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Abstract. The efficient identification of hardware and 
software faults in parallel and distributed systems still 
remains a challenge in today's most prolific 
decentralized environments. System-level fault 
diagnosis is concerned with the detection of all faulty 
nodes in a set of hundreds (or even thousands) of 
interconnected units. This is accomplished by 
thoroughly examining the collection of outcomes of all 
tests carried out by the nodes under a particular test 
model. Such task has non-polynomial complexity and 
can be posed as a combinatorial optimization problem.  
In this paper we employ Dynamic Mesh Optimization 
(DMO) to detect faulty units in diagnosable systems. 
The proposed method encodes the potential solutions 
as binary vectors and exploits problem-specific 
knowle dge to cope with infeasible individuals. The 
empirical analysis confirms that the DMO-based scheme 
outperforms existing techniques in terms of 
convergence speed and memory requirements, thus 
becoming a viable approach for real-time fault 
diagnosis in large-size systems. 

Keywords. Fault diagnosis, input syndrome, dynamic 
mesh optimization, invalidation model,  comparison 
model. 

Detección de fallas en sistemas 
con optimización basada en mallas 

Resumen. La identificación eficiente de fallas de 
hardware y software ensistemas paralelos y distribuidos 
todavía sigue siendo un desafío en loscada vez más 
prolíficos sistemas decentralizados de estos tiempos. 
Eldiagnóstico de fallas en sistemas tiene que ver con la 
detección de todoslos nodos defectuosos en un 
conjunto de cientos (o quizá miles) de 
unidadesinterconectadas. Esto se logra mediante un 
minucioso examen de la colecciónde los resultados de 

las verificaciones realizadas por los nodos de acuerdoa 
un model o de verificación en particular. Un examen así 
de detallado tieneuna complejidad no polinomial y 
puede ser presentado como un problema 
deoptimización combinatoria. En este artículo se 
emplea la Optimización Basadaen Mallas Dinámicas 
(Dynamic Mesh Optimization, DMO), para detectar 
unidadesdefectuosas en sistemas diagnosticables. El 
método propuesto representa lassoluciones potenciales 
como vectores binarios y explota el conocimiento 
específico del problema para lidiar con soluciones no 
factibles. El análisisempírico confirma que el enfoque 
basado en DMO supera en rendimiento atécnicas 
existentes en cuanto a la velocidad de convergencia y 
losrequerimientos de memoria, convirtiéndose así en 
un enfoque viable para eldiagnóstico en tiempo real de 
fallas en sistemas de largo alcance.  

Palabras clave. Diagnóstico de fallas; síndrome de 
entrada; optimización basada en mallas dinámicas; 
modelo de invalidación; modelo de comparación.  

1 Introduction 

Parallel and distributed systems continue to 
increasingly permeate societies nowadays. From 
cellular networks to distributed database 
management systems, the emergence of 
innovative architectural and communication 
protocols has given rise to the next generation of 
decentralized systems such as wireless sensor 
and actuator networks Verdone et al. [25] and 
cloud computing Vaquero et al. [24]. On the other 
hand, many groundbreaking research projects 
largely rest on powerful multiprocessor systems 
due to their unrivaled processing capabilities, 
rapid growth, and improved affordability. 
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It is from the standpoint of these technological 
advancements that we witness a revival among 
the scientific community when it comes to fault 
tolerance protocols, as processing units in 
networked systems are subject to both hardware 
and software faults. Since undetected faults lead 
to system errors with unpredictable 
consequences, efficiently diagnosing the system's 
status (i.e., identifying which nodes are faulty and 
which are fault-free) still remains a serious 
challenge for committed researchers. 

The aforementioned problem is known as 
ñsystem-level fault diagnosisò and has drawn a 
significant amount of research over the last thirty 
years. Different test models [6, 17,

 
20] have been 

proposed in literature, each relying on the 
common assumption that every system unit is 
tested by one or more remaining units. Two well-
known scenarios are the invalidation and 
comparison models. They constitute classical 
benchmarks in the field and assume that a test 
outcome indicates the correctness of the tested 
node and that the system’s status can be entirely 
derived out of the input syndrome, which is the 
collection of all test results and stands as the 
major fault identification vehicle. 

Thorough examination of the input syndrome 
under the set of rules enforced by a particular test 
model turns out to be a non-polynomial 
complexity task. Furthermore, given the discrete 
nature of the node labeling process (i.e. every 
node is tagged as either faulty or fault-free), 
system-level fault diagnosis can be modeled as a 
combinatorial optimization problem, whose 
optimal solution is the system labeling (set of 
node tags) that completely matches the known 
input syndrome. 

Although several algorithms have been put 
forward with this goal in mind (e.g. branch-and-
bound Kameda et al. [13]; R.F. Madden [16]; 
G.F.Sullivan [22], logical framework B. Ayeb [2], 
etc.), it wasn't until a few years ago that nature-
inspired meta-heuristic optimization approaches 
Yang et al. [26] were brought into the context of 
fault diagnosis in distributed systems. This sort of 
methods has become very popular in the 
optimization community for their proved ability to 
overcome local optima through a parallel 
exploration of the search space and the 
exploitation of social communication mechanisms 

to drive the population toward promising search 
regions. Ant colonies (ACO) [9], genetic 
algorithms (GA) [7], and artificial immune systems 
(AIS) [29] have all succeeded in reliably spotting 
the actual ensemble of damaged nodes, even 
with reasonable performance in large-scale 
settings. 

Yet the implementation of these meta-heuristic 
algorithms could be rendered computationally 
prohibitive in many real-life scenarios given their 
underlying intricacy. In the former ACO case, the 
authors maintained two sets of pheromone trails 
and heuristic information per node, whereas GA 
and AIS develop their search strategy on the 
basis of the procreation (either by recombination 
or cloning) of their population members. It is clear 
that memory and computing power can severely 
hinder the applicability of the above techniques. 
For instance, consider the novel problem of 
carrier-based coverage repair [11] in a wireless 
sensor network with cluster-based topology. 
Sensors within the same cluster periodically test 
among themselves and report the test outcomes 
to their cluster head, which runs the fault 
diagnosis algorithm and subsequently informs a 
mobile robot on which are the damaged nodes in 
its cluster so they can be timely replaced with 
passive sensors. Because the cluster head is like 
another resource-constrained device, the fault 
detection algorithm must be “light” and accurate 
enough so that realistic conclusions are drawn 
with minimal memory and processing power 
requirements. 

A recent step in this direction was undertaken 
in Falcon et al. [11] by using a discrete 
formulation of Particle Swarm Optimization (PSO) 
[14]. The authors encoded the system status as a 
binary vector (particle) which “flies” along the 
search space of all feasible solutions. Because 
the population size remained constant and 
infeasible particles were turned into feasible ones 
by using problem-specific hints, PSO exhibited a 
promising behavior in terms of memory 
consumption and convergence speed to the 
actual fault set (i.e., the group of all faulty units) in 
presence of small and medium-size systems. 

We build on the success of PSO-based fault 
detection by applying Dynamic Mesh Optimization 
(DMO) [21, 33], a novel metaheuristic approach 
which borrows key elements from PSO and 
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evolutionary algorithms and proved to be effective 
in discrete optimization domains like the feature 
selection problem [3]. In our implementation, each 
prospective solution to the optimization problem 
(fault set) is represented as a mesh node. The 
collective behavior of the artificial mesh is such 
that topological changes, triggered by node 
generation towards local optima, the global 
optimum, and the boundaries of the known search 
space, allow rapid discovery of the actual fault 
set. Infeasible solutions are efficiently conducted 
into feasibility by flipping the status of poorly 
guessed system units. The empirical analysis 
embraced the two aforementioned test models 
(invalidation and comparison) and the overall 
result is an accelerated convergence towards the 
optimal solution with negligible rise in processing 
overhead. This makes the proposed method 
suitable for real-time fault diagnosis in a wide 
array of compelling scenarios. 

The manuscript has been structured as 
follows. Section 2 is related work and Section 3 
elaborates on the two above fault identification 
models. The building blocks of Dynamic Mesh 
Optimization are the subject of Section 4. Then 
we unveil our DMO-based protocol (Section 5), 
provide simulation results (Section 6), and outline 
some final remarks (Section 7). 

2 Related Work 

The extent to which a system can proactively 
react to unexpected hardware or software faults 
largely depends on how fast those anomalies are 
detected. No wonder then that convergence time 
in fault identification is a highly sought-after 
feature of any competitive diagnosis method. All 
the approaches described in this section share 
the same goal: to locate the set of faulty nodes, 
given the input syndrome, in the least amount of 
time and with high reliability. Many research 
works [1, 23, 27, 28] aim at designing efficient 
algorithms based on the exploitation of structural 
properties of the testing graph. Topologies as 
hypercubes, crossed cubes, extended stars, and 
twisted cubes are among the preferred topologies 
because they simplify the conceptual design of 
the proposed solution approaches. 

We stick to a more flexible methodology in 
which no restrictions on the topological features of 
the system are laid, other than those to guarantee 
a reliable (i.e. deterministic) result. In this avenue, 
system-level fault diagnosis is posed as an 
optimization problem under a particular test model 
and an arbitrary structure of the testing graph, as 
explained in Section 3. Exact, heuristic, and 
metaheuristic methods are needed to explore the 
discrete search space in polynomial time. The 
complexity of such approaches is generally higher 
compared to those leaning on a simplified 
topology yet they bear a much wider applicability 
and still yield satisfactory results. 

For example, authors in Kameda et al, [13], 
R.F. Madden [16] put forward exact algorithms of 
the branch-and-bound type whose time 

complexity is ὕὔ , where ὔ is the system size 
(number of units). G.F. Sullivan [22] introduced a 
backtracking-based enhancement to Kameda et 
al. [13] which caused the time complexity to drop 

to ὕὸ ȿὉȿ, where t is the number of tolerated 
faults and ȿὉȿ is the total number of tests carried 
out in the system. This bound becomes more 
relevant as fewer units are deemed defective 
among a large group of nodes.  

As stated in Section 1, evolutionary methods 
were applied to system-level fault diagnosis [7; 
26], in particular GA and AIS. Both methods lack 
an adequate population diversity given the biased 
exploration induced by an adaptive mutation 
operator (openly criticized in Yang et al. [26] but 
finally adopted). As a result of that, the 
convergence is slowed down and the worst-case 
identification of faulty nodes turns severely 
hindered in large systems composed of hundreds 
or thousands of units. Memory requirements are 
another important concern because of the 
enormous number of individuals generated by the 
algorithms over time in an attempt to find the 
optimal solution, which consequently triggered the 
need for a parallel version Elhadef et al [8]. Such 
demeanor turns even worse in the AIS-based 
model [29], where the number of elitist (fittest) 
antibodies and the number of clones per elite 
antibody are both equal to the population size. 
Our binary DMO implementation requires quite 
fewer individuals to converge to the optimal 
solution and does not bias the exploration of the 
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 search space, i.e., all components of the binary 
vector representing the population member (mesh 
node) are allowed to change. 

An ACO-inspired scheme was designed for 
system-level fault diagnosis [9] and tested with 
the invalidation and comparison models. The 
chief idea is to have every ant construct a full tour 
of the graph representing the system units and 
label each node as faulty/fault-free as it goes by. 
Unlike widely recognized ACO models, authors 
do not use either pheromone or heuristic values 
to perform internodal transitions but to guess the 
node's status. The disadvantage here lies in the 
redundant storage of dual sets of pheromone 
trails and heuristic information per node during 
the ant’s journey, which aggravates the memory 
consumption issue for fairly large systems. 
Furthermore, it is not clear what heuristic value is 
assigned to a node by a “flying ant”, as no link 
between the current and the “leaping-to” nodes 
might exist. Another downside of this meta-
heuristic implementation is the handling of 
infeasible solutions, which are discarded by 
default, thus wasting valuable information 
gathered during the ant’s incremental tour along 
the graph. Our proposed approach requires less 
information at the search agent level (mesh 
node), gracefully turns infeasible solutions into 
feasible ones and is theoretically simpler than its 
ant-based peer. 

The binary PSO put forward in Falcon et al. 
[10] has lower computational demands with 
respect to the previously discussed algorithms 
and exhibits a superior convergence rate for small 
and moderate-sized distributed systems. Each 
particle is encoded as a binary vector 
representing the status of every node (faulty/fault-
free) and “flies” across the search space of 
candidate fault sets driven by its own best 
position and the best position ever reached by the 
swarm. Yet experiments in Falcon et al. [11] 
uncovered a disappointing PSO's worst-case 
behavior (which might jeopardize the detection 
capabilities of the algorithm for real-time 
diagnosable systems) and did not include larger 
diagnosable systems. We observe in Section 6 
how DMO manages to substantially reduce the 
worst-case diagnosis latency for networks 
composed of hundreds of interconnected units. 

3 Fault Diagnosis Models 

Several models to identify faults in distributed 
systems appear in literature. In this section, we 
will focus on the popular invalidation and 
comparison models. Both assume that each node 
will be tested by a particular subset of the other 
nodes in the system and every test has a binary 
nature. A test outcome indicates whether the 
node is either faulty (1) or fault-free (0). Moreover, 
the group of all faulty units in a system is called 
the fault set. One attribute of the so-called ὸ-
diagnosable systems is that they can only have at 

most ὸ faulty nodes. 
Although both diagnosis models represent the 

problem in a graph-like fashion and use the 
collection of test outcomes as a means to figure 
out what the status of every node is, they differ in 
the type of graph representation and the implicit 
assumptions on how tests are conducted. 

3.1 The Invalidation Model 

In the invalidation or PMC model (named after its 
authors in [20], the problem is represented as a 
directed graph Ὃ ὠȟὉ  with ὠ ὺȟὺȟȣȟὺ  
being the set of nodes (processors, sensors, etc.) 
and Ὁ the set of edges. Each edge Ὡ ᶰὉ stands 

for a test performed by node ὺ upon node ὺ and 

whose binary outcome is denoted as „ . The set 

of all test outcomes is called a syndrome and is 

symbolized by „.  Since a syndrome „ is a 
physical manifestation of an underlying fault set  
Ὂ, we usually write  „. 

According to the PMC model, the system has 
a stationary nature, i.e. the statuses of all nodes 
do not change during the diagnosis phase. It is 
also assumed that tests carried out by fault-free 
nodes are always correct while those executed by 
faulty devices are unreliable, i.e. yield arbitrary 
results. 

Let ὺᶰὠ  be any node in Ὃ. Then the set of 

nodes tested by ὺ is   ὺ ὺ ɴ ὠȡ Ὡ ᶰὉ 

and „ὺ  „  ɴ „ȡὮɴ   ὺ  is the subset of 

the syndrome „ containing the results of the tests 

realized by ὺ. In a similar way,  ὺ ὺ ɴ
ὠȡ Ὡ ᶰὉ  is the set of ὺ’s testers and „ ὺ
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 „  ɴ „ȡὮɴ   ὺ  the outcomes of all tests 

carried out upon ὺ. 

Definition 1. A fault set ὊṖὠ is consistent 
with the syndrome „  under the PMC model if  

Ὡᶅ ᶰὉ neither „ π, where ὺᶰὠ Ὂ and 

ὺᶰὊ, nor „ ρ  where ὺȟὺᶰὠ Ὂ, holds. 

The above definition states that only fault-free 
nodes always yield correct results. This 
assumption will play a pivotal role later on during 
the generation of candidate syndromes as part of 
the quest for the true fault set. 

3.2 Comparison Model 

In the comparison model [19], nodes perform 
tests in a pairwise fashion, i.e., some pairs of 
units test each other. The comparison between 
the two test outcomes (match/mismatch) stands 
as the foundation for deriving the nodes' statuses. 
More formally, in a comparison-based scenario, 
an undirected graph Ὃ ὠȟὉ  is used to model 

the system, where ὠ is the set of units and Ὁ  is 
the collection of edges. Now each edge Ὡ  has an 

associated weight „ π when the two test 

results carried out by units ὺ and ὺ are identical 

and „ ρ otherwise. As in the PMC model, the 

collection of all edge weights (test comparisons) 
makes up the syndrome „. 

The comparison model also regards the 
system as static, likewise PMC. Now the main 
assumption is that two fault-free units will always 
agree on their test outcomes whereas any couple 
of faulty and fault-free nodes will always disagree. 
However, divergent standpoints arise when it 
comes to the test comparison involving two faulty 
nodes. The asymmetric version of the comparison 
model [17] considers that two damaged nodes will 
only produce a mismatch while in the symmetric 
variant [6, 12], both a match and a mismatch are 
likely choices. 

Let  ὺᶰὠ  be any node in Ὃ. Then the set of 

neighbors of ὺ is  ὺ ὺ ɴ ὠȡ Ὡ ᶰὉ and 

„ὺ  „  ɴ „ȡὮɴ   ὺ  is the subset of the 

syndrome „ containing the test 

agreements/disagreements concerning ὺ. 

Definition 2.  A fault set ὊṖὠ is consistent 
with the syndrome „  under the comparison 

model if  Ὡᶅ ᶰὉ, neither „ π where ὺᶰὠ

Ὂ and ὺᶰὊ (or ὺᶰὊ and ὺᶰὠ Ὂ), nor 

„ ρ  where ὺȟὺᶰὠ Ὂ, holds. 

3.3 Ἴ-Diagnosable Systems 

From the previous two subsections one may 
realize that, given an input syndrome „ which is 
compliant with the specifications of a particular 
model, multiple faults sets could possibly give rise 
to it. This makes system-level fault diagnosis a 
non-deterministic problem, which is of course very 
undesirable since the actual set of damaged units 
cannot be guessed with full certainty. To prevent 
this, we introduce the following definition. 

Definition 3. A system of ὔ units is ὸ-
diagnosable if and only if the number of faulty 

units does not exceed ὸ and for any consistent 

syndrome „, there is only one fault set Ὂ that 
originated it. 

Hereafter, we confine ourselves to a type of 
system which is easy to generate and known to 
be ὸ-diagnosable. As such, it will be used in our 
experiments. 

Definition 4. A system represented by a test 
graph Ὃ ὠȟὉ  with ὔ ȿὠȿ  is a Ὃ ὔ  design 

iff i) N ςὸ ρ and ii) each node is tested by ὸ 
others. 

For the PMC model, it was proved in [12] that 
a Ὃ ὔ  system in which no two units test each 

other is ὸ-diagnosable. As to the comparison 
model, recall that we consider a single link 
between any two entities, so the Ὃ ὔ  design fits 

very well once it was demonstrated to be ὸ-
diagnosable for this model too [19]. Figure 1 (a) 
and (b) display a Ὃ ὔ  graph under the PMC and 
symmetric comparison models, respectively. 

Finally, let us point out that, irrespective of the 
diagnosis model being used, the problem of fault 
detection in distributed and parallel systems can 
be posed as a combinatorial optimization problem 
if we undertake a quest, over the discrete space 

of all possible fault sets, of the actual fault set Ὂ 
which univocally generates the known input 
syndrome „ . This task has non-polynomial time 
complexity [4] and calls for the application of 
heuristic and meta-heuristic methods to 

informedly navigate over the search space until Ὂ 
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is found. The next section is devoted to outline 
the fundamentals of one of such meta-heuristic 
procedures. 

4 Dynamic Mesh Optimization 

We first glimpse at the important concept of 
swarm intelligence and highlight PSO as one of 
its landmark representative architectures, then 
explain the foundations behind the canonical 
formulation of Dynamic Mesh Optimization. 

4.1 Preliminaries 

Nature-inspired algorithms are among the most 
powerful optimization approaches [26]. Ant 
colonies, bird flocks, bumble bee nests, bacterial 
colonies and fish schools are good illustrations of 
swarm intelligence, a term coined not long ago to 
refer to the self-organizing properties of 
associations of natural organisms which, despite 
the simplicity and limitations of their constituent 
individuals, are able to directly or indirectly 
coordinate their efforts in achieving a certain goal 
(foraging, mating, etc.) and whose corporate 
interactions exhibit a far more complex behavior. 

The analogy to optimization stems from the 
fact that these individuals can represent potential 
solutions in a multimodal, nonlinear, non-
differentiable, multidimensional space and by 
means of their social communication 
mechanisms, the entire swarm is able to relocate 
toward more promising regions of the optimization 
landscape as it pursues the global optimum. 

Though originally conceived to target 
continuous optimization problems [5,14], PSO 
was rapidly twisted to cope with combinatorial 
scenarios [15]. Since its very inception, it has 
enjoyed a well-deserved popularity among swarm 
intelligence approaches owing to its intuitive 
formulation, computational simplicity, and fast 
convergence in many challenging scenarios. 
Each particle is encoded as a multidimensional 
vector and stands for a prospective solution to the 
optimization problem. It has a position (real-
valued or discrete encoding), velocity (movement 
vector), and fitness value (measure of quality 
according to the objective function) and “flies” 
throughout the search space driven by its best-
ever position and the fittest position reached by 
any neighborhood member thus far. 

 
(a) 

 

 
(b) 

Fig. 1. (a) A Ὃ ρπ test assignment graph under 

the PMC model. The directed edge labels represent 
test outcomes; (b) A Ὃ ρπ graph under the 

symmetric comparison model. The undirected edge 
labels represent pairwise comparisons of test 
outcomes 



System-Level Fault Diagnosis with Dynamic Mesh Optimization 209 

Computación y Sistemas Vol. 16 No.2, 2012 pp 203-220 
ISSN 1405-5546 

PSO has undergone quite a few developments 
[18] in critical aspects such as the underlying 
neighborhood topology, velocity, and position 
update rules, parameter setting, interaction 
protocols, and the like. The DMO algorithm we 
are about to unfold borrows core ideas from PSO 
and fosters a stronger degree of interactions 
among individuals in order to enhance the search 
diversification component. 

4.2 DMO's Building Blocks 

This population-based metaheuristic was put 
forward by Puris and Bello [21] after being 
inspired by the manner in which PSO particles 
corporately probe the solution space. Unlike PSO, 
the general formulation of the DMO approach 
embraces both discrete and continuous 
optimization domains. A set of nodes representing 
potential solutions to an optimization problem 
makes up a mesh (population) that dynamically 
grows and moves through the search space 
(evolves). This is accomplished via a mesh 
expansion process at each iteration, where new 
nodes are brought forth in the direction of the 
local optima (mesh nodes with the best fitness in 
a particular neighborhood), the global optimum 
(the best-so-far solution reached by the 
algorithm), and those nodes lying at the mesh 
border. Then, the mesh shrinking process retains 
the fittest nodes in the current iteration, which 
together form the next mesh. This process is 
repeated until a stop criterion is met. 

The building blocks of the DMO method are 
outlined below and its parameters described in 
Table 1. 

1) Generation of the initial mesh. 
2) Node generation towards the local optima. 
3) Node generation towards the global optimum. 
4) Node generation towards the mesh border. 

Bearing the above ideas in mind, DMO was 
enunciated as a population-based optimization 

algorithm in which a group of artificial nodes ὠ 

makes up a mesh ִי  of size ὓ . Each candidate 
solution (mesh node) has an associated encoding 

vector ὢᴆ ὢ ρȟȣȟὢ ὔ , Ὥ ρȟȣȟὓ  in the 
ὔ-dimensional search space. 

In the remainder of this section, we elaborate 
on the core steps of the DMO protocol. 

1) Generation of the initial mesh. At the outset 
of the algorithm, the ὓmesh nodes are created 
either randomly or by following an inexpensive 
generation procedure. During each subsequent 
iteration, the ὓ  fittest individuals in the 
population are retained (out of ὓ ὓ  nodes 
comprising the mesh as a result of the expansion 
process). 

2) Node generation towards the local optima. 
The aim of this step is to come up with new nodes 
settled in the direction of the local optima found 
by the algorithm. 

For each node ὢᴆ, its Ὧ-nearest neighbours are 

computed. If none of the neighbors surpasses ὢᴆ 

in terms of fitness function value, then ὢᴆ is said to 
be a local optimum and no nodes are begotten 

out of it in the current iteration. Otherwise, let ὢᴆ 

be the fittest neighbor of ὢᴆ. In such case, a new 

node ὢᴆz arises somewhere between ὢᴆ and 

ὢᴆaccording to the function 

ὢᴆὯ ὪὢᴆὯȟὢᴆὯȟὶ ᶅὯ ρȢȢὔ,  where ὶ 

models the proximity of the newborn individual to 
each ancestor by somehow relating their fitness 
values. Depending on the application domain 
DMO deals with, ὶ could be interpreted as either 

a perturbation factor of the real-valued vector ὢᴆ 
or as a probabilistic threshold for componentwise 

selection out of the discrete vectors ὢᴆ and ὢᴆ. 
Either way, ὓ ȿὠȿ ὓ individuals will be 
added to the mesh at this time. 

3) Node generation towards the global 
optimum. Analogously, we allow the original mesh 
nodes to produce individuals in the direction of 

the best solution ever found by the algorithm, ὢᴆ. 

Table 1. Parameters of the DMO algorithm 

ὓ  Number of nodes in the initial mesh 

ὓ 
Maximum number of mesh nodes at any 
iteration. Often set as ὓ σϽὓ      

Ὧ 
Neighborhood size, i.e. number of 
neighbors per node 

άὥὼὍὸὩὶ 
Maximum number of iterations to be 
carried out 
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The encoding of the new vector ὢᴆz is determined 

by the mapping Ὣ as follows: ὢᴆzὯ

ὫὢᴆὯȟὢᴆὯȟὶ  ᶅὯ ρȢȢὔ, where ὶ plays a 

similar role to ὶ in the previous step. 

Notice that exactly ὓ ȿὠȿ ὓ ρ nodes 

will become part of the dynamic mesh should ὢᴆ 

be a member of the current population, otherwise 
ὓ ȿὠȿ ὓ . 

4) Node generation towards the mesh borders. 
The last step in the mesh expansion process aims 
at intensifying the exploration around the mesh 
border. Although this definition is highly problem-
dependent, the idea is that nodes lying at the 
farthest regions of the known search space can 
somehow give rise to new candidate solutions 
that hopefully stretch out the mesh. The mapping 

Ὤ governs this step: ὢᴆzὯ ὬὢᴆὯȟύ  ᶅὯ

ρȢȢὔ, where ὢᴆ is an individual located at the 
mesh border (picked out of the ὓ  initial nodes in 

the current mesh) and ύ  has a similar nature to 

prior variables ὶ and ὶ but relates to ὢᴆ alone. 

In total, ὓ ȿὠȿ ὓ ὓ  ὓ ὓ  nodes 

will be appended to the mesh. It is a good thing in 
practice to choose ổὓȾςỖ population members 
located at the “lower border” and the rest 
belonging to the “upper border” as pivots for node 
generation. 

5 Proposed Approach 

We model system-level fault diagnosis as a 
combinatorial optimization problem undertaken by 
a binary DMO approach. The goal is to find, 
among many possible fault sets (see Section 3), 

the true set Ὂ that entirely matches the collection 
of test outcomes contained in the input syndrome 
„ . The proposed protocol (Dynamic Mesh 
Optimization to Fault Diagnosis, DMO-FD) is 
executed at a centralized location (e.g., a 
dedicated processor in a parallel system, or a 
base station or cluster head node in a wireless 
sensor network). 

5.1 Solution Encoding and Initialization 

In DMO-FD, each mesh node symbolizes a 
candidate fault set Ὂ. Therefore, we encode its 

position ὢᴆ  as a binary vector whose 
dimensionality ὔ ȿὠȿ is given by the system size 
(number of distributed or parallel units). The 
status of the Ὧ-th node Ὧ ρȢȢὔ  will be denoted 

by ὢᴆ Ὧ ρ if we guess that ὺ is faulty or 

ὢᴆ Ὧ π otherwise. 
At the algorithm outset, it is first decided at 

random the number of faulty units ὲὪͯὟὭȟὸ each 
mesh node will encode and then ὲὪ bits will be 

arbitrarily set to one in ὢᴆ ȟὭ ρȢȢὓ . By doing so, 
we are trying to promote diversity in the initial 
mesh, since the cardinality of its encoded fault 
sets will vary stochastically within the feasible 
bounds imposed by a ὸ-diagnosable system. 

For each potential fault set Ὂ, we generate its 

corresponding candidate syndrome „ before we 
can actually figure out its fitness value. 

5.2 Fitness Function 

The quality or fitness of any individual (fault set Ὂ) 
in our problem is measured as the resemblance 
between the input syndrome „  and the candidate 

syndrome „. The calculation of the latter and of 
the fitness function itself is strongly model-
dependent although they share some similarities. 

1) Candidate Syndrome Generation. Out of all 
diagnosis models considered in this study, only 
the asymmetric comparison model is entirely 
deterministic. That is, given the assumption of 
which nodes are faulty and which are fault-free 
(mesh node's encoding), we follow the 
asymmetric model rules stated in Section 3.2 and 
assign a label to every edge  Ὡ ᶰὉ  in the test 

assignment graph Ὃ. The collection of these 
labeled edges becomes our candidate 
syndrome  „. 

Since the remaining models have a non-
deterministic nature concerning the tests carried 
out by faulty nodes (in the invalidation model) and 
the agreement/disagreement between a pair of 
mutually-tested damaged devices (in the 
symmetric comparison model), one can make the 
reasonable assumption that these edges in the 
candidate syndrome are equal to those in the 
input syndrome, i.e., 

„ ὺ „ ὺ  ᶅὺᶰὊ 
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Then we generate the remaining edge labels 
in „ in full compliance with the rules defined for 
each model, which were clearly portrayed in 

Section 3.2. We denote by ᾀḊ ὢᴆ O  „  the 

mapping from a candidate fault set ὢᴆ  to its 
corresponding syndrome „ . 

2) The Mesh Nodeôs Fitness. A mesh node is 
said to have better quality (fitness) than peers if 
the candidate syndrome associated with its 
encoding (fault set Ὂ) better resembles the input 
syndrome. From the local viewpoint of node ὺ, 
this is equivalent to count how many labels of the 
incoming/outgoing edges coincide in both 
syndromes. For the two variants of the 
comparison model, expression (1) models the 
node-level similarity. 

 

(1) 

For the PMC model, we are to take into 
account that all nodes will be tested but not 
necessarily testers. Equations 2 to 4 respectively 
model the similarity from ὺ's perspective as a 
tester node, tested node, and both. 

 

(2) 

 

(3) 

 

(4) 

Now we can define in (5), regardless of the 
diagnosis model under consideration, the overall 

resemblance function between the input and 
candidate syndromes, which actually becomes 
the fitness function of the DMO-FD algorithm. 

 

(5) 

where ὔ ȿὠȿ is the system size. 
The above equation can be seen as the 

correctness probability of the potential fault set Ὂ 

being the actual fault set Ὂ. Because we are 

working with ὸ-diagnosable systems solely, then it 

is guaranteed that there is a unique fault set Ὂ 
that makes „ . Remark that (1) and (4) take 

values in πȠρ, which consequently defines the 
image of (5) to lie in the same interval. 

5.3 Node Generation toward Local Optima 

Whenever a new node ὢᴆz is to be created out of 

current node ὢᴆ and its local optimum ὢᴆ, its 
components along each dimension Ὧ ρȢȢὔ are 
generated as in (6). 

 

(6) 

where  ὶὥὲὨ  ͯ Ὗπȟρ. The proximity threshold 

ὶ is thus modeled after (7). 

 

(7) 

Notice that if the fitness values of ὢᴆ and ὢᴆ are 
slightly different, then ὶ is about 0.5, which 

means that each component of ὢᴆz can be taken 

out of either vector (ὢᴆ or ὢᴆ) with roughly the 

same probability. On the other hand, if ὢᴆ is quite 

inferior to ὢᴆ in fitness, then ὶ ρ and ὢᴆz will be 

biased towards ὢᴆ to a large extent. 
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5.4 Node Generation toward Global Optimum 

An alike rationale is applied for giving rise to 
mesh nodes in the direction of the best-
performing individual. The mapping Ὣ and its 
associated proximity threshold ὶ are calculated 

by means of (8) and (9). 

 

(8) 

 

(9) 

5.5 Node Generation toward Mesh Border  

At this point, we try to “enlarge” the artificial mesh, 
i.e., to intensify the exploration around its border. 
We can determine whether a node lies at the 
mesh border or not by computing the norm of the 
vector it encodes. 

Since we work with binary solutions, the norm 
is simply the number of components set to 1. We 
denote by lower border (upper border) the region 
of the search space containing those vectors 
having minimal (maximal) norm. Notice that, in 
the context of system-level fault diagnosis, the 
norm of any feasible vector ranges between 1 and 
ὸ (the number of faulty units in the network), so 
lower-border nodes are those having norm 1, 2, 
etc., and upper-border nodes will have norm ὸ, 
ὸ ρ, ὸ ς, etc. 

The number of nodes generated during this 
step is ὓ ȿὠȿ ὓ ὓ  ὓ ὓ . Hence, we 

seek  ổὓȾςỖ nodes lying at the lower border and 
the same number of individuals in the upper 
border. In our implementation, mesh border 
representatives shall be drawn from the set 
ὠ  ᷾ὠ᷾ὠ, i.e., all nodes in the current iteration, 

as a vehicle to better capture the dynamics of the 
population. 

Let ὢᴆ  and ὢᴆ  be two representatives 

of the corresponding classes. Then, the dual 
character of the Ὤ mapping Ὧᶅ ρȢȢὔ is captured 
by (10) and (11), respectively. 

 

(10) 

 
(11) 

with ύ calculated as shown below: 

 

(12) 

where “iter” is the current iteration number, 
“maxIter” is the maximum number of iterations, 
and ύ , ύ  are the initial and final values for ύ, 

respectively (ύ ύ ). Remark that ύ has a 

monotonically decreasing nature, i.e. more 
exploration towards the mesh borders is 
encouraged at the beginning of the algorithm and 
decreases over time. 

5.6 Handling Infeasible Solutions  

The randomness that permeates the mesh 
expansion stage in (6), (8), (10), and (11) could 
bring forth an  infeasible solution, defined as a 
particular configuration (binary vector) in which 
either all units are fault-free or there are more 
than ύ faulty units. Both scenarios are 

unacceptable in ὸ-diagnosable systems and are to 
be dealt with. We gracefully manage this situation 
in the following way: 

1) Compute the node-level resemblance by 
either (1) or (4) depending on the diagnosis model 
under consideration. 

2) If the mesh node's encoding is the zero 
vector, generate a random number  ὦͯ Ὗρȟὸ and 

flip (turn to 1) the ὦ bits with the lowest fitness 

values. Otherwise, let Ὧ be the number of 1's in 

the vector (notice that Ὧ ὸ). Then generate a 
random number ὦͯ ὟὯ ὸȟὯ ρ and flip (turn to 

0) the ὦ bits set to 1 with the lowest fitness 
values. 

The above procedure rapidly turns infeasible 
individuals into feasible ones by inverting the 
guesses on the status of those nodes with 
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poorest local similarity to the input syndrome, in 
an attempt to accelerate the convergence of the 
algorithm towards the actual fault set. 

5.7 Stop Criterion 

DMO-FD stops when it either reaches an upper 
bound of the running time (usually expressed as a 
function of the number of iterations) or discovers 

the actual fault set Ὂ, i.e., a node encoding Ὂ with 
fitness „ȟ„ ρ. Such Ὂ is guaranteed to be 

unique in ὸ-diagnosable systems [Pelc, 1991; 
Hakimi et al, 1974]. 

6 Simulation Results 

We have empirically validated the performance of 
the DMO-FD protocol under t-diagnosable 
systems of various sizes for both the invalidation 
and comparison test models. Our algorithm has 
been contrasted to the AIS in Yang et al. [26] and 
the PSO in Falcon et al. [10]. The experiments 
were conducted in Java using JDK 1.6 on an Intel 
Core2 Duo E4500 2.2GHz with 2 GB of RAM 
under Windows Vista. 

Each algorithm was executed until either the 

true fault set Ὂ was encountered or a maximum 
allotted running time was reached. The spatio-
temporal demands of the competing approaches 
were measured by the following performance 
indicators: (1) total number of candidate solutions 
probed and (2) CPU time consumed. To assess 
the methods' scalability, ὸ-diagnosable systems of 
different sizes were tried, viz Ὃ υπ, Ὃ ρππ, 
Ὃ υππ, and Ὃ ρπππ. 

For each system above, the number of faults x 
ranged from 1 to t and for every value of x, 100 
arbitrary fault sets of that cardinality were 
generated. The average-case and worst-case 
behaviors of every algorithm with the two previous 
performance metrics have been recorded. The 
95% confidence intervals of the average case are 
not shown in every plot for the sake of clarity. 
Rather, they are displayed mainly when 
highlighting differences between PSO and DMO-

FD, provided either succeeded in discovering Ὂ. 

 

(a) 

 

(b) 

Fig. 2. (a) DMO-FD in a Ὃ υπ, small M gives a 

higher performance; (b) DMO-FD in a Ὃ υππ, no 
meaningful differences among the three tested k values 
are spotted for most of the trials across tested 
algorithms, diagnosis models, and system sizes 
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6.1 Parameters of Experiments 

We adopted the AIS configuration outlined in 
X.S.Yang [29], where the number of elite 
antibodies undergoing cloning is equal to the 
population size and a quarter of the individuals is 
replaced after every iteration. For PSO, the 
recommended values in competitive 
implementations [5] were respected, i.e., ὧ
 ὧ ςȢπυ, and the constriction factor … πȢχςωψ 
is included in the velocity update rule. PSO works 
with the “complete” or “global best” neighborhood 
layout while DMO-FD's topological structure is 
controlled by the parameter k. 

To guarantee a fair comparison baseline, the 
three metaheuristic schemes share the same 
population size (10 individuals). We set this value 
as such because we are interested in gauging the 
algorithmic performance in resource-scant 
environments, i.e. assuming the device in charge 
of running the fault diagnosis scheme has limited 
computing and memory capabilities. 

A further justification to the small population 
size is the demonstrated fact Falcon el al. [11] 
that a modest number of search agents manages 
to explore reasonably well the binary N-
dimensional space.  Fig. 2(a) confirms the higher 
performance when using M=10 than higher 
values. 

The selection of the neighborhood size (k) in 
DMO followed a more careful analysis. Fig. 2(b) 
reveals that no significant differences arise 
among all tested values Ὧᶰ σȟυȟχ. This is true 
for the vast majority of the configurations tested 
and the two empirical metrics and diagnosis 
models under consideration. Hence, setting Ὧ σ 
contributes to diminish the computational 
complexity of the algorithm. 

6.2 PMC Model, Small Graph 

Fig. 3(a) displays the cumulative number of 
candidate solutions probed along each algorithm's 
lifetime in presence of the invalidation model and 
a small system Ὃ υπ. The two steep AIS 
curves are due to the heavy effect of cloning, a 
vital mechanism to guarantee diversification in 
AIS along with the ensuing mutation operator. 
Because at every AIS iteration the highest ranked 
antibodies are cloned as many times as the 

 
 

 

Fig. 3. Performance metrics for AIS, PSO and  

DMO-FD with the PMC model and Ὃ υπ graph 
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population size itself, the entailed memory 
requirements of such protocol may be prohibitive 
if we consider running it on a limited device like 
an ordinary sensor acting as cluster head in a 
wireless sensor network. DMO-FD's worst-case 
curve is quite erratic and strongly contrasts with 
its roughly steady average-case trend. PSO's 
performance is indeed encouraging (on average) 
as the number of presumably damaged units 
grows. Its worst-case scenario is preferable to 
DMO's average case once 12 or more faulty 
nodes are identified in the network. PSO's 
tangible superiority over DMO-FD in small graphs 
could be ascribed to the negligible bearing of 
stretching the mesh toward its borders when the 
search space is quite narrow. In such cases, it 
seems that the stochastic flight of the PSO 
particles produces a much more efficient 
exploration than the node generation toward 
poorly guessed local optima and global optimum 
in DMO. Should this conjecture be right, we will 
behold a dramatic change in DMO's demeanor as 
the search space dimensionality rises. 

Concerning running time, Fig. 3(b) helps us 
realize that only AIS fails to identify 20 or more 
damaged units in less than five seconds. The 
large number of individuals spawned in AIS has 
an immediate impact on its computational 
complexity, as represented by the two curves with 
the sharpest growth rates. Conversely, the 
response time of the two remaining metaheuristic 
approaches stays nearly unaltered as more faulty 
nodes are added, which means that having the 
global best population member and a locally 
optimal solution guide the search of the rest of the 
agents is profitable for scalability purposes. PSO 
still beats DMO-FD and finds the true fault set 
quicker. 

Similar results are obtained for the Ὃ υπ in 
the comparison model, which are therefore left 
out of the discussion. 

6.3 Asymmetric Comparison Model, Medium-
Size Graph 

When the three algorithms are tested with a 
medium-size distributed system (100 nodes) 
following the asymmetric comparison model, 
there is a significant variation in their performance 
w.r.t. the previous case. For instance, Fig. 4(a) 

 
 

 

Fig. 4. Performance metrics for PSO, AIS and DMO-FD 

with the Asymmetric Comparison model and Ὃ ρππ 
graph 
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reveals that PSO shows an irregular worst-case 
behavior in the number of particles required to 
find the global optimum. Interestingly, the 
stagnation phenomenon slowly fades out as the 
dimension of the search space augments. One 
could argue that the presence of a single informer 
(swarm's best) in a particular region of the search 
space could be drawing other particles strongly 
enough so as to lead them into an infeasible 
encoding. Particles can more easily escape 
stagnation and be redirected towards any 
stochastic, feasible encoding as the size of the 
search space increases. Fortunately, the joint 
influence of manifold informers together with the 
exploration around the mesh border prevents 
DMO-FD agents from getting caught in local 
optima, as proved by the fact that it consumes a 
nearly constant and negligible number of 
candidate solutions to converge. The evolutionary 
search undertaken by AIS yields almost identical 
results for the average and worst cases.  

Dynamic-mesh-based optimization 
outperforms peer methods in terms of running 
time as well. From Fig. 4(b) it can be noticed how 
the insufficient guidance in PSO still produces a 
significant delay in convergence speed. Although 
PSO and DMO-FD do very well in the average 
case, for the former it takes over ten times longer 
to detect the faulty set than for the latter in the 
worst scenario. Such delay could be 
unacceptable in critical environments like 
aeronautics, underwater oil drilling, etc. 

Nevertheless, most of the times both 
approaches efficiently reach the global optima in 
less than 2 seconds. The reliability of the average 
time prediction for the proposed method is 
schematically verified by the short length of the 
majority of the confidence intervals, with still quite 
some margin for PSO improvement. 

6.4 PMC Model, Large Graph 

Let us shed light on the empirical performance 
between DMO-FD and PSO in presence of a 
large, complex system Ὃ υππ. We have 
excluded AIS from this trial since its behavior is 
the poorest and quite impractical. 

Fig. 5(a) bears witness to the inability of PSO 
in pointing out the actual fault set for most of the 
values of ὸɴ ρȢȢςππ. This fact is depicted by the 

 

 

Fig. 5. Performance metrics for PSO and DMO-FD with 

the PMC model and Ὃ υππ graph 
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straight line topping the maximum number of 
individuals unfolded along 1,000 iterations. Its 
vanishing effect can be explained by the same 
rationale in Section 6.3. While DMO-FD never 
failed to encounter the true ensemble of damaged 
nodes, PSO fell short in 78% of the cases. 
Remark that both methods are contrasted with a 
small population size (M=10), which makes DMO-
FD a strong candidate for tackling challenging 
fault detection problems with low resource 
requirements. Even DMO-FD's worst-case setting 
is far more preferable than PSO's average-case.  

After inspecting Fig. 5(b), a similar trend to Fig. 
5(a) surfaces, except that the running time for 
PSO increases nearly monotonically with the 
expected number of faulty units until a large 
enough search space is reached for ὸ ςππ. In 
such cases, the presence of numerous feasible 
candidate sets helps attenuate the undesirable 
effect of having a single informer particle draw all 
remaining population members towards a 
reduced group of infeasible encodings. Because 
of PSO's high failure rate, its average-case 
behavior approaches the worst-case 
performance. On the other hand, observe how 
DMO-FD responds with the true fault set within 10 
seconds on average and always within 22 
seconds, irrespective of the values of t. Its 
responsiveness can be ascribed to the enhanced 
exploration around the mesh border and the 
presence of multiple local minima guiding the 
search.  

6.5 PMC Model, Large Graph – 1000 nodes 

Finally using a system Ὃ ρπππ the DMO-FD is 
able to find solutions within good average time for 
any number of faulty nodes, as depicted in Fig. 6 
(a) and (b). The PSO is unable to find solutions 
until a large enough search space is reached for 
ὸ τππ. DMO-FD responds with the true fault set 
within 20 seconds on average and the most cases 
within 100 seconds, irrespective of the values of t. 
So, with the reported results we can confirm the 
scalability of the DMO-FD for complex systems. 

7 Conclusions and Future Work 

In this study, we have cast the relevant problem 
of system-level fault diagnosis into the 

 
 

 

Fig. 6. Performance metrics for PSO and DMO-FD with 

the PMC model and Ὃ ρπππ graph 
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combinatorial optimization world and applied a 
discrete version of Dynamic Mesh Optimization, a 
novel population-based optimization method, to 
quickly and affordably identify the set of faulty 
units in the system. The proposed DMO-FD 
protocol utilizes a binary encoding of the potential 
solutions (mesh nodes) and dynamically modifies 
the mesh topology via node generation toward the 
local optima, global optimum, and mesh border. 
Whenever a population member drifts into the 
infeasible region, the assumption on the status of 
the least promising nodes is inverted, thus 
causing its candidate syndrome to better 
resemble the input syndrome. 

Though PSO still remains as the best 
optimization alternative for small graphs (less 
than 50 nodes), simulation results amply argue for 
the introduction of DMO-based fault detection in 
medium and large-size networks in presence of 
the invalidation and comparison test models. In 
such scenarios, which are increasingly prolific in 
today's societies, DMO-FD displays a robust and 
more stable behavior in terms of convergence 
rate and amount of memory required. This speaks 
highly of the scalability properties of our 
algorithm. 

As future work, we plan to incorporate other 
fault diagnosis models and performance metrics 
into the experimental setting and bring forth 
further enhancements through the hybridization 
with other population-based meta-heuristics or the 
application of local search mechanisms that 
intensify the exploitation of the corporately 
induced potential fault sets. 
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