
Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

System-Level Fault Diagnosis with Dynamic Mesh Optimization

Rafael Falcon
1
, Marcio Almeida

1
, Amiya Nayak

1
 and Rafael Bello

2

1
 School of Information Technology and Engineering (SITE), University of Ottawa,

Canada

2
 Artificial Intelligence Lab, Centre on Computing Studies,

Universidad Central “Marta Abreu” de Las Villas, Santa Clara,
Cuba

rfalc032@site.uottawa.ca, malmeida@uottawa.ca, anayak@site.uottawa.ca,
rbellop@uclv.edu.cu

Abstract. The efficient identification of hardware and
software faults in parallel and distributed systems still
remains a challenge in today's most prolific
decentralized environments. System-level fault
diagnosis is concerned with the detection of all faulty
nodes in a set of hundreds (or even thousands) of
interconnected units. This is accomplished by
thoroughly examining the collection of outcomes of all
tests carried out by the nodes under a particular test
model. Such task has non-polynomial complexity and
can be posed as a combinatorial optimization problem.
In this paper we employ Dynamic Mesh Optimization
(DMO) to detect faulty units in diagnosable systems.
The proposed method encodes the potential solutions
as binary vectors and exploits problem-specific
knowle dge to cope with infeasible individuals. The
empirical analysis confirms that the DMO-based scheme
outperforms existing techniques in terms of
convergence speed and memory requirements, thus
becoming a viable approach for real-time fault
diagnosis in large-size systems.

Keywords. Fault diagnosis, input syndrome, dynamic
mesh optimization, invalidation model, comparison
model.

Detección de fallas en sistemas
con optimización basada en mallas

Resumen. La identificación eficiente de fallas de
hardware y software ensistemas paralelos y distribuidos
todavía sigue siendo un desafío en loscada vez más
prolíficos sistemas decentralizados de estos tiempos.
Eldiagnóstico de fallas en sistemas tiene que ver con la
detección de todoslos nodos defectuosos en un
conjunto de cientos (o quizá miles) de
unidadesinterconectadas. Esto se logra mediante un
minucioso examen de la colecciónde los resultados de

las verificaciones realizadas por los nodos de acuerdoa
un model o de verificación en particular. Un examen así
de detallado tieneuna complejidad no polinomial y
puede ser presentado como un problema
deoptimización combinatoria. En este artículo se
emplea la Optimización Basadaen Mallas Dinámicas
(Dynamic Mesh Optimization, DMO), para detectar
unidadesdefectuosas en sistemas diagnosticables. El
método propuesto representa lassoluciones potenciales
como vectores binarios y explota el conocimiento
específico del problema para lidiar con soluciones no
factibles. El análisisempírico confirma que el enfoque
basado en DMO supera en rendimiento atécnicas
existentes en cuanto a la velocidad de convergencia y
losrequerimientos de memoria, convirtiéndose así en
un enfoque viable para eldiagnóstico en tiempo real de
fallas en sistemas de largo alcance.

Palabras clave. Diagnóstico de fallas; síndrome de
entrada; optimización basada en mallas dinámicas;
modelo de invalidación; modelo de comparación.

1 Introduction

Parallel and distributed systems continue to
increasingly permeate societies nowadays. From
cellular networks to distributed database
management systems, the emergence of
innovative architectural and communication
protocols has given rise to the next generation of
decentralized systems such as wireless sensor
and actuator networks Verdone et al. [25] and
cloud computing Vaquero et al. [24]. On the other
hand, many groundbreaking research projects
largely rest on powerful multiprocessor systems
due to their unrivaled processing capabilities,
rapid growth, and improved affordability.

mailto:anayak@site.uottawa.ca

204 Rafael Falcon, Marcio Almeida, Amiya Nayak, and Rafael Bello

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

It is from the standpoint of these technological
advancements that we witness a revival among
the scientific community when it comes to fault
tolerance protocols, as processing units in
networked systems are subject to both hardware
and software faults. Since undetected faults lead
to system errors with unpredictable
consequences, efficiently diagnosing the system's
status (i.e., identifying which nodes are faulty and
which are fault-free) still remains a serious
challenge for committed researchers.

The aforementioned problem is known as
ñsystem-level fault diagnosisò and has drawn a
significant amount of research over the last thirty
years. Different test models [6, 17,

20] have been

proposed in literature, each relying on the
common assumption that every system unit is
tested by one or more remaining units. Two well-
known scenarios are the invalidation and
comparison models. They constitute classical
benchmarks in the field and assume that a test
outcome indicates the correctness of the tested
node and that the system’s status can be entirely
derived out of the input syndrome, which is the
collection of all test results and stands as the
major fault identification vehicle.

Thorough examination of the input syndrome
under the set of rules enforced by a particular test
model turns out to be a non-polynomial
complexity task. Furthermore, given the discrete
nature of the node labeling process (i.e. every
node is tagged as either faulty or fault-free),
system-level fault diagnosis can be modeled as a
combinatorial optimization problem, whose
optimal solution is the system labeling (set of
node tags) that completely matches the known
input syndrome.

Although several algorithms have been put
forward with this goal in mind (e.g. branch-and-
bound Kameda et al. [13]; R.F. Madden [16];
G.F.Sullivan [22], logical framework B. Ayeb [2],
etc.), it wasn't until a few years ago that nature-
inspired meta-heuristic optimization approaches
Yang et al. [26] were brought into the context of
fault diagnosis in distributed systems. This sort of
methods has become very popular in the
optimization community for their proved ability to
overcome local optima through a parallel
exploration of the search space and the
exploitation of social communication mechanisms

to drive the population toward promising search
regions. Ant colonies (ACO) [9], genetic
algorithms (GA) [7], and artificial immune systems
(AIS) [29] have all succeeded in reliably spotting
the actual ensemble of damaged nodes, even
with reasonable performance in large-scale
settings.

Yet the implementation of these meta-heuristic
algorithms could be rendered computationally
prohibitive in many real-life scenarios given their
underlying intricacy. In the former ACO case, the
authors maintained two sets of pheromone trails
and heuristic information per node, whereas GA
and AIS develop their search strategy on the
basis of the procreation (either by recombination
or cloning) of their population members. It is clear
that memory and computing power can severely
hinder the applicability of the above techniques.
For instance, consider the novel problem of
carrier-based coverage repair [11] in a wireless
sensor network with cluster-based topology.
Sensors within the same cluster periodically test
among themselves and report the test outcomes
to their cluster head, which runs the fault
diagnosis algorithm and subsequently informs a
mobile robot on which are the damaged nodes in
its cluster so they can be timely replaced with
passive sensors. Because the cluster head is like
another resource-constrained device, the fault
detection algorithm must be “light” and accurate
enough so that realistic conclusions are drawn
with minimal memory and processing power
requirements.

A recent step in this direction was undertaken
in Falcon et al. [11] by using a discrete
formulation of Particle Swarm Optimization (PSO)
[14]. The authors encoded the system status as a
binary vector (particle) which “flies” along the
search space of all feasible solutions. Because
the population size remained constant and
infeasible particles were turned into feasible ones
by using problem-specific hints, PSO exhibited a
promising behavior in terms of memory
consumption and convergence speed to the
actual fault set (i.e., the group of all faulty units) in
presence of small and medium-size systems.

We build on the success of PSO-based fault
detection by applying Dynamic Mesh Optimization
(DMO) [21, 33], a novel metaheuristic approach
which borrows key elements from PSO and

System-Level Fault Diagnosis with Dynamic Mesh Optimization 205

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

evolutionary algorithms and proved to be effective
in discrete optimization domains like the feature
selection problem [3]. In our implementation, each
prospective solution to the optimization problem
(fault set) is represented as a mesh node. The
collective behavior of the artificial mesh is such
that topological changes, triggered by node
generation towards local optima, the global
optimum, and the boundaries of the known search
space, allow rapid discovery of the actual fault
set. Infeasible solutions are efficiently conducted
into feasibility by flipping the status of poorly
guessed system units. The empirical analysis
embraced the two aforementioned test models
(invalidation and comparison) and the overall
result is an accelerated convergence towards the
optimal solution with negligible rise in processing
overhead. This makes the proposed method
suitable for real-time fault diagnosis in a wide
array of compelling scenarios.

The manuscript has been structured as
follows. Section 2 is related work and Section 3
elaborates on the two above fault identification
models. The building blocks of Dynamic Mesh
Optimization are the subject of Section 4. Then
we unveil our DMO-based protocol (Section 5),
provide simulation results (Section 6), and outline
some final remarks (Section 7).

2 Related Work

The extent to which a system can proactively
react to unexpected hardware or software faults
largely depends on how fast those anomalies are
detected. No wonder then that convergence time
in fault identification is a highly sought-after
feature of any competitive diagnosis method. All
the approaches described in this section share
the same goal: to locate the set of faulty nodes,
given the input syndrome, in the least amount of
time and with high reliability. Many research
works [1, 23, 27, 28] aim at designing efficient
algorithms based on the exploitation of structural
properties of the testing graph. Topologies as
hypercubes, crossed cubes, extended stars, and
twisted cubes are among the preferred topologies
because they simplify the conceptual design of
the proposed solution approaches.

We stick to a more flexible methodology in
which no restrictions on the topological features of
the system are laid, other than those to guarantee
a reliable (i.e. deterministic) result. In this avenue,
system-level fault diagnosis is posed as an
optimization problem under a particular test model
and an arbitrary structure of the testing graph, as
explained in Section 3. Exact, heuristic, and
metaheuristic methods are needed to explore the
discrete search space in polynomial time. The
complexity of such approaches is generally higher
compared to those leaning on a simplified
topology yet they bear a much wider applicability
and still yield satisfactory results.

For example, authors in Kameda et al, [13],
R.F. Madden [16] put forward exact algorithms of
the branch-and-bound type whose time

complexity is ὕὔ , where ὔ is the system size
(number of units). G.F. Sullivan [22] introduced a
backtracking-based enhancement to Kameda et
al. [13] which caused the time complexity to drop

to ὕὸ ȿὉȿ, where t is the number of tolerated
faults and ȿὉȿ is the total number of tests carried
out in the system. This bound becomes more
relevant as fewer units are deemed defective
among a large group of nodes.

As stated in Section 1, evolutionary methods
were applied to system-level fault diagnosis [7;
26], in particular GA and AIS. Both methods lack
an adequate population diversity given the biased
exploration induced by an adaptive mutation
operator (openly criticized in Yang et al. [26] but
finally adopted). As a result of that, the
convergence is slowed down and the worst-case
identification of faulty nodes turns severely
hindered in large systems composed of hundreds
or thousands of units. Memory requirements are
another important concern because of the
enormous number of individuals generated by the
algorithms over time in an attempt to find the
optimal solution, which consequently triggered the
need for a parallel version Elhadef et al [8]. Such
demeanor turns even worse in the AIS-based
model [29], where the number of elitist (fittest)
antibodies and the number of clones per elite
antibody are both equal to the population size.
Our binary DMO implementation requires quite
fewer individuals to converge to the optimal
solution and does not bias the exploration of the

206 Rafael Falcon, Marcio Almeida, Amiya Nayak, and Rafael Bello

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

 search space, i.e., all components of the binary
vector representing the population member (mesh
node) are allowed to change.

An ACO-inspired scheme was designed for
system-level fault diagnosis [9] and tested with
the invalidation and comparison models. The
chief idea is to have every ant construct a full tour
of the graph representing the system units and
label each node as faulty/fault-free as it goes by.
Unlike widely recognized ACO models, authors
do not use either pheromone or heuristic values
to perform internodal transitions but to guess the
node's status. The disadvantage here lies in the
redundant storage of dual sets of pheromone
trails and heuristic information per node during
the ant’s journey, which aggravates the memory
consumption issue for fairly large systems.
Furthermore, it is not clear what heuristic value is
assigned to a node by a “flying ant”, as no link
between the current and the “leaping-to” nodes
might exist. Another downside of this meta-
heuristic implementation is the handling of
infeasible solutions, which are discarded by
default, thus wasting valuable information
gathered during the ant’s incremental tour along
the graph. Our proposed approach requires less
information at the search agent level (mesh
node), gracefully turns infeasible solutions into
feasible ones and is theoretically simpler than its
ant-based peer.

The binary PSO put forward in Falcon et al.
[10] has lower computational demands with
respect to the previously discussed algorithms
and exhibits a superior convergence rate for small
and moderate-sized distributed systems. Each
particle is encoded as a binary vector
representing the status of every node (faulty/fault-
free) and “flies” across the search space of
candidate fault sets driven by its own best
position and the best position ever reached by the
swarm. Yet experiments in Falcon et al. [11]
uncovered a disappointing PSO's worst-case
behavior (which might jeopardize the detection
capabilities of the algorithm for real-time
diagnosable systems) and did not include larger
diagnosable systems. We observe in Section 6
how DMO manages to substantially reduce the
worst-case diagnosis latency for networks
composed of hundreds of interconnected units.

3 Fault Diagnosis Models

Several models to identify faults in distributed
systems appear in literature. In this section, we
will focus on the popular invalidation and
comparison models. Both assume that each node
will be tested by a particular subset of the other
nodes in the system and every test has a binary
nature. A test outcome indicates whether the
node is either faulty (1) or fault-free (0). Moreover,
the group of all faulty units in a system is called
the fault set. One attribute of the so-called ὸ-
diagnosable systems is that they can only have at

most ὸ faulty nodes.
Although both diagnosis models represent the

problem in a graph-like fashion and use the
collection of test outcomes as a means to figure
out what the status of every node is, they differ in
the type of graph representation and the implicit
assumptions on how tests are conducted.

3.1 The Invalidation Model

In the invalidation or PMC model (named after its
authors in [20], the problem is represented as a
directed graph Ὃ ὠȟὉ with ὠ ὺȟὺȟȣȟὺ
being the set of nodes (processors, sensors, etc.)
and Ὁ the set of edges. Each edge Ὡ ᶰὉ stands

for a test performed by node ὺ upon node ὺ and

whose binary outcome is denoted as „ . The set

of all test outcomes is called a syndrome and is

symbolized by „. Since a syndrome „ is a
physical manifestation of an underlying fault set
Ὂ, we usually write „.

According to the PMC model, the system has
a stationary nature, i.e. the statuses of all nodes
do not change during the diagnosis phase. It is
also assumed that tests carried out by fault-free
nodes are always correct while those executed by
faulty devices are unreliable, i.e. yield arbitrary
results.

Let ὺᶰὠ be any node in Ὃ. Then the set of

nodes tested by ὺ is ὺ ὺ ɴ ὠȡ Ὡ ᶰὉ

and „ὺ „ ɴ „ȡὮɴ ὺ is the subset of

the syndrome „ containing the results of the tests

realized by ὺ. In a similar way, ὺ ὺ ɴ
ὠȡ Ὡ ᶰὉ is the set of ὺ’s testers and „ ὺ

System-Level Fault Diagnosis with Dynamic Mesh Optimization 207

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

 „ ɴ „ȡὮɴ ὺ the outcomes of all tests

carried out upon ὺ.

Definition 1. A fault set ὊṖὠ is consistent
with the syndrome „ under the PMC model if

Ὡᶅ ᶰὉ neither „ π, where ὺᶰὠ Ὂ and

ὺᶰὊ, nor „ ρ where ὺȟὺᶰὠ Ὂ, holds.

The above definition states that only fault-free
nodes always yield correct results. This
assumption will play a pivotal role later on during
the generation of candidate syndromes as part of
the quest for the true fault set.

3.2 Comparison Model

In the comparison model [19], nodes perform
tests in a pairwise fashion, i.e., some pairs of
units test each other. The comparison between
the two test outcomes (match/mismatch) stands
as the foundation for deriving the nodes' statuses.
More formally, in a comparison-based scenario,
an undirected graph Ὃ ὠȟὉ is used to model

the system, where ὠ is the set of units and Ὁ is
the collection of edges. Now each edge Ὡ has an

associated weight „ π when the two test

results carried out by units ὺ and ὺ are identical

and „ ρ otherwise. As in the PMC model, the

collection of all edge weights (test comparisons)
makes up the syndrome „.

The comparison model also regards the
system as static, likewise PMC. Now the main
assumption is that two fault-free units will always
agree on their test outcomes whereas any couple
of faulty and fault-free nodes will always disagree.
However, divergent standpoints arise when it
comes to the test comparison involving two faulty
nodes. The asymmetric version of the comparison
model [17] considers that two damaged nodes will
only produce a mismatch while in the symmetric
variant [6, 12], both a match and a mismatch are
likely choices.

Let ὺᶰὠ be any node in Ὃ. Then the set of

neighbors of ὺ is ὺ ὺ ɴ ὠȡ Ὡ ᶰὉ and

„ὺ „ ɴ „ȡὮɴ ὺ is the subset of the

syndrome „ containing the test

agreements/disagreements concerning ὺ.

Definition 2. A fault set ὊṖὠ is consistent
with the syndrome „ under the comparison

model if Ὡᶅ ᶰὉ, neither „ π where ὺᶰὠ

Ὂ and ὺᶰὊ (or ὺᶰὊ and ὺᶰὠ Ὂ), nor

„ ρ where ὺȟὺᶰὠ Ὂ, holds.

3.3 Ἴ-Diagnosable Systems

From the previous two subsections one may
realize that, given an input syndrome „ which is
compliant with the specifications of a particular
model, multiple faults sets could possibly give rise
to it. This makes system-level fault diagnosis a
non-deterministic problem, which is of course very
undesirable since the actual set of damaged units
cannot be guessed with full certainty. To prevent
this, we introduce the following definition.

Definition 3. A system of ὔ units is ὸ-
diagnosable if and only if the number of faulty

units does not exceed ὸ and for any consistent

syndrome „, there is only one fault set Ὂ that
originated it.

Hereafter, we confine ourselves to a type of
system which is easy to generate and known to
be ὸ-diagnosable. As such, it will be used in our
experiments.

Definition 4. A system represented by a test
graph Ὃ ὠȟὉ with ὔ ȿὠȿ is a Ὃ ὔ design

iff i) N ςὸ ρ and ii) each node is tested by ὸ
others.

For the PMC model, it was proved in [12] that
a Ὃ ὔ system in which no two units test each

other is ὸ-diagnosable. As to the comparison
model, recall that we consider a single link
between any two entities, so the Ὃ ὔ design fits

very well once it was demonstrated to be ὸ-
diagnosable for this model too [19]. Figure 1 (a)
and (b) display a Ὃ ὔ graph under the PMC and
symmetric comparison models, respectively.

Finally, let us point out that, irrespective of the
diagnosis model being used, the problem of fault
detection in distributed and parallel systems can
be posed as a combinatorial optimization problem
if we undertake a quest, over the discrete space

of all possible fault sets, of the actual fault set Ὂ
which univocally generates the known input
syndrome „ . This task has non-polynomial time
complexity [4] and calls for the application of
heuristic and meta-heuristic methods to

informedly navigate over the search space until Ὂ

208 Rafael Falcon, Marcio Almeida, Amiya Nayak, and Rafael Bello

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

is found. The next section is devoted to outline
the fundamentals of one of such meta-heuristic
procedures.

4 Dynamic Mesh Optimization

We first glimpse at the important concept of
swarm intelligence and highlight PSO as one of
its landmark representative architectures, then
explain the foundations behind the canonical
formulation of Dynamic Mesh Optimization.

4.1 Preliminaries

Nature-inspired algorithms are among the most
powerful optimization approaches [26]. Ant
colonies, bird flocks, bumble bee nests, bacterial
colonies and fish schools are good illustrations of
swarm intelligence, a term coined not long ago to
refer to the self-organizing properties of
associations of natural organisms which, despite
the simplicity and limitations of their constituent
individuals, are able to directly or indirectly
coordinate their efforts in achieving a certain goal
(foraging, mating, etc.) and whose corporate
interactions exhibit a far more complex behavior.

The analogy to optimization stems from the
fact that these individuals can represent potential
solutions in a multimodal, nonlinear, non-
differentiable, multidimensional space and by
means of their social communication
mechanisms, the entire swarm is able to relocate
toward more promising regions of the optimization
landscape as it pursues the global optimum.

Though originally conceived to target
continuous optimization problems [5,14], PSO
was rapidly twisted to cope with combinatorial
scenarios [15]. Since its very inception, it has
enjoyed a well-deserved popularity among swarm
intelligence approaches owing to its intuitive
formulation, computational simplicity, and fast
convergence in many challenging scenarios.
Each particle is encoded as a multidimensional
vector and stands for a prospective solution to the
optimization problem. It has a position (real-
valued or discrete encoding), velocity (movement
vector), and fitness value (measure of quality
according to the objective function) and “flies”
throughout the search space driven by its best-
ever position and the fittest position reached by
any neighborhood member thus far.

(a)

(b)

Fig. 1. (a) A Ὃ ρπ test assignment graph under

the PMC model. The directed edge labels represent
test outcomes; (b) A Ὃ ρπ graph under the

symmetric comparison model. The undirected edge
labels represent pairwise comparisons of test
outcomes

System-Level Fault Diagnosis with Dynamic Mesh Optimization 209

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

PSO has undergone quite a few developments
[18] in critical aspects such as the underlying
neighborhood topology, velocity, and position
update rules, parameter setting, interaction
protocols, and the like. The DMO algorithm we
are about to unfold borrows core ideas from PSO
and fosters a stronger degree of interactions
among individuals in order to enhance the search
diversification component.

4.2 DMO's Building Blocks

This population-based metaheuristic was put
forward by Puris and Bello [21] after being
inspired by the manner in which PSO particles
corporately probe the solution space. Unlike PSO,
the general formulation of the DMO approach
embraces both discrete and continuous
optimization domains. A set of nodes representing
potential solutions to an optimization problem
makes up a mesh (population) that dynamically
grows and moves through the search space
(evolves). This is accomplished via a mesh
expansion process at each iteration, where new
nodes are brought forth in the direction of the
local optima (mesh nodes with the best fitness in
a particular neighborhood), the global optimum
(the best-so-far solution reached by the
algorithm), and those nodes lying at the mesh
border. Then, the mesh shrinking process retains
the fittest nodes in the current iteration, which
together form the next mesh. This process is
repeated until a stop criterion is met.

The building blocks of the DMO method are
outlined below and its parameters described in
Table 1.

1) Generation of the initial mesh.
2) Node generation towards the local optima.
3) Node generation towards the global optimum.
4) Node generation towards the mesh border.

Bearing the above ideas in mind, DMO was
enunciated as a population-based optimization

algorithm in which a group of artificial nodes ὠ

makes up a mesh ִי of size ὓ . Each candidate
solution (mesh node) has an associated encoding

vector ὢᴆ ὢ ρȟȣȟὢ ὔ , Ὥ ρȟȣȟὓ in the
ὔ-dimensional search space.

In the remainder of this section, we elaborate
on the core steps of the DMO protocol.

1) Generation of the initial mesh. At the outset
of the algorithm, the ὓmesh nodes are created
either randomly or by following an inexpensive
generation procedure. During each subsequent
iteration, the ὓ fittest individuals in the
population are retained (out of ὓ ὓ nodes
comprising the mesh as a result of the expansion
process).

2) Node generation towards the local optima.
The aim of this step is to come up with new nodes
settled in the direction of the local optima found
by the algorithm.

For each node ὢᴆ, its Ὧ-nearest neighbours are

computed. If none of the neighbors surpasses ὢᴆ

in terms of fitness function value, then ὢᴆ is said to
be a local optimum and no nodes are begotten

out of it in the current iteration. Otherwise, let ὢᴆ

be the fittest neighbor of ὢᴆ. In such case, a new

node ὢᴆz arises somewhere between ὢᴆ and

ὢᴆaccording to the function

ὢᴆὯ ὪὢᴆὯȟὢᴆὯȟὶ ᶅὯ ρȢȢὔ, where ὶ

models the proximity of the newborn individual to
each ancestor by somehow relating their fitness
values. Depending on the application domain
DMO deals with, ὶ could be interpreted as either

a perturbation factor of the real-valued vector ὢᴆ
or as a probabilistic threshold for componentwise

selection out of the discrete vectors ὢᴆ and ὢᴆ.
Either way, ὓ ȿὠȿ ὓ individuals will be
added to the mesh at this time.

3) Node generation towards the global
optimum. Analogously, we allow the original mesh
nodes to produce individuals in the direction of

the best solution ever found by the algorithm, ὢᴆ.

Table 1. Parameters of the DMO algorithm

ὓ Number of nodes in the initial mesh

ὓ
Maximum number of mesh nodes at any
iteration. Often set as ὓ σϽὓ

Ὧ
Neighborhood size, i.e. number of
neighbors per node

άὥὼὍὸὩὶ
Maximum number of iterations to be
carried out

210 Rafael Falcon, Marcio Almeida, Amiya Nayak, and Rafael Bello

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

The encoding of the new vector ὢᴆz is determined

by the mapping Ὣ as follows: ὢᴆzὯ

ὫὢᴆὯȟὢᴆὯȟὶ ᶅὯ ρȢȢὔ, where ὶ plays a

similar role to ὶ in the previous step.

Notice that exactly ὓ ȿὠȿ ὓ ρ nodes

will become part of the dynamic mesh should ὢᴆ

be a member of the current population, otherwise
ὓ ȿὠȿ ὓ .

4) Node generation towards the mesh borders.
The last step in the mesh expansion process aims
at intensifying the exploration around the mesh
border. Although this definition is highly problem-
dependent, the idea is that nodes lying at the
farthest regions of the known search space can
somehow give rise to new candidate solutions
that hopefully stretch out the mesh. The mapping

Ὤ governs this step: ὢᴆzὯ ὬὢᴆὯȟύ ᶅὯ

ρȢȢὔ, where ὢᴆ is an individual located at the
mesh border (picked out of the ὓ initial nodes in

the current mesh) and ύ has a similar nature to

prior variables ὶ and ὶ but relates to ὢᴆ alone.

In total, ὓ ȿὠȿ ὓ ὓ ὓ ὓ nodes

will be appended to the mesh. It is a good thing in
practice to choose ổὓȾςỖ population members
located at the “lower border” and the rest
belonging to the “upper border” as pivots for node
generation.

5 Proposed Approach

We model system-level fault diagnosis as a
combinatorial optimization problem undertaken by
a binary DMO approach. The goal is to find,
among many possible fault sets (see Section 3),

the true set Ὂ that entirely matches the collection
of test outcomes contained in the input syndrome
„ . The proposed protocol (Dynamic Mesh
Optimization to Fault Diagnosis, DMO-FD) is
executed at a centralized location (e.g., a
dedicated processor in a parallel system, or a
base station or cluster head node in a wireless
sensor network).

5.1 Solution Encoding and Initialization

In DMO-FD, each mesh node symbolizes a
candidate fault set Ὂ. Therefore, we encode its

position ὢᴆ as a binary vector whose
dimensionality ὔ ȿὠȿ is given by the system size
(number of distributed or parallel units). The
status of the Ὧ-th node Ὧ ρȢȢὔ will be denoted

by ὢᴆ Ὧ ρ if we guess that ὺ is faulty or

ὢᴆ Ὧ π otherwise.
At the algorithm outset, it is first decided at

random the number of faulty units ὲὪͯὟὭȟὸ each
mesh node will encode and then ὲὪ bits will be

arbitrarily set to one in ὢᴆ ȟὭ ρȢȢὓ . By doing so,
we are trying to promote diversity in the initial
mesh, since the cardinality of its encoded fault
sets will vary stochastically within the feasible
bounds imposed by a ὸ-diagnosable system.

For each potential fault set Ὂ, we generate its

corresponding candidate syndrome „ before we
can actually figure out its fitness value.

5.2 Fitness Function

The quality or fitness of any individual (fault set Ὂ)
in our problem is measured as the resemblance
between the input syndrome „ and the candidate

syndrome „. The calculation of the latter and of
the fitness function itself is strongly model-
dependent although they share some similarities.

1) Candidate Syndrome Generation. Out of all
diagnosis models considered in this study, only
the asymmetric comparison model is entirely
deterministic. That is, given the assumption of
which nodes are faulty and which are fault-free
(mesh node's encoding), we follow the
asymmetric model rules stated in Section 3.2 and
assign a label to every edge Ὡ ᶰὉ in the test

assignment graph Ὃ. The collection of these
labeled edges becomes our candidate
syndrome „.

Since the remaining models have a non-
deterministic nature concerning the tests carried
out by faulty nodes (in the invalidation model) and
the agreement/disagreement between a pair of
mutually-tested damaged devices (in the
symmetric comparison model), one can make the
reasonable assumption that these edges in the
candidate syndrome are equal to those in the
input syndrome, i.e.,

„ ὺ „ ὺ ᶅὺᶰὊ

System-Level Fault Diagnosis with Dynamic Mesh Optimization 211

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

Then we generate the remaining edge labels
in „ in full compliance with the rules defined for
each model, which were clearly portrayed in

Section 3.2. We denote by ᾀḊ ὢᴆ O „ the

mapping from a candidate fault set ὢᴆ to its
corresponding syndrome „ .

2) The Mesh Nodeôs Fitness. A mesh node is
said to have better quality (fitness) than peers if
the candidate syndrome associated with its
encoding (fault set Ὂ) better resembles the input
syndrome. From the local viewpoint of node ὺ,
this is equivalent to count how many labels of the
incoming/outgoing edges coincide in both
syndromes. For the two variants of the
comparison model, expression (1) models the
node-level similarity.

(1)

For the PMC model, we are to take into
account that all nodes will be tested but not
necessarily testers. Equations 2 to 4 respectively
model the similarity from ὺ's perspective as a
tester node, tested node, and both.

(2)

(3)

(4)

Now we can define in (5), regardless of the
diagnosis model under consideration, the overall

resemblance function between the input and
candidate syndromes, which actually becomes
the fitness function of the DMO-FD algorithm.

(5)

where ὔ ȿὠȿ is the system size.
The above equation can be seen as the

correctness probability of the potential fault set Ὂ

being the actual fault set Ὂ. Because we are

working with ὸ-diagnosable systems solely, then it

is guaranteed that there is a unique fault set Ὂ
that makes „ . Remark that (1) and (4) take

values in πȠρ, which consequently defines the
image of (5) to lie in the same interval.

5.3 Node Generation toward Local Optima

Whenever a new node ὢᴆz is to be created out of

current node ὢᴆ and its local optimum ὢᴆ, its
components along each dimension Ὧ ρȢȢὔ are
generated as in (6).

(6)

where ὶὥὲὨ ͯ Ὗπȟρ. The proximity threshold

ὶ is thus modeled after (7).

(7)

Notice that if the fitness values of ὢᴆ and ὢᴆ are
slightly different, then ὶ is about 0.5, which

means that each component of ὢᴆz can be taken

out of either vector (ὢᴆ or ὢᴆ) with roughly the

same probability. On the other hand, if ὢᴆ is quite

inferior to ὢᴆ in fitness, then ὶ ρ and ὢᴆz will be

biased towards ὢᴆ to a large extent.

212 Rafael Falcon, Marcio Almeida, Amiya Nayak, and Rafael Bello

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

5.4 Node Generation toward Global Optimum

An alike rationale is applied for giving rise to
mesh nodes in the direction of the best-
performing individual. The mapping Ὣ and its
associated proximity threshold ὶ are calculated

by means of (8) and (9).

(8)

(9)

5.5 Node Generation toward Mesh Border

At this point, we try to “enlarge” the artificial mesh,
i.e., to intensify the exploration around its border.
We can determine whether a node lies at the
mesh border or not by computing the norm of the
vector it encodes.

Since we work with binary solutions, the norm
is simply the number of components set to 1. We
denote by lower border (upper border) the region
of the search space containing those vectors
having minimal (maximal) norm. Notice that, in
the context of system-level fault diagnosis, the
norm of any feasible vector ranges between 1 and
ὸ (the number of faulty units in the network), so
lower-border nodes are those having norm 1, 2,
etc., and upper-border nodes will have norm ὸ,
ὸ ρ, ὸ ς, etc.

The number of nodes generated during this
step is ὓ ȿὠȿ ὓ ὓ ὓ ὓ . Hence, we

seek ổὓȾςỖ nodes lying at the lower border and
the same number of individuals in the upper
border. In our implementation, mesh border
representatives shall be drawn from the set
ὠ ᷾ὠ᷾ὠ, i.e., all nodes in the current iteration,

as a vehicle to better capture the dynamics of the
population.

Let ὢᴆ and ὢᴆ be two representatives

of the corresponding classes. Then, the dual
character of the Ὤ mapping Ὧᶅ ρȢȢὔ is captured
by (10) and (11), respectively.

(10)

(11)

with ύ calculated as shown below:

(12)

where “iter” is the current iteration number,
“maxIter” is the maximum number of iterations,
and ύ , ύ are the initial and final values for ύ,

respectively (ύ ύ). Remark that ύ has a

monotonically decreasing nature, i.e. more
exploration towards the mesh borders is
encouraged at the beginning of the algorithm and
decreases over time.

5.6 Handling Infeasible Solutions

The randomness that permeates the mesh
expansion stage in (6), (8), (10), and (11) could
bring forth an infeasible solution, defined as a
particular configuration (binary vector) in which
either all units are fault-free or there are more
than ύ faulty units. Both scenarios are

unacceptable in ὸ-diagnosable systems and are to
be dealt with. We gracefully manage this situation
in the following way:

1) Compute the node-level resemblance by
either (1) or (4) depending on the diagnosis model
under consideration.

2) If the mesh node's encoding is the zero
vector, generate a random number ὦͯ Ὗρȟὸ and

flip (turn to 1) the ὦ bits with the lowest fitness

values. Otherwise, let Ὧ be the number of 1's in

the vector (notice that Ὧ ὸ). Then generate a
random number ὦͯ ὟὯ ὸȟὯ ρ and flip (turn to

0) the ὦ bits set to 1 with the lowest fitness
values.

The above procedure rapidly turns infeasible
individuals into feasible ones by inverting the
guesses on the status of those nodes with

System-Level Fault Diagnosis with Dynamic Mesh Optimization 213

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

poorest local similarity to the input syndrome, in
an attempt to accelerate the convergence of the
algorithm towards the actual fault set.

5.7 Stop Criterion

DMO-FD stops when it either reaches an upper
bound of the running time (usually expressed as a
function of the number of iterations) or discovers

the actual fault set Ὂ, i.e., a node encoding Ὂ with
fitness „ȟ„ ρ. Such Ὂ is guaranteed to be

unique in ὸ-diagnosable systems [Pelc, 1991;
Hakimi et al, 1974].

6 Simulation Results

We have empirically validated the performance of
the DMO-FD protocol under t-diagnosable
systems of various sizes for both the invalidation
and comparison test models. Our algorithm has
been contrasted to the AIS in Yang et al. [26] and
the PSO in Falcon et al. [10]. The experiments
were conducted in Java using JDK 1.6 on an Intel
Core2 Duo E4500 2.2GHz with 2 GB of RAM
under Windows Vista.

Each algorithm was executed until either the

true fault set Ὂ was encountered or a maximum
allotted running time was reached. The spatio-
temporal demands of the competing approaches
were measured by the following performance
indicators: (1) total number of candidate solutions
probed and (2) CPU time consumed. To assess
the methods' scalability, ὸ-diagnosable systems of
different sizes were tried, viz Ὃ υπ, Ὃ ρππ,
Ὃ υππ, and Ὃ ρπππ.

For each system above, the number of faults x
ranged from 1 to t and for every value of x, 100
arbitrary fault sets of that cardinality were
generated. The average-case and worst-case
behaviors of every algorithm with the two previous
performance metrics have been recorded. The
95% confidence intervals of the average case are
not shown in every plot for the sake of clarity.
Rather, they are displayed mainly when
highlighting differences between PSO and DMO-

FD, provided either succeeded in discovering Ὂ.

(a)

(b)

Fig. 2. (a) DMO-FD in a Ὃ υπ, small M gives a

higher performance; (b) DMO-FD in a Ὃ υππ, no
meaningful differences among the three tested k values
are spotted for most of the trials across tested
algorithms, diagnosis models, and system sizes

214 Rafael Falcon, Marcio Almeida, Amiya Nayak, and Rafael Bello

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

6.1 Parameters of Experiments

We adopted the AIS configuration outlined in
X.S.Yang [29], where the number of elite
antibodies undergoing cloning is equal to the
population size and a quarter of the individuals is
replaced after every iteration. For PSO, the
recommended values in competitive
implementations [5] were respected, i.e., ὧ
 ὧ ςȢπυ, and the constriction factor … πȢχςωψ
is included in the velocity update rule. PSO works
with the “complete” or “global best” neighborhood
layout while DMO-FD's topological structure is
controlled by the parameter k.

To guarantee a fair comparison baseline, the
three metaheuristic schemes share the same
population size (10 individuals). We set this value
as such because we are interested in gauging the
algorithmic performance in resource-scant
environments, i.e. assuming the device in charge
of running the fault diagnosis scheme has limited
computing and memory capabilities.

A further justification to the small population
size is the demonstrated fact Falcon el al. [11]
that a modest number of search agents manages
to explore reasonably well the binary N-
dimensional space. Fig. 2(a) confirms the higher
performance when using M=10 than higher
values.

The selection of the neighborhood size (k) in
DMO followed a more careful analysis. Fig. 2(b)
reveals that no significant differences arise
among all tested values Ὧᶰ σȟυȟχ. This is true
for the vast majority of the configurations tested
and the two empirical metrics and diagnosis
models under consideration. Hence, setting Ὧ σ
contributes to diminish the computational
complexity of the algorithm.

6.2 PMC Model, Small Graph

Fig. 3(a) displays the cumulative number of
candidate solutions probed along each algorithm's
lifetime in presence of the invalidation model and
a small system Ὃ υπ. The two steep AIS
curves are due to the heavy effect of cloning, a
vital mechanism to guarantee diversification in
AIS along with the ensuing mutation operator.
Because at every AIS iteration the highest ranked
antibodies are cloned as many times as the

Fig. 3. Performance metrics for AIS, PSO and

DMO-FD with the PMC model and Ὃ υπ graph

System-Level Fault Diagnosis with Dynamic Mesh Optimization 215

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

population size itself, the entailed memory
requirements of such protocol may be prohibitive
if we consider running it on a limited device like
an ordinary sensor acting as cluster head in a
wireless sensor network. DMO-FD's worst-case
curve is quite erratic and strongly contrasts with
its roughly steady average-case trend. PSO's
performance is indeed encouraging (on average)
as the number of presumably damaged units
grows. Its worst-case scenario is preferable to
DMO's average case once 12 or more faulty
nodes are identified in the network. PSO's
tangible superiority over DMO-FD in small graphs
could be ascribed to the negligible bearing of
stretching the mesh toward its borders when the
search space is quite narrow. In such cases, it
seems that the stochastic flight of the PSO
particles produces a much more efficient
exploration than the node generation toward
poorly guessed local optima and global optimum
in DMO. Should this conjecture be right, we will
behold a dramatic change in DMO's demeanor as
the search space dimensionality rises.

Concerning running time, Fig. 3(b) helps us
realize that only AIS fails to identify 20 or more
damaged units in less than five seconds. The
large number of individuals spawned in AIS has
an immediate impact on its computational
complexity, as represented by the two curves with
the sharpest growth rates. Conversely, the
response time of the two remaining metaheuristic
approaches stays nearly unaltered as more faulty
nodes are added, which means that having the
global best population member and a locally
optimal solution guide the search of the rest of the
agents is profitable for scalability purposes. PSO
still beats DMO-FD and finds the true fault set
quicker.

Similar results are obtained for the Ὃ υπ in
the comparison model, which are therefore left
out of the discussion.

6.3 Asymmetric Comparison Model, Medium-
Size Graph

When the three algorithms are tested with a
medium-size distributed system (100 nodes)
following the asymmetric comparison model,
there is a significant variation in their performance
w.r.t. the previous case. For instance, Fig. 4(a)

Fig. 4. Performance metrics for PSO, AIS and DMO-FD

with the Asymmetric Comparison model and Ὃ ρππ
graph

216 Rafael Falcon, Marcio Almeida, Amiya Nayak, and Rafael Bello

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

reveals that PSO shows an irregular worst-case
behavior in the number of particles required to
find the global optimum. Interestingly, the
stagnation phenomenon slowly fades out as the
dimension of the search space augments. One
could argue that the presence of a single informer
(swarm's best) in a particular region of the search
space could be drawing other particles strongly
enough so as to lead them into an infeasible
encoding. Particles can more easily escape
stagnation and be redirected towards any
stochastic, feasible encoding as the size of the
search space increases. Fortunately, the joint
influence of manifold informers together with the
exploration around the mesh border prevents
DMO-FD agents from getting caught in local
optima, as proved by the fact that it consumes a
nearly constant and negligible number of
candidate solutions to converge. The evolutionary
search undertaken by AIS yields almost identical
results for the average and worst cases.

Dynamic-mesh-based optimization
outperforms peer methods in terms of running
time as well. From Fig. 4(b) it can be noticed how
the insufficient guidance in PSO still produces a
significant delay in convergence speed. Although
PSO and DMO-FD do very well in the average
case, for the former it takes over ten times longer
to detect the faulty set than for the latter in the
worst scenario. Such delay could be
unacceptable in critical environments like
aeronautics, underwater oil drilling, etc.

Nevertheless, most of the times both
approaches efficiently reach the global optima in
less than 2 seconds. The reliability of the average
time prediction for the proposed method is
schematically verified by the short length of the
majority of the confidence intervals, with still quite
some margin for PSO improvement.

6.4 PMC Model, Large Graph

Let us shed light on the empirical performance
between DMO-FD and PSO in presence of a
large, complex system Ὃ υππ. We have
excluded AIS from this trial since its behavior is
the poorest and quite impractical.

Fig. 5(a) bears witness to the inability of PSO
in pointing out the actual fault set for most of the
values of ὸɴ ρȢȢςππ. This fact is depicted by the

Fig. 5. Performance metrics for PSO and DMO-FD with

the PMC model and Ὃ υππ graph

System-Level Fault Diagnosis with Dynamic Mesh Optimization 217

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

straight line topping the maximum number of
individuals unfolded along 1,000 iterations. Its
vanishing effect can be explained by the same
rationale in Section 6.3. While DMO-FD never
failed to encounter the true ensemble of damaged
nodes, PSO fell short in 78% of the cases.
Remark that both methods are contrasted with a
small population size (M=10), which makes DMO-
FD a strong candidate for tackling challenging
fault detection problems with low resource
requirements. Even DMO-FD's worst-case setting
is far more preferable than PSO's average-case.

After inspecting Fig. 5(b), a similar trend to Fig.
5(a) surfaces, except that the running time for
PSO increases nearly monotonically with the
expected number of faulty units until a large
enough search space is reached for ὸ ςππ. In
such cases, the presence of numerous feasible
candidate sets helps attenuate the undesirable
effect of having a single informer particle draw all
remaining population members towards a
reduced group of infeasible encodings. Because
of PSO's high failure rate, its average-case
behavior approaches the worst-case
performance. On the other hand, observe how
DMO-FD responds with the true fault set within 10
seconds on average and always within 22
seconds, irrespective of the values of t. Its
responsiveness can be ascribed to the enhanced
exploration around the mesh border and the
presence of multiple local minima guiding the
search.

6.5 PMC Model, Large Graph – 1000 nodes

Finally using a system Ὃ ρπππ the DMO-FD is
able to find solutions within good average time for
any number of faulty nodes, as depicted in Fig. 6
(a) and (b). The PSO is unable to find solutions
until a large enough search space is reached for
ὸ τππ. DMO-FD responds with the true fault set
within 20 seconds on average and the most cases
within 100 seconds, irrespective of the values of t.
So, with the reported results we can confirm the
scalability of the DMO-FD for complex systems.

7 Conclusions and Future Work

In this study, we have cast the relevant problem
of system-level fault diagnosis into the

Fig. 6. Performance metrics for PSO and DMO-FD with

the PMC model and Ὃ ρπππ graph

218 Rafael Falcon, Marcio Almeida, Amiya Nayak, and Rafael Bello

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

combinatorial optimization world and applied a
discrete version of Dynamic Mesh Optimization, a
novel population-based optimization method, to
quickly and affordably identify the set of faulty
units in the system. The proposed DMO-FD
protocol utilizes a binary encoding of the potential
solutions (mesh nodes) and dynamically modifies
the mesh topology via node generation toward the
local optima, global optimum, and mesh border.
Whenever a population member drifts into the
infeasible region, the assumption on the status of
the least promising nodes is inverted, thus
causing its candidate syndrome to better
resemble the input syndrome.

Though PSO still remains as the best
optimization alternative for small graphs (less
than 50 nodes), simulation results amply argue for
the introduction of DMO-based fault detection in
medium and large-size networks in presence of
the invalidation and comparison test models. In
such scenarios, which are increasingly prolific in
today's societies, DMO-FD displays a robust and
more stable behavior in terms of convergence
rate and amount of memory required. This speaks
highly of the scalability properties of our
algorithm.

As future work, we plan to incorporate other
fault diagnosis models and performance metrics
into the experimental setting and bring forth
further enhancements through the hybridization
with other population-based meta-heuristics or the
application of local search mechanisms that
intensify the exploitation of the corporately
induced potential fault sets.

References

1. Ahlswede, R. & Aydinian, H. (2008). On

Diagnosability of Large Multiprocessor Networks.
Discrete Applied Mathematics, 156(18), 3464–
3474.

2. Ayeb, B. (1999). Fault Identification Algorithmic: A
New Formal Approach. 29th Annual International
Symposium on Fault-Tolerant Computing,
Madison, Wisconsin, USA, 138–145.

3. Bello, R., Puris, A., Falcon, R., & Gómez, Y.
(2008). Feature Selection through Dynamic Mesh
Optimization. Progress in Pattern Recognition,
Image Analysis and Applications, Lecture Notes in
Computer Science, 5197, 348–355.

4. Blough, D.M. & Pelc, A. (1992). Complexity of
Fault Diagnosis in Comparison Models. IEEE
Transactions on Computers, 41(3), 318–324.

5. Bratton, D. & Kennedy, J. (2007). Defining a

Standard for Particle Swarm Optimization. 2007
IEEE Swarm Intelligence Symposium (SIS 2007),
Honolulu, HI, USA, 120–127.

6. Chwa, K.Y. & Hakimi, S.L. (1981). Schemes for

Fault Tolerant Computing: a Comparison of
Modularly Redundant and t-Diagnosable Systems.
Information & Control, 49(3), 212–238.

7. Elhadef, M. & Ayeb, B. (2000). An Evolutionary

Algorithm for Identifying Faults in t-Diagnosable
Systems. 19

th
 IEEE Symposium on Reliable

Distributed Systems (SRDS-2000), Nurnberg,
Germany, 74–83.

8. Elhadef, M., Das, S., & Nayak, A. (2005). A

Parallel Genetic Algorithm for Identifying Faults in
Large Diagnosable Systems. The International
Journal of Parallel, Emergent and Distributed
Systems, 20(2), 113–125.

9. Elhadef, M., Nayak, A., & Zeng, N. (2007). An

Ant-based Fault Identification Algorithm for
Distributed and Parallel Systems. 10

th
 World

Conference on Integrated Design & Process
Technology (IDPT-2007), Antalya, Turkey, 1–6.

10. Falcon, R., Almeida, M., & Nayak, A. (2010). A

Binary Particle Swarm Optimization Approach to
Fault Diagnosis in Parallel and Distributed
Systems. 2010 IEEE Congress on Evolutionary
Computation (CEC), Barcelona, Spain, 1–8.

11. Falcon, R., Li, X., Nayak, A., & Stojmenovic, I.
(2010). The One-Commodity Traveling Salesman

Problem with Selective Pickup and Delivery: an Ant
Colony Approach. 2010 IEEE Congress on
Evolutionary Computation (CEC), Barcelona,
Spain, 1–8.

12. Hakimi, S.L. & Amin, A.T. (1974).

Characterization of the Connection Assignment of
Diagnosable Systems. IEEE Transactions on
Computers, C-23(1), 86–88.

13. Kameda, T., Toida, S., & Allan, F.J. (1975). A
Diagnosis Algorithm for Networks. Information &
Control, 29(2), 141–148.

14. Kennedy, J. & Eberhart, R. (1995). Particle

Swarm Optimization. IEEE International
Conference on Neural Networks, Perth, Australia,
1942–1948.

15. Kennedy, J. & Eberhart, R.C. (1997). A Discrete

Binary Version of the Particle Swarm Algorithm.
1997 IEEE International Conference on Systems,
Man, and Cybernetics, Orlando, Florida, USA, 5,
4104–4108.

System-Level Fault Diagnosis with Dynamic Mesh Optimization 219

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

16. Madden, R.F. On Fault-Set Identification in Some
System-Level Diagnostic Models”, Proc. Intôl
Symposium on Fault-Tolerant Computing, Jun.
1977.

17. Maeng, J. & Malek, M. (1981). A Comparison
Connection Assignment for Self-Diagnosis of
Multiprocessor Systems, Proc. 11th International
Symposium on Fault-Tolerant Computing, New
York, USA, 1981, pp. 173–175

18. Montes de Oca, M.A., Stutzle, T., Birattari, M., &
Dorigo, M. (2009). Frankestein’s PSO: A
Composite Particle Swarm Optimization Algorithm.
IEEE Transactions on Evolutionary Computation,
13(5), 1120–1132.

19. Pelc, A. (1991). Undirected Graph Models for
System-Level Fault Diagnosis. IEEE Transactions
on Electronic Computers, 40(11), 1271–1276.

20. Preparata, F.P., Metze, G., & Chien, R.T. (1967).
On the Connection Assignment Problem of
Diagnosable Systems. IEEE Transactions on
Electronic Computers, EC-16(6), 848–854.

21. Puris, A. & Bello, R. (2009). Optimización basada
en Mallas Dinámicas. Su Aplicación en la Solución
de Problemas de Optimización Continuos. VI
Congreso Español Sobre Metaheurísticas,
Algoritmos Evolutivos y Bioinspirados (MAEBô09),
Málaga, Spain, 441–448.

22. Sullivan, G.F. (1988). An O(t
3
+|E|) Fault

Identification Algorithm for Diagnosable Systems.
IEEE Transactions on Computers, 37(4), 388–397.

23. Tzu-Liang, K., Hsing-Chung, C., & Tan, J.J.M.
(2010). On the Faulty Sensor Identification
Algorithm of Wireless Sensor Networks under the
PMC Diagnosis Model. 6

th
 International

Conference on Networked Computing and
Advanced Information Management (NCM), Seoul,
Korea, 657–661.

24. Vaquero L.M., Rodero-Merino, L., Caceres, J., &
Lindner, M. (2009). A Break in the Clouds:
Towards a Cloud Definition. ACM SIGCOMM
Computer Communication Review, 39(1), 50–55.

25. Verdone, R., Dardari, D., Mazzini, G., & Conti, A.
(2008). Wireless Sensor and Actuator Networks:
Technologies, Analysis and Design, London:
Academic Press.

26. Yang, H., Elhadef, M., Nayak, A., & Yang, X.
(2008). Network Fault Diagnosis: An Artificial
Immune System Approach. 14

th
 IEEE International

Conference on Parallel and Distributed Systems,
Melbourne, Australia, 463–469.

27. Yang, H., Yang, X., & Nayak, A. (2010). A
τὲ ωȾσ Diagnosis Algorithm for Generalised

Cube Networks. International Journal of Parallel
Emergent and Distributed Systems, 25(3), 171–
182.

28. Yang, X., Megson, G.M., & Evans, D.J. (2005). A
Comparison-based Diagnosis Algorithm Tailored
for Crossed Cube Multiprocessor Systems.
Microprocessors and Microsystems, 29(4), 169–
175.

29. Yang, X.S. (2008). Nature-Inspired Metaheuristic
Algorithms. Cambridge: Luniver Press.

Rafael Falcon received a
Ph.D. degree from the
University of Ottawa,
Canada in 2012, and M.S.
and B.S. (with highest
honors) degrees from
Universidad Central de Las

Villas, Cuba in 2003 and 2006, respectively, all in
computer science. He was a Visiting Scholar for
Hasselt Universiteit, Belgium, and the Universidad
de Granada, Spain. He has co-edited two
Springer volumes on fuzzy and rough set theories
and served as reviewer for top-tier scientific
journals. His current research interests embrace
wireless sensor and robot networks, distributed
computing, bio-inspired optimization, rough sets,
fuzzy logic and knowledge-based clustering. He is
a member of the International Rough Set Society
and the IEEE Computational Intelligence Society.

Marcio Almeida received his
B.S. degree in Computer Science
and M.S. degree in Computer
Networks from Universidade
Salvador, Brazil in 2000 and
2003, respectively, and Ph.D. in
Computer Science from
Universidade de São Paulo,

Brazil in 2009. Currently, he is a postdoctoral
fellow at University of Ottawa, Canada. His
research interests embrace wireless sensor and
robot networks, distributed computing, bio-
inspired optimization, data mining, and
information visualization.

220 Rafael Falcon, Marcio Almeida, Amiya Nayak, and Rafael Bello

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220
ISSN 1405-5546

Amiya Nayak received his
B.Math. degree in Computer
Science and Combinatorics &
Optimization from University of
Waterloo in 1981, and Ph.D. in
Systems and Computer
Engineering from Carleton
University in 1991. He has over

17 years of industrial experience in software
engineering, avionics and navigation systems,
simulation and system level performance analysis.
He is in the Editorial Board of several journals,
including IEEE Transactions on Parallel &
Distributed Systems, International Journal of
Parallel, Emergent and Distributed Systems,
International Journal of Computers and
Applications, and EURASIP Journal of Wireless
Communications and Networking. Currently, he is
a Full Professor at the School of Electrical
Engineering and Computer Science at the
University of Ottawa. His research interests are in
the area of fault tolerance, distributed
systems/algorithms, and mobile ad hoc networks.

Rafael Esteban Bello Pérez
received his Bachelor degree in
Mathematics and Computer
Science (1982) at Universidad
Central de Las Villas (UCLV),
Santa Clara, Cuba and his Ph.D.
in Mathematics at UCLV in 1988.

He has been a visiting scholar of several
universities in Spain, Germany, and Belgium. He
is a Full Professor at Computer Science
Department, UCLV, Cuba, and exhibits a long
record of academic exchange with many
institutions in Latin America and Europe. Dr. Bello
has coordinated Master programs in Applied
Computing and Computer Science, and is
currently the coordinator of the Ph.D. program in
Informatics at UCLV. He was the Chair of the
Computer Science Department, Dean of the
Computer Science Faculty, and vice-president of
UCLV. Dr. Bello has taught over 45
undergraduate and graduate courses and
published over 150 papers in conference
proceedings and scientific journals. He has
authored/edited 9 books and supervised over 30
Bachelor, Master and Ph.D. theses. He has

deserved prestigious awards from the Cuban
Academy of Sciences (CAS) and other renowned
scientific societies. Dr. Bello is the Director of the
Center of Studies on Informatics at UCLV and
became a Member of AAAI in 2004. He runs the
academic collaboration project between the
Flemish Interuniversity Council and UCLV. He
has been a CAS member since 2002, and also
the vice president of the National Board for Ph.D.
Degree in Mathematics, Computing and
Automation of Cuba. His research interests
comprise meta-heuristics, soft computing (rough
and fuzzy set theories), machine learning
techniques, and decision making.

Article received on 12/02/2011; accepted on 27/10/2011.

