive verdicts about the workflow

340 Mario E. Sánchez, Camilo H. Jiménez

 and Jorge A. Villalobos

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

test case execution, using the information contained
in traces. Assertion programs depend on data
analyzers, which are pieces of code that can
assemble high-level information from low-level
information contained in traces. Thus, with the help
of data analyzers, assertion programs can be high-
level, but they depend on low-level execution
information.

3.2 Executing a Test Case

Once the elements of a workflow test case have
been defined, the test case can be executed in the
ATF. The execution of a workflow test case involves
four phases illustrated in figure 4.

Firstly, during the instantiation phase, an
instantiation schema is used to create workflow
model instances. In this phase, observation
structures are also created for each instance. Next,
in the animation phase the animation program is
executed. In this way, the SUT is stimulated and
processes can begin their execution. Meanwhile, the
observation phase is also initiated. This means that
the observation structure starts gathering
information about the execution and traces are
created with this data. Once processes executions
finish, the analysis phase starts and the assertion
program is executed. In particular, these programs
validate a set of assertions by comparing predefined
expected results with the corresponding information
gathered in traces. In order to obtain specific
information from the traces, data analyzers are used
in the assertion programs.

The ATF that we developed includes a basic
implementation of every element shown in figure 4,
but these implementations must be refined and
specialized to be used for specific engines. For this
purpose, the ATF defines interfaces and abstract
classes for the instantiation schema, animation
commands, sensors, tracers, data analyzers, and
assertions. The implementation of a workflow test
case requires specializations of each of these
abstract elements, which are described in the next

subsection. In section 5, a concrete example
illustrates how ATF elements can be specialized.

3.3 Elements of the ATF

The ATF defines three main components illustrated
in figure 5: TestLoader, TestBehavior and
TestRunner. The first of them is responsible for
loading the definition of a test case. This doesn’t
only involve loading the five elements of a test case,
but also elements that are responsible for executing
the test case. Currently, this component includes a
default implementation that loads this information
from a default XML schema. Nevertheless, if a
different way to load a test case is needed, the
TestLoader exposes interfaces for loading each
element, making it customizable for different
representations of a test case definition.

 Model Based Testing for Workflow Enabled Applications 341

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

Fig. 4. Workflow test case execution in the ATF

Fig. 5. ATF Components

The second component is responsible for
implementing the behavior of the elements that are
responsible for the test case execution. Since this
behavior must be customizable for each workflow
engine that uses the ATF, this component does not
include a default implementation. On the contrary, it

only exposes interfaces that must be implemented in
each case and are used dynamically in the
execution of a workflow test case. The first interface
that must be implemented is the IInstantiator. Its two
main responsibilities are: Initializing the workflow
engine, and creating the instances of a given

342 Mario E. Sánchez, Camilo H. Jiménez

 and Jorge A. Villalobos

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

workflow model. The information of the workflow
model, as well as the information needed by other
interfaces, is loaded from the test case definition
using the TestLoader. Once the IInstantiator is
defined, the IAnimator must be implemented. This
interface responsibility is interpreting and executing
an animation program. Together with the IAnimator,
two interfaces must be implemented at the same
time: ITracer and ISensor. Their responsibilities
include reacting to events in the animation
execution, associating events to traces, and
handling traces of those events. Finally, once these
interfaces are implemented, the ITest interface must
be implemented. This interface is responsible for
interpreting and executing the assertion program
using a set of data analyzers. These elements are
also implementations of an interface within this
component and their responsibility is to query
information that is gathered in elements that
implement the ITracer interface.

Finally, the TestRunner component coordinates
the execution of the first two components. First, it
executes the TestLoader in order to dynamically
load the necessary elements of a workflow test
case. Then, it uses these elements to execute the
given workflow test case definition.

4 Test Development Roadmap

The Test Development Roadmap (TDR) describes
the steps to build a test suite for a given workflow
engine, including the construction of a testing
infrastructure based on the ATF. This roadmap is
organized as two separate groups of steps in figure
6: on the left side, there are actions required to
design, build and run the test cases; on the right
side, there are actions required to build the
infrastructure that supports the construction and
execution of those test cases.

The steps of the first group define actions to
select, design, develop and run the test cases. The
first step, identify features, means that all the
testable features in the workflow language have to
be identified. Common features include control
structures such as joins, splits, and sequences, and
different kinds of data management.

The second step, build FDG (Features
Dependency Graph), organizes the features
identified in a directed graph where arcs between
two nodes indicate a dependency between features.
There is a dependency between two features when
every scenario that tests one of the features, must

include the other one. For instance, in workflows it is
usually impossible to test a join without using a split.

The construction of this graph is fundamental to

organize the test cases in a sound way.
The third step, design test cases, groups all the

activities required to create a comprehensive test
suite for the engine. For each feature identified in
step 1, at least one test case has to be designed.
The only restriction in this step is that the design of
the test cases should respect the dependencies
established in the FDG. Thus, a test case to analyze
the behavior of sequences should not use splits.

During the fourth step, build test cases,
descriptions of test cases are concretized. For
instance, whereas in the third step the animation
program is documented, in this step a concrete
animation language has to be used. The reason for
separating the design and the implementation of test
cases is that the output of the design step is actually
an input for the infrastructure design.

The final step in this group of steps is running the
test cases. This step uses a test script derived from
the FDG that automatizes the execution of tests, and
promotes the detection of problems in an order of
increasing complexity.

Fig. 6. Test development roadmap

The second group of steps in the TDR is required

to design and develop the infrastructure to build and
run the test cases. These steps do not have to be
performed in a particular order.

 Model Based Testing for Workflow Enabled Applications 343

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

The ATF showed in section 3 includes elements
that can be reused and elements that have to be
specialized for each workflow engine. Because of
this, the TDR includes three coarse design steps:
Design the Animation Language groups the activities
required to design the syntax and language
semantics used to write animation programs; Design
Data Analyzers groups the necessary tasks to define
which data analyzers are needed for the test cases,
and how each one of them can gather the necessary
information; Design Assertions Language groups the
activities required to design a language that can be
used to write assertion programs.

The final step in the development of the
infrastructure is implementing the concrete
framework. This step does not include design
activities, but only implementation tasks. In this step,
components and interfaces are implemented or
extended to support the languages designed. This
step also includes the implementation of data
analyzers.

Although the TDR is mainly intended to be used
with new workflow engines, it also identifies issues
to consider whenever a workflow modeling language
evolves. For instance, when new features are added
into a language, the FDG has to be updated, new
test cases have to be defined and implemented, and
the languages have to grow to accommodate the
new requirements. Finally, a new test script can be
generated and the updated test cases can be
executed once again.

5 Testing JCumbia: a case study for ATF
and TDR

5.1 JCumbia: an engine for XPM

Cumbia-XPM (eXtensible Process Metamodel) is a
metamodel developed to describe workflow
processes. This metamodel is composed by a set of
elements that are specializations of open objects
(18,19). Open objects are coordination elements
composed by an object, called the entity, a state
machine, and several actions associated to
transitions of the state machine. An entity is just a
traditional object with attributes and methods. It
provides an attribute-based state to the open object
and provides part of its behavior in its methods'
implementation. The state machine materializes an
abstraction of the life-cycle of the entity, allowing
other elements to know its state and react to its

changes. Finally, actions are pieces of behavior
associated to transitions of the state machine: when
a transition is taken, its actions are executed in a
synchronized way.

Fig. 7. A sample Cumbia-XPM process

An open object can interact with other open

objects and with the environment using two
mechanisms: event passing, which is asynchronous,
and method calling, which is synchronous. In order
to support event passing, each transition has an
associated source event. When that source event is
received by the open object, the particular transition
is taken. On the other hand, actions associated to
transitions are used to coordinate and control open
objects by invoking methods in other entities. Open
objects were used because they provide two main
advantages. Firstly, they allow synchronous and
asynchronous coordination with other elements.
Secondly, they provide extension capabilities by
adding or deleting actions (even at runtime), or by
modifying the open object’s state machine or entity.

Figure 7 shows a graphical representation of a
Cumbia-XPM process which was taken from the
context of workflows for financial services. It defines
a sequence of steps to study and approve a credit
request. This process is initiated when a customer
applies for a credit. Then, it requires the evaluation
of the submitted request, the automatic consultation
of the customer’s credit rating, and the study of the
financial history of the customer. This particular
study may be performed by a variable number of

344 Mario E. Sánchez, Camilo H. Jiménez

 and Jorge A. Villalobos

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

analysts that depends on the complexity of the
customer history. Finally, someone has to approve
or reject the request based on the results generated
by both studies. This process includes most of the
elements defined by the metamodel. It is composed
by four activities that are connected through ports
and dataflows. Each activity has a distinct
workspace and each workspace executes a specific
atomic task, Multiactivities are capable of executing
several concurrent instances of the same
workspace. In summary, activities handle the
synchronization and data management for the
workspaces. Data flows between activities through
the elements of type dataflows. In figure 6 there are
4 activities (Receive Request, Consult Credit Rating,
Evaluate Request, and Make Decision), and there is
one MultiActivity (Study Credit History). The number
of workspaces executed in this MultiActivity is
decided at runtime: in the figure, this is specified by
the * in the MultiActivity representation.

The Cumbia platform provides the basic support
for the execution of open objects, but engines built
on top of it provide the precise semantics for each
workflow language. JCumbia was developed to
execute models built with Cumbia-XPM. JCumbia,
and the Cumbia platform, were developed in Java.

The execution of even simple Cumbia-XPM
processes can be complex due to the number of
state machines that run concurrently, and because
of the hundreds of events generated. This
complexity created the need for appropriate testing
tools to check JCumbia’s implementation and the
processes’ execution.

5.2 JCumbia Test Framework

JCumbia Test Framework (JCTF) is the
specialization of the ATF to test the JCumbia
engine. The JCTF specifically defines what the five
elements of a JCumbia test case should be, and
provides the implementation of the interfaces to
execute them as a test case. We used the default
implementation of the TestLoader that the ATF
provides.

Workflow Models. In JCTF, workflow models are
Cumbia-XPM models, and they are described in the
xml-based textual syntax supported by the Cumbia
platform. To load these models, the default

implementation of the TestLoader reads the
workflow models from files described in an XML tag
and keeps a String representation of them.

Instantiation schema. JCTF defines a format to
provide instantiation information for JCumbia’s test
cases. This information makes references to the
definitions of processes, and specifies the number of
instances needed for each one. This information
also includes some timing information that specifies
when to create each instance. In order to support
this schema, the IInstanciator interface of the ATF
was specialized: this specialization can interpret the
instantiation information (loaded by the TestLoader
component in a String representation), and it can
interact with JCumbia to trigger the creation of the
workflow model instances.

Animation Program. JCTF defines a language to
write animation programs for Cumbia-XPM test
cases. In particular, this animation language
provides commands to specify the outputs of each
workspace. In this way, it can control the data and
the control flow. Other commands in the animation
language establish the process inputs and
manipulate a process life-cycle in order to test
requirements such as persistence. An IAnimator
implementation was developed to interpret and
execute the commands specified within the
animation language. Similarly, the animation
program is loaded in a String representation by the
default TestLoader implementation.

Observation Structure. JCTF has generic
sensors to observe and listen to events generated
by any element in a process. Since the elements of
a process are open objects, specialized sensors
implementing the ISensor interface were developed
to listen for events generated by open objects’ state
machines. Furthermore, these sensors can be
installed dynamically on elements created at
runtime. Sensors and open objects provide a flexible
observation structure that does not require changes
to JCumbia. The placement of sensors is defined
with a language illustrated in section 5.3. and it is
specified in the default XML test case definition
schema parsed by the default TestLoader.

In order to gather information listened by
sensors, specialized tracers were implemented,
which accumulate different information about the
execution. In the next section we will discuss two of
them in the context of a particular test case. Specific
sensors are associated with tracers using the default
XML test case definition schema.

Assertion Language and Data Analyzers.
Specialized data analyzers were implemented to
query the traces for information such as the
following: the last state of an element, the number of
times that an activity was executed, the value of the

 Model Based Testing for Workflow Enabled Applications 345

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

data that passes through ports, and the number of
times that a transition was taken. The relation
between these data analyzers and specific tracers is
defined in the default XML test case definition
schema. Data analyzers are used by assertion
programs, which are defined in a language also
illustrated in the next section. These assertion
programs are defined and interpreted by specialized
interpreters that implement the ITest interface.

5.3 Following the Roadmap

This section describes how we followed the steps
defined in the TDR to test JCumbia using the testing
infrastructure that was just described and a concrete
test case.

Step 1. Identify Features. After analyzing
Cumbia-XPM, we identified the features summarized
in table 1.

Table 1. Main features of Cumbia-XPM

F1 Basic data and control flow

 Basic data and control flow in a process with one
activity.

F2 Workspace memory access

 Workspaces can read values from their memory.

F3 Data flow with several variables

 Data flows can manage several variables.

F4 Dataflow mapping

 Mapping of variables’ names.

F5 Sequence control pattern

 Sequential activities connected by a dataflow.

F6 XOR-split control pattern

 An activity produces data only through one of two
exit ports.

F7 Fork-split control pattern

 After a given activity, two activities are executed in
parallel

F8 Join control pattern

 An activity depends on the data produced by two
parallel activities

F9 Cycles

 Workflow structure with simple cycles

F10 Multiactivity: single output

 A multiactivity is deactivated when its first
workspace finishes.

F11 Cycles with multiactivities

 Cycles in a workflow with multiactivities.

F12 Multiactivity’s dynamic instance creation

 Number of workspaces’ instances defined at
execution.

F13 Subprocesses

 Hierarchical structure of processes.

F14 Arbitrary cycles

 Complex cyclic workflow structure.

F15 Workflow Instance (WI) persistence

 An instance can be suspended and persisted. It can
be reloaded and its execution resumed with no side
effects.

F16 WI with subprocesses persistence

 An instance containing subprocesses can be
suspended and persisted at execution. It can be
reloaded and its execution resumed with no side
effects.

Step 2. Build the Features Dependency Graph

(FDG). The features identified for Cumbia-XPM were
organized in a FDG (figure 8). This graph shows, for
instance, that F8 (Join control pattern) depends on
F7 (Fork control pattern) to be tested. Every test
case that will be designed in step 3 will be
associated to a node in this FDG.

Fig. 8. Cumbia-XPM Features Dependency Graph

Step 3. Design Test Cases. For each feature in
the FDG, one or several test cases had to be
designed. However, for some complex features
more test cases were created. As presented in
section 3, for each test case it was necessary to
design the following: a set of workflow models, an
instantiation schema, an animation program, an
observation structure and an assertion program.
Reuse of artifacts between test cases was very
common. For instance, some workflow models were
used to test more than one feature.

To illustrate the design of a test case, we will
now show one test case that was used for feature
F8 (Join control pattern). The workflow model used
in this test case is depicted in figure 9. It is called

346 Mario E. Sánchez, Camilo H. Jiménez

 and Jorge A. Villalobos

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

‘process1’ and it is comprised by three activities,
namely ACT1, ACT2 and ACT3. When these
activities are executed, their workspaces can be
controlled by the animation program of the test case.
Following the semantics of XPM and the structure of
the process, ACT3 can only be executed after ACT1
and ACT2 have finished their executions. This test
case will check that this rule is observed. Figure 8
shows in brackets the data that flows between
activities in the process.

Fig. 9. Test Scenario for F8

For each execution of this test case, we only
have one instance of the process. Accordingly, we
only have one animation program, which specifies
the data used to initialize the process, and the
commands to control the execution of the
workspaces of ACT1, ACT2 and ACT3. The
following is the animation program designed for the
test case.

animation {

 init {

 port (process1:pi) {

 var d1 = "data1";

 var d2 = "data2";

 } }

 workspaces {

 workspace (process1:ACT1:ws) {

 1: var e1 = input(d1);

 output (e1);

 }

 workspace (process1:ACT2:ws) {

 1: var e2 = input(d2);

 output (e2);

 }

 workspace (process1:ACT3:ws) {

 1: var t1 = input(e1);

 var t2 = input(e2);

 var e3 = concat(t1,t2);

 output (e3);

 } } }

The first part of this program specifies that the
process is going to be initialized using a pair of data:

d1 will have the value “data1" and d2 will have the
value “data2". The behavior of the workspaces of
ACT1 and ACT2 is similar: the first time they are
executed, they take the values of d1 and d2, and
they output them using the names e1 and e2. When
activity ACT3 is executed, its workspace
concatenates the values of e1 and e2, and outputs
the result as e3. There is no behavior specified for
executions of the workspaces beyond the first one.

In order to describe a successful execution of
this test case, four assertions were written using the
assertion language, which we will now describe. In
the following snippets, we have used bold face to
mark queries answered by specific data analyzers.

- Assertion 1: the input port of activity ACT3 should

receive data only once.

assertion ("1"){

 let pwf = timesFull(process1.ip3) in

 equal($pfw , 1)

} ("Port ip3 was full $pwf times")

- Assertion 2: each of ACT1, ACT2 and ACT3 should
be activated only once.

assertion ("2") {

 let act1 =

timesActivated(process1.ACT1) &&

 let act2 =

timesActivated(process1.ACT2) &&

 let act3 =

timesActivated(process1.ACT3) in

 equal($act1 , 1) &&

 equal($act2 , 1) &&

 equal($act3 , 1)

} ("Activities were activated $act1,

$act2, and $act3 times")

- Assertion 3: the input data for ACT3 should be
“data1" and “data2".

assertion ("3") {

 let inputE1 =

activityInput(process1.ACT3,1,e1) &&

 let inputE2 =

activityInput(process1.ACT3,1,e2) in

 equal($inputE1 , "data1") &&

 equal($inputE2 , "data2")

} ("Input data for ACT3 was e1=$inputE1

and e2=$inputE2")

- Assertion 4: ACT3 should be activated after ACT1

and ACT2 have finished.

assertion ("4") {

activityFollows(process1.ACT3,

 process1.ACT1) &&

activityFollows(process1.ACT3,

 process1.ACT2)

 Model Based Testing for Workflow Enabled Applications 347

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

} ("ACT3 should follow ACT1 and ACT2")

The four assertions presented above provide the
requirements for the observation structure. The
following events and information are relevant to the
verification of the assertions: the input port of ACT3
gets full (assertion 1); ACT1, ACT2 and ACT3 are
activated (assertion 2); input data received by ACT3
when it is activated (assertion 3); ACT1 and ACT2
are deactivated, and ACT3 is activated (assertion 4).
This information can be obtained with sensors that
notify about the activation of activities (transition
‘Activate’ in the state machines) and about the
reception of data in the port (transition ‘Pack’ in the
state machine). The following snippets show the
language used to describe the points where sensors
have to be installed. Note that wild cards make it
possible to use a single expression to describe
several sensors.

 activity-process1:*-Activate.

These sensors are connected to a
SimpleTracer that logs events and the
elements that produced them. With these
sensors it is possible to verify assertion 2.

 p

o

r

t-process1:ACT3:ip3-Pack. This

sensor is connected also to a SimpleTracer
that makes it possible to verify assertion 1.

 activity-process1:ACT1-Finished,
activity-process1:ACT2-Finished,

activity-process1:ACT3-Activate.

These three sensors are used to verify
assertion 4 and they are connected to a
SimpleTracer. The third of these sensors is
also connected to an ActDataTracer, which
logs the data that the activity received when
its execution started. The data in the tracers
are logged using XML. This way, data
analyzers can later query this information in
a structured basis.

Finally, the Data Analyzers required for the
assertions have to be associated with the
corresponding tracers in order to give them access
to the information that they need.

Step 4. Build Test Cases. In this step all the
elements of a test case are written down and
packaged. This includes a descriptor for each test
case specifying its components and the feature
under test. Using this information, a test script is
generated from the FGD. Within a single feature,
test cases should not have dependencies;
consequently, they can be run in any order.

Fig. 10. Execution of the test case using the Test Viewer

348 Mario E. Sánchez, Camilo H. Jiménez

 and Jorge A. Villalobos

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

Step 5. Run Test Cases. Our testing infrastructure
offers two ways to run the test cases. In the first one,
the test script is used to execute automatically all the
test cases. The results are informed to the user in a
textual way.

The second way to run the test cases is to use a
graphical tool that was developed as an Eclipse
plug-in. This tool is called the Test Viewer (figure 10)
and it presents, in a graphical way, the execution of
the test cases and their results. To show the results,
this tool uses an eclipse view similar to JUnit where
the evaluation of the assertion programs can be
easily checked (see CumbiaTest view at the right).

6 Conclusions

In this paper, we analyzed some of the problems
associated with testing workflow engines, and we
proposed a solution for them in the form of a
framework (ATF) and a roadmap (TDR) for the
development of tests and adaptations to the
framework. In this work, the ideas of Model Based
Testing are applied in the specific context of
workflow engine testing, and the result was a
framework that can be specialized to test specific
engines. In the introduction to this paper, we
described the two main problems associated to
testing workflow engines: the support of concurrency
in workflows and the evolution of workflow
languages.

With respect to the issue of handling concurrency
in the workflows, the testing strategy used by this
framework relies on offline analysis. For this, the
framework controls continuously the execution of the
processes, while obtaining information about the
execution that is stored in traces. Finally, the
information stored in those traces is analyzed. With
respect to the issue of the continuous evolution of
the workflow languages, we propose the Test
Development Roadmap. On the one hand, this
roadmap defines a set of steps to tailor the
framework to a particular engine. On the other hand,
it defines the steps to develop the test cases.
Furthermore, the structure of the framework and the
structure of these steps make it possible to adapt
everything to the changes in the languages.

This paper illustrated the usage of the ATF and
the TDR in the context of JCumbia, an engine for
XPM processes built on top of the Cumbia platform.
Although ATF and the TDR were initially developed
for testing Cumbia-based engines, they can also be
applied to many other unrelated engines. However,

we have seen that testing workflow engines requires
powerful mechanisms to capture the internal state of
the processes. If these observation means are not
available, then the analysis of the executions has to
rely on the final results of the execution, which can
be insufficient.

We are currently working on two directions. The
first direction is to apply this solution to test workflow
engines for several languages by developing
specializations for the ATF. This also includes
writing the corresponding test suites. Currently we
have developed the specializations to test
languages such as BPEL, BPMN and IMS-LD: BPEL
is a workflow language that focuses on the
interaction and composition of web-services; BPMN
is a language to model business processes; and
IMS-LD is a language to model learn-flows, which
are the specific application of workflows to the e-
learning context. In the case of testing BPEL, our
specialization of the ATF offers functionalities that
are similar to those found in BPELUnit or the Oracle
BPEL Test Framework. Furthermore, we have also
developed specializations to test other ad hoc
workflow languages.

On the other side, we are working on the
generation of test cases. This involves two main
things: firstly, it is necessary to carefully generate
workflow models and animation programs that do
not contain structural errors (that is processes that
do not have deadlocks and that can always be
executed successfully); secondly, it is necessary to
have tools to analyze these models and derive
useful assertion programs for them. The goal of this
work is to have totally generated test cases to
complement a set of manually created and selected
test cases. The generated test cases are specially
intended to involve very big processes to test
scalability issues in extreme cases.

Acknowledgments

We would like to thank the rest of the Cumbia team
for their work on the project. In particular, we would
like to thank Iván Barrero, Sergio Moreno and John
Espitia, for their work in test related issues.

Mario Sánchez is supported by the VLIR funded
CARAMELOS project
(http://ssel.vub.ac.be/caramelos/) and by the
Departamento Administrativo de Ciencia,
Tecnología e Innovación - Colciencias.

 Model Based Testing for Workflow Enabled Applications 349

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

References

1. Apfelbaum, L. & Doyle, J. (1997). Model-Based Testing.

Software Quality Week Conference, San Francisco, USA.

2. Bianculli, D., Ghezzi, C. & Spoletini, P. (2007). A model

checking approach to verify BPEL4WS workflows. IEEE

International Conference on Service-Oriented Computing

and Applications, Newport Beach, California, USA, 13–20.

3. Cartwright, C. & Ricken M. (s.f.). Concutest-junit.

Retrieved from

http://www.cs.rice.edu/~mgricken/research/concutest/conc

junit/.

4. Dai, G., Bai, X. & Zhao, C. (2007). A framework for model

checking web service compositions based on BPEL4WS.

IEEE International Conference on e-Business

Engineering, Hong Kong, China, 165–172.

5. Dikmans, L. (s.f.). Testing BPEL in the Real World -

Oracle BPEL Test Framework. Retrieved from

http://www.oracle.com/technetwork/issue-archive/2007/07-

nov/o67bpel-100400.html

6. Drusinsky, D. (2000). The Temporal Rover and the ATG

Rover. SPIN Model Checking and Software Verification.

Lecture Notes in Computer Science, 1885, 323–330.

7. Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G. & Ur, S.

(2002). Multithreaded Java program test generation. IBM

Systems Journal, 41(1), 111–125.

8. Gottschalk, F., van der Aalst, W. M. P., Jansen-Vullers,

M. H. & Verbeek, H. M. W. (2007). Protos2cpn: using

colored Petri Nets for configuring and testing business

processes. International Journal on Software Tools for

Technology Transfer, 10(1), 95–110.

9. Kim, M., Viswanathan, M., Kannan, S., Lee, I.,

Sokolsky, O. (2004). Java-mac: A run-time assurance

approach for Java programs. Formal Methods in System

Design, 24(2), 129–155.

10. Konuru, R., Srinivasan, H., & Choi, J.-D. (2000).

Deterministic replay of distributed Java applications. 14th

International Parallel and Distributed Processing

Symposium (IPDPS’00), Cancún, México, 219–227.

11. Kortenkamp, D., Milam, T., Simmons, R. & Lopez, J.

(2001). Collecting and analyzing data from distributed

control programs. Electronic Notes in Theoretical

Computer Science, 55(2), 236-254.

12. Li, Z., Sun, W., Jiang, Z. B. & Zhang, X. (2005).

BPEL4WS unit testing: framework and implementation.

IEEE International Conference on Web Services

(ICWS’05), Orlando, Florida, USA, 103–110.

13. Long, B., Hoffman, D. & Stropper P. (2003). Tool

support for testing concurrent Java components. IEEE

Transactions on Software Engineering, 29(6), 555–566.

14. Lübke, D. (2007). Unit Testing BPEL Compositions. In

Baresi, L. & Di Nitto, E. (Eds.), Test and Analysis of Web

Services (149-171). Berlin; New York: Springer

15. Lucchi R. & Mazzara M. (2007). A pi-calculus based

semantics for WS-BPEL. Journal of Logic and Algebraic

Programming, 70(1), 96–118.

16. Mayer, P., & Lübke, D. (2006). Towards a BPEL unit

testing framework. 2006 workshop on Testing, analysis,

and verification of web services and applications, Portland,

Maine, USA, 33–42.

17. OASIS Technical Committee (2005). Web Services

Business Process Execution Language, Version 2.0.

Retrieved from http://docs.oasis-

open.org/wsbpel/2.0/wsbpel-v2.0.pdf

18. Sánchez, M., Villalobos, J. & Romero, D. (2009). Un

mecanismo de coordinación basado en máquinas de

estado, empleado en las aplicaciones que usan

workflows. Avances en Sistemas e Informática, 6(1), 35–

44.

19. Sánchez, M., Jiménez, C., Villalobos, J. & Deridder D.

(2009). Building a multimodeling framework using

executable models. 47th International Conference on

Objects, Models, Components, Patterns (TOOLS

EUROPE 2009), Zurich, Switzerland, 33, 157-174.

20. Utting, M., Pretschner, A. & Legeard B. (2006). A

Taxonomy of model-based testing (Working Paper:

04/2006). Hamilton, New Zealand: University of Waikato.

 Mario E. Sánchez Puccini

Has a M.Sc. in Ingeniería de Sistemas y Computación from
the Universidad de los Andes, in Bogotá, Colombia. He is
currently enrolled in the doctoral program at the same
university and at the Vrije Universiteit Brussel in Belgium. His
main areas of research are workflow systems and model
driven engineering.

http://www.cs.rice.edu/~mgricken/research/concutest/concjunit/
http://www.cs.rice.edu/~mgricken/research/concutest/concjunit/
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

350 Mario E. Sánchez, Camilo H. Jiménez

 and Jorge A. Villalobos

Computación y Sistemas Vol. 14 No. 4, 2011 pp 335-350
ISSN 1405-5546

 Camilo H. Jiménez

Has a M.Sc. in Ingeniería de Sistemas y Computación from
the Universidad de los Andes in Bogotá, Colombia. He
currently works as a full time instructor and researcher at the
same university. His main areas of research are workflow
systems, web interfaces and rich web application
development.

 Jorge A. Villalobos

Has a Ph.D in Informatics from the University Joseph Fourier
in Grenoble, France. He currently is an associated professor
at the Universidad de los Andes in Bogotá, Colombia and
serves as the chair of the Department of Systems Engineering
and Computation. His research focuses in enterprise
architectures, BPM and workflows, software architecture,
requirements analysis and software design.

