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Abstract. This paper introduces and investigates the 
family of aperture distributions whose members have 
the best Side Lobe Ratio (SLR) for a given Inverse 
Dynamic Range Ratio (IDRR). An optimization 
approach based on Estimation of Distributions 
Algorithms is used to find the family instances. The 
paper shows that the family has limiting distributions 
with a number of interesting properties, e.g. it has a 
good tradeoff between beamwidth and SLR and has 
the best IDRR for a given beamwidth. The numerical 
results allow us to conclude the following: 1) the IDRR 
impacts the complexity of the problem, i.e. the larger 
the IDRR the easier the optimization. 2) linear entropic 
mutation improves the performance of the algorithms 
and reduces the population size requirements. 3) the 
independence model seems to be adequate for very 
large IDRR but fails dramatically for the other cases.  
Keywords. G.1.6: Optimization, G.1.10: Applications, 
J.2: Physical Sciences and Engineering, antenna arrays, 
Dolph-Chebyshev distribution, Taylor distribution, 
dynamic range ratio, estimation of distribution 
algorithms, side lobe ratio and linear entropic 
mutation. 
 
Resumen. Este artículo introduce e investiga la familia 
de distribuciones de apertura cuyos miembros poseen 
el menor lóbulo lateral (SLR) para un rango dinámico 
inverso (IDRR) dado. Un enfoque de optimización 
basado en algoritmos de estimación de distribuciones 
es utilizado para encontrar los miembros de la familia. 
El artículo muestra que la familia presenta  
distribuciones límites con propiedades interesantes: 
muestra un buen compromiso entre el ancho del 
lóbulo central y SLR además del mejor IDRR para un 
HPBW dado. Los resultados numéricos nos permiten 

concluir lo siguiente. 1) el IDRR influye en la 
complejidad del problema: para altos IDRR es más fácil 
el proceso de optimización. 2) la mutación entrópica 
lineal mejora el comportamiento de los algoritmos y 
reduce el tamaño de la población. 3) el modelo de 
independencia parece resultar adecuado para altos 
IDRRs pero falla dramáticamente para otros casos. 
Palabras clave. G.1.6: Optimización, G.1.10: 
Aplicaciones, J.2: Ciencias Físicas e Ingeniería, arreglos 
de antenas, distribución de Dolph-Chebyshev, 
distribución de Taylor, relación de rango dinámico, 
estimación de los algoritmos de distribución, relación 
de los lóbulos laterales y la mutación de entropía 
lineal. 

1 Introduction 

Our current aim is a preliminary discussion about 
the challenges of antenna arrays synthesis from 
an optimization point of view. Antenna arrays 
have been of great importance and widely used 
in many communication fields in a large variety 
of designs. They have been extensively 
investigated since the second half of the last 
century [7, 23]. In the 90’s, with the use of 
optimization algorithms new configurations for 
arrays were achieved, overcoming most of the 
limitations of previous methods and improving 
performance. In the last years a great number of 
papers published about arrays involved 
optimization algorithms [2, 6, 8-12]. Besides 
helping to solve custom complex problems they 
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can be used to describe the relationships and 
achievable limits between the figures of merit 
that characterize the arrays. It is important to 
know these relationships and limits for designers 
in advance when using optimization algorithms.  

In this paper we study some relationships 
between popular figures of merit limited to simple 
scenarios by an optimization approach. A new 
family of amplitude distributions which has the 
best Side Lobe Ratio (SLR) for a given Inverse 
Dynamic Range Ratio (IDRR) is presented, 
which shows interesting properties. 

The outline of the paper is as follows. To 
begin with, Sect. 2 presents background material 
about the main antenna concepts, the role of the 
IDRR in antenna design, the optimization 
algorithm used in the research and the concept 
of linear entropic mutation. Section 3 outlines our 
optimization approach to the definition of a new 
family of amplitude distributions, whereas Sect. 4 
presents results about several optimization 
issues that arise in this approach. Finally, the 
conclusions are given. 

2 Background 

A linear array of 2ܰ antennas is shown in Fig. 1. 
Each antenna (element) is spaced by a distance 
݀  and fed with a current amplitude ܽ௡ . A 
common normalized amplitude current excitation 
of the array elements is shown in Fig. 2 and this 
is called the aperture or amplitude distribution. 
Considering the elements as isotropic, i.e. they 
radiate the same amount of power in all 
directions, and a symmetric distribution, the far-
field pattern of this array can be obtained by (1) 
and the normalized power pattern by (2). A 
common power pattern is plotted in Fig. 3. 
 

ሻߠሺܨ ൌ 2 ෍ ܽ௡cos ሾሺ݊ െ 0.5ሻ݇݀cosሺߠሻሿ

ே

௡ୀଵ

 
(1) 
 

 
 

ܲሺߠሻ ൌ 10logଵ଴ ቈ
|ሻߠሺܨ|

max|ܨሺߠሻ|
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where ݇  is the free-space wave number and 
ߠ א ሾ0,

గ

ଶ
ሿ the direction of the radiation. 

 

 
Fig. 1. Linear array of 6 antennas 

 

 
 

Fig. 2. An example of normalized amplitude 
distribution. Distribution of Dolph-Chebyshev 

 
The SLR and the Half Power Beam Width 

(HPBW) are used for characterizing the power 
pattern (Fig. 3). SLR is the ratio of the main 
beam maximum amplitude to that of the highest 
side lobe (3), see Fig. 3. High SLR patterns are 
useful for rejecting transmitting sources which 
are in other directions rather than in the main 
lobe.  

 
ܴܮܵ ൌ max ሼെܲሺߠ௜ሻሽ (3) 
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where i is the position of the side lobes 
maximum.  
 

 
 
Fig. 3. Three power patterns (only plotted half pattern 
due to symmetry). Dolph (dashed line), Taylor ݊ ൌ  6 
(solid line), our distribution (thick solid line) 
 

The HPBW is the width of the main lobe at 
half the maximum power. Low HPBW (narrow 
beam) patterns are useful for distinguishing 
between two sources which are very close to 
each other. Narrow beam-low side lobes 
patterns, also known as pencil beam patterns, 
are of common use in radars, and high directivity 
low noise arrays in general. 

The Inverse Dynamic Range Ratio (IDRR) 
characterizes the amplitude distribution and is 
defined as the ratio of the lowest to the highest 
element amplitude. The IDRR is strongly related 
with the size and cost of the array feeding 
networks and the mutual coupling between 
elements. 

The mutual coupling measures the 
interchange of energy between two antennas 
which are close to each other. Even if both are 
transmitting, some of the energy transmitted 
from each will be received and rescattered by 
the other, acting as a second transmitter. So if 
one of the antennas is significantly more excited 
than the other, it overcomes the one which is 
poor excited and modifies its properties (e.g. 
impedance, power pattern). Note that by 
improving IDRR, the mutual coupling might 
improve too. 

To illustrate how IDRR affects the size of the 
feeding network, suppose we have two identical 
array elements but with significant different 
currents feeding then. If we only have one 
transmitter, the transmission line needs to be 
split in two. As an example, in the case of 
microstrips, a commonly used transmission line, 
the ratio of the width of the split lines increases 
with the ratio of the currents. So, for high current 
ratios (i.e. low IDRR) either we obtain a wide 
split line, which affects the size of the design, or 
a thin one, which needs higher precision in the 
construction yielding a costly design. 
Furthermore, the width of the line is also related 
with its impedance and the line needs to be 
resized before feeding the elements, and the 
resized operation might also be related to its 
current width. So, we have design constraints 
which point to low IDRRs array distributions. 

2.1 IDRR vs. SLR 

IDRR was little addressed in literature before the 
90’s, but it has been somehow reborn the last 
two decades with the era of evolutionary 
algorithms. Shiwen studied the behavior of IDRR 
in the synthesis of power patterns in linear arrays 
[25, 26]. He concluded that is possible to 
improve the IDRR of conventional arrays. Ares 
and colleagues optimized IDRR and improved 
the shape of the amplitude distribution [1, 21, 
22]. In [24], an approach for setting limiting 
bounds for IDRR given a set of nulls constraints 
is presented, although no other parameter like 
SLR or HPBW was taken on account. Recently 
two methods for array synthesis that take in 
account for IDRR were presented in [6, 5]. 

In summary, an IDRR improvement is 
possible without a significant degradation of the 
other characteristics of the array. However, to 
the best of our knowledge, it has not been any 
attempt to find distributions that optimize any of 
the relationships involving IDRR with other 
important characteristics like SLR or HPBW. 
Knowing these relations and the achievable 
limits before hand is helpful for designers for the 
construction of the cost function when using 
optimization methods. For example, it avoids 
searching for impossible solutions. 



54 Julio Isla and Alberto Ochoa 

 
 
 
Computación y Sistemas Vol. 15 No. 1, 2011 pp 51-61 
ISSN 1405-5546 

2.2 Bayesian Estimation of Distribution 
Algorithms 

Given a random vector, X, that takes its values in 
the so called solution space, X, we seek the 
optima of a given function, F (X). A Bayesian 
Estimation of Distribution Algorithm (EDA) [13, 
14, 20], is an evolutionary algorithm that can 
solve this problem using the following basic 
cycle. The algorithm uniformly samples the 
solution space to create an initial population. The 
population is then updated for a number of 
generations. First, a set of promising solutions 
(the selected set) is chosen using truncation, 
tournament or Boltzmann selection. A Bayesian 
network that captures the correlations of the 
selected set is constructed and new solutions 
are simulated from it. Finally, the new solutions 
are combined with the old ones and a new 
population – with better properties – is 
constructed.  

The algorithm iterates until given termination 
criteria are met. Learning the Bayesian network 
is the critical step. Some algorithms use a 
greedy procedure that, starting from an empty 
(complete) graph, at each step adds (deletes) 
the edge that improves a certain metric, which is 
defined over the set of all acyclic graphs (see 
BOA [19] and EBNA [3]). Other algorithms, like 
the MMHC-EDA [17] are based on statistical 
tests instead. After more than ten years of 
research there exists a tremendous amount of 
literature about EDAs. The interested reader can 
easily find many detailed presentations on the 
topic. The references of this paper might be 
good starting points. 

2.3 A Short Overview of Linear Entropic 
Mutation 

Linear Entropic Mutation acts as an operator that 
regularizes the entropy of a joint probability mass 
and computes a convex sum of the current and 
the maximum entropy with the regularization 
parameter ܽ . In this way the distribution is 
shrunk toward the maximum entropy distribution. 
It turns out that this process can be interpreted 
as a mutation process as far as it increases the 

level of uncertainty or randomness in the system 
[16, 17]. For multivariate discrete systems the 
following definition introduces the LEM.  

Let ݌ሺݔଵ; ;ଶݔ … ; ௡ݔ ;ଵݔ௔ሺ݌ , ;ଶݔ … ;  ௡ሻ denoteݔ
two discrete joint probability masses and ܪ ሺܺሻ, 
 .௔ ሺܺሻ their respective entropy valuesܪ

If 
 

ܽܪ ሺܺሻ ൌ ሺ1 െ ܽሻܪ ሺܺሻ ൅ ݊ܽ 
 

(4) 
 

 
for a given real number, 0 ൏  ܽ ൑  1, we say that  
;ଵݔ௔ሺ݌ ;ଶݔ … ;   ௡ሻ  is a LEM-mutation ofݔ
;ଵݔሺ݌ ;ଶݔ … ; ௡ሻݔ  with mutation intensity ܽ . There 
are many distributions that fulfill (4), thus the 
computation of a meaningful ݌௔ሺݔଵ; ;ଶݔ … ;    ௡ሻݔ
given ݌ሺݔଵ; ;ଶݔ … ;  ௡ሻ is challenging. Notice thatݔ
these distributions must be similar, which in the 
context of EDAs algorithms has the important 
meaning that the mutation does not destroy the 
learned distributions. The mutation intensity ܽ 
controls the strength of the mutation, i.e. how 
much the entropy of a random variable is 
changed. The computation of the LEM-mutation 
of one binary variable, ܺ, is accomplished in two 
steps. Firstly, ܪ௔ ሺܺሻ  is computed according to 
(4), and then the new probability distribution 
 ௔ ሺܺሻ. As the entropy ofܪ ௔ሺܺሻ is obtained from݌
binary variables is symmetric –each entropy 
value is mapped to exactly two probability 
values– a simple procedure to resolve the 
ambiguity was introduced in [16], where the case 
of multivariate independent variables is also 
solved. An algorithm for computing the LEM-
mutation of a general multivariate random binary 
variable is presented in [18]. The most popular 
mutation operator of binary genetic algorithms is, 
without any doubt, the so-called bitflip mutation. 
Bit-flip means negating with probability 

ൌ ߤ   
ଵ

௡
 (݊  - size of the problem) the value of 

every variable in all individuals of a population. 
However, it can be shown that this operator 
performs poorly when there are strong 
dependencies among the variables of a problem. 
In these cases LEM-mutation is particularly 
powerful as it was shown in [18]. 
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3 A new Approach to the Synthesis of 
Aperture Distributions 

We propose a family of distributions that 
optimizes the pair IDRR-SLR, i.e. its members 
have the best SLR possible for a given IDRR. 
This idea resembles Dolph-Chebyshev 
distributions which have the best HPBW for a 
given SLR. The paper presents some basic 
properties of the proposed family. To accomplish 
this, our strategy was to run many times the 
MMHC-EDA to find out the best approximation 
possible of the new family members.  

The MMHC-EDA  [17]  is a powerful member 
of the class of Bayesian EDAs that learns the 
structure of the search distributions with a 
modification of the algorithm reported in [4]. 

We tested the following boolean 
representation of the real vector ࢇ ൌ
 ሺܽଵ; ܽଶ; … ;  ܽேሻ. Denoting by ܽ୫୧௡ the minimum 
component of ࢇ , the real interval ሾܽ୫୧௡; 1ሿ   is 
quantified with ܯ bits, i.e. a quantum ݍ ൌ  ሺ1 െ
ܽ୫୧௡ሻ2ିெ  is defined. Let ࢄ ൌ  ሺ ଵܺ; ܺଶ; … ; ሻࡺܺ  be 
a partition of a boolean vector and let the ௜ܺ  
represent non-negative integers. Each ௜ܺ 
codifies the excitation ܽ௜  with ܯ  bits, i.e . ܽ௜  ൌ
 ܽ୫୧௡   ൅ ݍ ௜ܺ . Thus, the length of the boolean 
vector is ܰܯ  bits. With the proposed boolean 
codification all the simulated solutions are 
feasible and have IDRRs not smaller than ܽ୫୧௡. 

Taking on account the tolerance limits 
achievable in practice, the element amplitudes 
are quantified with 10  bits, which is less than 
0.1%  error in the interval ሾ0; 1ሿ . The resulting 
length of the random vector is 10ܰ. To compute 
the curves of the family, the IDRR range under 
study is divided in l equal parts. For each IDRR 
value several optimization runs are performed. 
The amplitude distributions simulated by the 
MMHC-EDA are used to compute (3) which is 
the fitness function. 

Three basic relationships, namely SLR vs. 
IDRR, HPBW vs. IDRR, and HPBW vs. SLR are 
investigated for our and three well known 
popular distributions: Dolph-Chebyshev (Dolph) 
and Taylor n [7, 23]. 

Our case study is a 2ܰ ൌ  20 element array 
and thus the number of binary variables was set 
to 100. We study the IDRR range ሾ0.2; 0.75ሿ with 

a resolution of 0.05 and compute ܨሺߠሻ with an 
angle resolution of 0.510ିߨସ. For each IDRR we 
run the optimizer several times and the vector 
found with the best SLR is output as the 
approximation of the best solution for that IDRR. 
The algorithm uses truncation selection. Each 
run takes about few seconds on a standard 
computer. The run is stopped when the fitness 
difference between any two individuals in the 
population does not exceed ߜ ൌ  10ି଺ . The 
population size was set equal to 900, which 
guarantees a high degree of robustness of the 
obtained results. It is worth noting that in a 
normal optimization run we do not require full 
convergence in the last population. However, for 
the purposes of this section, this kind of 
“intelligent brute force” search is adequate. We 
will remove this assumption in Sect. 4. 

3.1 Basic..Relations.and.Shape 
Characteristics 

Figure 4 shows for 20 elements, the plot of SLR 
vs. IDRR for our distribution, Dolph-Chebyshev, 
Taylor one parameter and Taylor n. For Taylor 
one-parameter SLR decreases as IDRR 
increases. However, Dolph and Taylor n-
parameter show this behavior up to a limiting 
IDRR where it no longer increases but 
decreases as SLR decreases. As it was 
expected (due to the definition) our family has 
the best SLR values for the given IDRRs. We 
have found that for low IDRRs our family 
approximates Dolph (Taylor n also approximates 
it as n increases).  

Figure 5 shows the plot of HPBW vs. IDRR 
for the same distributions discussed above. The 
behavior of HPBW is similar to that of SLR in 
Fig. 4. However, in this case “best” amounts to 
“low”, and therefore, our family does not display 
the best HPBW for a given IDRR. This is an 
expected result that can be explained by the well 
known tradeoff between HPBW and SLR. The 
good news is that our distribution does have the 
best IDRR for a given HPBW. Figure 6 shows 
the plot of HPBW vs. SLR. HPBW increases with 
SLR. The Dolph distributions have the best 
HPBW for a given SLR. It can be observed that 
our distribution performs like Taylor n, and both 
are very close to Dolph. We can say that 
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optimizing SLR under an IDRR constraint 
improves the relationship between HPBW and 
SLR. Another observation we can draw from the 
figure is that our distribution has the best IDRR 
for any of the given magnitudes SLR or HPBW. 
 

 
 
Fig. 4. SLR vs. IDRR for 20 elements. Dolph (thick 
solid line), Taylor ݊ ൌ  4, 6  (solid line), Taylor one-
parameter (dashed line), our distribution (asterisk) 
 

 
 
Fig. 5. HPBW vs. IDRR for 20 elements. Dolph (thick 
solid line), Taylor ݊ ൌ  4, 6  (solid line), Taylor one-
parameter (dashed line), our distribution (asterisk)  
 
SLR = 25 dB. Our distribution presents the first 
sidelobes of equal amplitude as Dolph, while the far-
out sidelobes decay similar to Taylor ݊ ൌ  6 but not 
monotonically. This is interesting due to the fact that 

the original idea of Taylor was to obtain a distribution 
that approximates the location of the inner pattern 
nulls to the ones of the Dolph [23]. Here the 
remarkable fact is that the optimizer was able to 
approach this behavior, based solely upon the 
optimization of SLR under the constraint of IDRR 

 
Fig. 6. HPBW vs. SLR for 20 elements. Dolph (thick 
solid line), Taylor ݊ ൌ  4, 6  (solid line), Taylor one-
parameter (dashed line), our distribution (asterisk)  
 

 
 
 
Fig...7..Comparison of amplitude distributions. 
Dolph(cross and thick solid line), Taylor  ݊ ൌ  4, 6 
(cross and solid line), our distribution (circle and solid 
line)  
 

Figure 3 shows three power patterns of 20 
element array for Dolph, Taylor ݊ ൌ  6, and our 
distribution for 
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In Fig. 7 several members of Dolph and 
Taylor ݊ ൌ 4, 6  distributions are plotted for 
different IDRRs. Taking advantage of the 
symmetry we show only half of the Dolph and 
Taylor n distributions (on the right) and relate 
each one with our distribution (on the left) for the 
corresponding SLR. As an example, for IDRR = 
0.7 our distribution has SLR = 19 dB, so we plot 
Taylor n = 4 with that SLR. An interesting 
property of our family is that it has uniform 
excited elements at the ends and center of the 
distributions. The amount of such elements 
increases with the IDRR. This is an advantage 
over the other distributions as far as the feeding 
network is easier to implement.  

At this point it is interesting to ask whether 
there are more than one solution (distributions) 
with the same SLR for a given IDRR. We collect 
solutions for the same IDRR by running the 
optimizer many times. The solutions are plotted 
in Fig. 8. The edge and center elements remain 
unchanged, and the main differences are 
observed in the elements between the center 
and the edges. The solutions show little 
differences between their SLR. This means that 
in a small neighborhood of the global SLR 
optimum there are several distributions with 
significant shape differences with the same 
IDRR. 

 

 
 

Fig. 8. Five amplitude distributions with the same 
IDRR 

4 Some Optimization Issues 

Hereafter we test the fitness function of the 
previous section using a simple EDA algorithm 
augmented with Linear Entropic Mutation (LEM) 
[16, 17, 18]. The algorithm, called here BnL-
LEM, works with binary variables following the 
general lines explained in Sect. 2.2. Notice that 
now we are not interested in learning a Bayesian 
network that captures all the important 
correlations and therefore the maximal number 
of parents of a node is set to be either zero or 
two. In the former case the variables are 
considered independent and the algorithm is 
called Univariate Marginal Distribution Algorithm 
(UMDA) [15]. 

The aim of this section is to gain preliminary 
insights into the nature and complexity of the 
optimization problem we are dealing with in this 
paper. Concretely, we are seeking answers to 
the following questions:  

1. How does IDRR affect the complexity of 
the optimization problem? 

2. Is the independent model a good search 
distribution for this problem? 

3. How does linear entropic mutation impact 
the optimization? 

The results presented in Fig. 9 and Fig. 10 
were obtained with the MMHC-EDA. The first 
hitting time (FHT) is the first generation where a 
particular vector (e.g. the optimum) is found. 
Figure 9 shows the FHT of a distribution with the 
best SLR found in the previous section for each 
IDRR. It turns out that the algorithm encounters 
earlier the members of our family for large IDRR 
values than for lower values. In the figure dots 
represent runs without elitism and crosses with 
10% elitism. As can be seen elitism does not 
seem to change the observed behavior. 

Figure 10 presents the SLR values obtained 
with a variant of the MMHC-EDA that deals more 
efficiently with small populations because it uses 
shrinkage estimation. This issue is beyond the 
scope of the paper, the interested reader is 
referred to [17] for further information. The 
population size was set equal to 100. For 
comparison purposes we have also included the 
results of Fig. 4 (circles). Once again we note 
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that for low IDRR values the optimization 
problem is harder. 

 

 
 
Fig. 9. First hitting time (generation) of distributions 
with SLR values that are close to the values of Fig. 4. 
Dots were computed without elitism and crosses with 
10% elitism 
 

 
 
Fig. 10. SLR values vs. IDRR. (circles) – MMHCEDA 
with population size 900; (plus) - MMHC-EDA with 
shrinkage estimation what allows to work with a 
population of 100  
 

 
 
Fig. 11. Success percentage and number of function 
evaluations as a function of the mutation intensity, a, 
for IDRR = 0:67 (solid line) and IDRR = 0:4 (dashed 
line) using population sizes 50 and 100 respectively, 
using EDA-BnL with a maximum of two parents 
 

 
 

Fig. 12. Success percentage and number of function 
evaluations as a function of the mutation intensity, a, 
for IDRR = 0:67. Population size 50. Algorithms: 
(dashed line) - UMDA. (solid line) - EDA-BnL with a 
maximum of two parents  

 
For the results shown in Fig. 11, EDA-BnL 

was run with two IDRR values for a maximum of 
50 generations. The curves in both graphics 
represent the success percentage and number 
of function evaluations, respectively, as a 
function of the mutation intensity (IDRR = 0:67 
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solid line and IDRR = 0:4 dashed line). A run is 
considered successful if the achieved best value 
is closer than 0.03 to the optimum value of 
Fig. 4. 

The following observations are valid for 
Fig.11-13. LEM mutation increases the success 
rate for a fixed small population size. However, 
for large mutation intensities it decreases again. 
LEM also increases the number of function 
evaluations because higher entropy increases 
the number of generations until convergence. 
There is a mutation intensity window near a = 
0:1, where the success rate reaches the 
maximum and the number of function 
evaluations is not too high. 

Figure 11 tells us that the larger the IDRR the 
easier the optimization problem. Without 
mutation (a =0), the curve for the largest IDRR 
shows about 18% more success rate than the 
other, despite the fact that its population size, 50, 
is half the one utilized with the smallest IDRR. 
The needed amount of function evaluations is 
also much less for IDRR = 0.67.  
 

 
 
Fig. 13. Success percentage and number of function 
evaluations as a function of the mutation intensity, a, 
for IDRR = 0:4. Population size 100. Algorithms: 
(dashed line) - UMDA. (solid line) - EDA-BnL with a 
maximum of two parents  
 

The experiments of Fig. 12-13 help to answer 
the second question posed in this section: a 
comparison between the independence model 
supported by the UMDA and the multivariate 
model of the EDA-BnL (bounded by two 
parents). Figure 12 shows the results for 
IDRR=0:67. Here the UMDA is the clear winner. 
However, as can be seen from Fig. 13 the 
assumption of independence is completely 
wrong for IDRR = 0.4. 

5 Summary and Conclusions 

This paper has introduced a new family of 
amplitude distributions for the excitation of linear 
arrays. The family members have the best SLR 
possible for a given IDRR. An EDA-based 
optimization approach was used to find out the 
family instances. The paper shows that the 
family is a limiting distribution, which is 
understood in a similar way as the Dolph-
Chebyshev distribution shows the best HPBW 
for a given SLR. It is remarkable that the family 
also improves the relationship HBPW-SLR, and 
has the best IDRR for a given HPBW. 

We consider the findings presented here only 
as preliminary results, because we have found 
that our family also displays a kind of limiting 
behavior with respect to other key figures of 
merit. Besides, we believe that the study of these 
distributions can help to gain some insights into 
the importance of the shape of the amplitude 
distributions and in the achievable limits of the 
solutions.  

Another lesson we have drawn from this 
research is that EDA algorithms are powerful 
tools that can and must play a major role in the 
field of antenna analysis and design. Following 
this line of thinking we have included in the 
paper a section that explores a few important 
optimization issues. 

The numerical results allow us to conclude 
the following: 1) the IDRR impacts the 
complexity of the problem, i.e. the larger the 
IDRR the easier the optimization; 2) linear 
entropic mutation improves the performance of 
the algorithms and reduces the population size 
requirements; 3) the independence model seems 
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to be adequate for very large IDRR but fails 
dramatically for the other cases.  
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