
Computación y Sistemas Vol. 16 No.3, 2012 pp. 321-334
ISSN 1405-5546

Building General Hyper-Heuristics
for Multi-Objective Cutting Stock Problems

Juan Carlos Gómez
1
 and Hugo Terashima-Marín

2

1
Department of Computer Science, KU Leuven,

Belgium

2
Center for Robotics and Intelligent Systems, Tecnológico de Monterrey, Campus Monterrey,

Mexico

juancarlos.gomez@cs.kuleuven.be, terashima@itesm.mx

Abstract. In this article we build multi-objective hyper-
heuristics (MOHHs) using the multi-objective
evolutionary algorithm NSGA-II for solving irregular 2D
cutting stock problems under a bi-objective
minimization schema, having a trade-off between the
number of sheets used to fit a finite number of pieces
and the time required to perform the placement of
these pieces. We solve this problem using a multi-
objective variation of hyper-heuristics called MOHH,
whose main idea consists of finding a set of simple
heuristics which can be combined to find a general
solution, where a single heuristic is applied depending
on the current condition of the problem instead of
applying a unique single heuristic during the whole
placement process. MOHHs are built after going
through a learning process using the NSGA-II, which
evolves combinations of condition-action rules
producing at the end a set of Pareto-optimal MOHHs.
We test the approximated MOHHs on several sets of
benchmark problems and present the results.

Keywords. Hyper-heuristics, multi-objective
optimization, evolutionary computation, cutting
problems.

Construyendo híper-heurísticas
generales para problemas de corte

multi-objetivo

Resumen. En este artículo se construyen Híper-
Heurísticas Multi-Objetivo (MOHH por las siglas en
Inglés), utilizando el algoritmo evolutivo multi-objetivo
NSGA-II, para solucionar problemas de corte irregular
en 2D empleando un esquema bi-objetivo; teniendo un
balance entre el número de hojas usadas para ajustar
un número finito de piezas y el tiempo requerido para
realizar el acomodo de las piezas. Este problema es
resuelto usando las MOHHs, cuya idea principal
consiste en encontrar un conjunto de heurísticas

simples que puedan ser combinadas para encontrar
una solución general; donde una heurística simple es
utilizada dependiendo de la condición actual del
problema, en vez de aplicar una única heurística simple
durante todo el proceso de acomodo. Las MOHHs son
construidas a través de un proceso de aprendizaje
evolutivo utilizando el NSGA-II, el cual evoluciona
combinaciones de reglas condición-acción
produciendo al final un conjunto de MOHHs Pareto-
óptimas. Las MOHHs construidas son probadas en
diferentes conjuntos de problemas y los resultados
obtenidos son presentados aquí.

Palabras clave. Híper-heurísticas, optimización multi-
objetivo, computación evolutiva, problemas de corte.

1 Introduction

Bin packing and cutting stock problems are well-
known classical problems with many applications
in areas like operational research, logistics and
related subjects. The basic idea and the main
goal are to fit a finite number of pieces into a
minimum number of bins, subject to a practical
set of restrictions. For small combinatorial
problems, exact methods like linear programming
can be applied. However, when larger and more
complex problems appear, exact solutions are not
feasible since the search space grows
exponentially and so does the time to find the
optimal solution. Various heuristic and
approximate approaches that guarantee finding
near optimal solutions have been proposed
[5, 15]. However, no reliable method which can
solve a large variation of instances of a given
problem has been found.

322 Juan Carlos Gómez and Hugo Terashima-Marín

Computación y Sistemas Vol. 16 No. 3, 2012 pp. 321-334
ISSN 1405-5546

Hyper-heuristic (HH) is a method used to
define a high-level heuristic that controls low-level
heuristics [2]. The hyper-heuristic decides when
and where to apply each single low-level
heuristic, depending on the state of a given
problem and the search space. In recent work
[17, 18], evolutionary approaches have been used
to generate hyper-heuristics for the 2D regular
and irregular cutting stock problems [19, 20, 21].
These methods assemble a combination of single
heuristics, taking into account the quality of partial
solutions provided by the single heuristics.

Until now, the majority of the works devoted to
the problems of bin packing and cutting stock
have been focused on mono-objective solutions
like minimizing the trim loss or the number of bins
used; however, these problems are naturally
multi-objective, since several opposite objectives
can be optimized at the same time. Just recently
some works devoted to multi-objective cutting and
packing problems have started to emerge [11,
16]. The present article intends to contribute with
another perspective of solution for these
problems. In particular, we focus on problems
involving 2D cutting where two objectives need to
be minimized: the number of sheets used to cut a
finite number of pieces with irregular convex
shapes and the time required to perform the
placement of all the pieces inside the sheets.

The aim of this paper is to present a method
based on the Multi-Objective Evolutionary
Algorithm (MOEA) [6] NSGA-II [8] to approximate
generalized Multi-Objective Hyper-Heuristics
(MOHHs) in order to solve the cutting-stock
problem described above. Our model is an
adaptation of the one presented in [21]. Here we
use NSGA-II with a variable-length
representation, where this algorithm evolves
combinations of condition-action rules through a
learning process, producing at the end a set of
Pareto-optimal MOHHs. Finally, we test the
approximated MOHHs on several sets of
benchmark problems. The results of the proposed
model are truly encouraging.

The remainder of this paper is organized as
follows. Section 2 describes with more detail the
bi-objective cutting-stock problem. Section 3 gives
a description of the NSGA-II algorithm, the hyper-
heuristics and the single heuristics to be
combined in the proposed solution model based

on MOHH, which is presented in Section 4. This
is followed by the experimental setup, the results
and discussion in Section 5. Finally, Section 6
includes our conclusions and some ideas for
future work.

2 Bi-objective Cutting Stock Problem

The cutting stock and packing problems are
among the earliest problems in the literature of
operational research. Since 1939, when
L.V. Kantorovich [14] studied their applications in
industry, an extensive literature on these
problems’ applications has developed. For
example, B.L. Golden in [12] gives an abstract
description of a variety of different solution
methods; in [5] a number of solution methods are
discussed; H. Dyckhoff [9] and Wäscher et al. [22]
list a number of solution methods and
applications, and present a systematic
categorization of cutting and packing problems.

In this paper, our interest is to solve instances
of problems considered as 2D cutting stock
problems with convex irregular shape pieces (with
up to 8 sides). We can formally define this type of
problems in the following way: given a set
L=(a1,a2,…,an) of pieces to be cut, each one of

size s(ai)(0,A0], from a set of m cutting stock
sheets of size A0, the multi-objective goal of

cutting the pieces from the sheets can be
expressed as follows:

minimize
1 1

m

ii
z y

 (1)

minimize
2 1

n

ii
z t

 (2)

s.t. 01

n

ii
s a mA

where Expression 1 minimizes the number yi of
the sheets needed to fit all the pieces, and
Expression 2 minimizes the time to place all the
pieces inside those sheets, where ti

 indicates the
required time to put the piece ai

 inside a sheet,
using a given heuristic. The restriction avoids that
the total area of the pieces is bigger than the area
of the sheet. In this work we also consider that all
the sheets must have the same size and the

Building General Hyper-Heuristics for Multi-Objective Cutting Stock Problems 323

Computación y Sistemas Vol. 16 No.3, 2012 pp. 321-334
ISSN 1405-5546

same square shape. An example of the type of
problems we are interested in can be seen in
Figure 1.

Intuitively, the two objective functions

presented are of conflicting nature. While a large
number of sheets allow a very fast placement of
all the pieces, with z20, the trim of material will
be also large; on the other hand, a solution with
z10 will tend to require more time to place all the
pieces in the best position without wasting
material. This means that not a single solution x

exists in the set of feasible solutions X that
equally minimizes both functions z1 and z2. This is

a vector optimization problem in which a solution

xX is evaluated with respect to a vector
Z(x)=(z1(x),z2(x)). Then, the solution of the problem
consists in identifying all outcomes of the Pareto-
set S, defined as follows [6]:

Definition 1. Dominance: Z(x) is said to

dominate Z(x’) iff zk(x)zk(x’)k=1,…,Kk|zk(x)

zk(x’). We denote the dominance of Z(x) over

Z(x’) with Z(x)Z(x’).
Definition 2. Efficiency, Pareto-optimality:

The vector Z(x), xX, is said to be efficient iff

Z(x’),x’X|Z(x’)Z(x). The corresponding
alternative x is called Pareto-optimal and the set
of all alternatives is the Pareto-set S.

3 Methods

This section describes the Non-dominated Sorting
Genetic Algorithm-II (NSGA-II), developed by K.
Deb [8], and its adaptations to tackle the problem
we have at hand. Here we also describe the
concept of hyper-heuristics and the set of
selection and placement heuristics used during
the solution process with our model.

3.1 NSGA-II

In this paper we use the NSGA-II algorithm to
build general MOHHs (this process is described
below). The NSGA-II is part of the so-called Multi-
Objective Evolutionary Algorithms (MOEAs) [6],
which are methods suited well to solve multi-
objective problems given their natural way of
producing a set of Pareto-optimal non-dominated
solutions within a single run. The NSGA-II is one
of the best known MOEAs which is characterized
by good behavior and used as a reference in
many works on multi-objective optimization; so
this was our motivation to integrate it in our
model. At the initial step of this algorithm, a
random parent population P0 of size N is created.
The population is sorted based on non-
domination. Each solution is assigned a fitness
(or rank) equal to its non-domination level (1 is
the best level, 2 is the next-best level, etc.). Thus,
minimization of this rank is assumed. The normal
binary tournament selection, recombination, and
mutation operators are used to create an offspring
population Q0 of size N. After that, a combined
population Rt=Pt+Qt is formed. Next, the
population Rt is sorted according to non-
domination, forming the fronts F=F1,F2,…. Since
all previous and current population members are
included in Rt, elitism is ensured. Now, the
solutions belonging to the best non-dominated set
F1 are of the best solutions in the combined
population and must be emphasized more than
any other solution inside it. If the size of F1 is
smaller than N, all the members of the set F1 are
chosen for the new population Pt+1. The remaining
members of the population Pt+1 are chosen from

subsequent non-dominated fronts in the order of
their ranking. Thus, solutions from the set F2 are

chosen next, followed by solutions from the set
F3, etc. This procedure is continued until no more
sets can be accommodated. The new population
Pt+1 is now used for selection, crossover, and
mutation to create a new population Qt+1, and the
process is repeated until a stop criteria is
satisfied. The NSGA-II main loop is shown in
Algorithm 1. Inside this main process, we have

two important sub-processes, the fast-non-

dom-sort procedure (shown in Algorithm 2),

which accomplishes a fast sort of the current

Fig. 1. Example of an irregular cutting problem

324 Juan Carlos Gómez and Hugo Terashima-Marín

Computación y Sistemas Vol. 16 No. 3, 2012 pp. 321-334
ISSN 1405-5546

population in different non-domination levels; and

the crow-dist-assignment procedure (shown

in Algorithm 3), which measures the crowding-
distance, a measure of density of solutions in the
neighborhood used to preserve diversity among
non-dominated solutions during the tournament
selection and the population reduction phase.

Algorithm 3. fast-non-dom-sort(P)

1: for all pP do

2: Sp

3: np0

4: for all qP do

5: if p q then

6: SpSpq

7: else if q p then

8: npnp+1

9: end if

10: end for

11: if np=0 then

12: prank1

13: F1 F1p

14: end if

15: end for

16: i1

17: while Fi≠ do

18: Q

19: for all p Fi do

20: for all qSp do

21: nqnq-1

22: if nq=0 then

23: qranki+1

24: Q Qq

25: end if

26: end for

27: end for

28: ii+1

29: Fi Q

30: end while

3.2 Hyper-Heuristics

Hyper-heuristics (HH) deal with the process of
choosing a good single heuristic for solving the
problem at hand. The idea is to discover a
combination of single heuristics that can perform
well on a whole range of problems and in such a
way that one heuristic’s strengths make up for the
drawbacks of another [2, 4, 18]. The rationale is
that there is no unique best single heuristic to
solve well a wide range of instances of a given
problem type, since certain problems may contain
features that would enable a specific heuristic to
work well but those features may not be present
in other problems. Then, a combination of
heuristics, selectively applied based on the
features present in a problem, may work well on a
large number of problems. HH have been used
recently to solve a variety of problems like
constraint satisfaction problems [1], timetabling [3]
and scheduling [7]. The idea of hyper-heuristics is
shown in Figure 2, where, starting from a problem
E, in a given state space, we apply the best single
heuristic for the current features of the problem,
this will transform the problem into a new state E’,
with different features, where we can apply a new
heuristic better appropriated for the new problem,
this again will transform the problem into another
state E’’, with other features. The process is then
repeated until a complete solution has been
constructed.

Algorithm 1. NSGA-II main loop

1: Qt+1make-new-population(Pt)

2: RtPtQt

3: Ffast-non-dom-sort(Rt)

4: Pt+1

5: i1

6: while |Pt+1|+|Fi|N and Fi≠ do

7: crow-dist-assignment(Fi)

8: Pt+1Pt+1Fi

9: ii+1

10: end while

11: sort(Fi, n)

12: Pt+1Pt+1Fi[1:(N-|Pt+1|)]

13: tt+1

Algorithm 2. crow-dist-assignment(I)

1: l|I|

2: for all i do

3: I[i]distance0

4: end for

5: for all objectivem do

6: Isort(I,m)

7: I[1]distanceI[l]distance

8: for i=2 to (l-1) do

9:

distance distance max min

1 1
[] []

m m

m m

i i
i i

f f

I I
I I

10: end for

11: end for

Building General Hyper-Heuristics for Multi-Objective Cutting Stock Problems 325

Computación y Sistemas Vol. 16 No.3, 2012 pp. 321-334
ISSN 1405-5546

3.2.1 Single Heuristics

The single heuristics used to be combined in our
model with MOHHs to solve the 2D convex
irregular cutting-stock problem must define the
exact location of the pieces inside the sheet. In
this work two kinds of single heuristics were
considered: one kind for selecting the pieces and
sheets, and the other for placing the pieces into
the sheets. The selection heuristics are shown
below. Some of these heuristics are described in
more detail in [13,18].

- First Fit (FF): Considers the opened sheets
in turn in a fixed order and places the piece in
the first one it fits.

- First Fit Decreasing (FFD): Sorts pieces in a
decreasing order, and the largest one is
placed according to FF.

- First Fit Increasing (FFI): Sorts pieces in an
increasing order, and the smallest one is
placed according to FF.

- Filler + FFD: Places as many pieces as
possible within the open sheets. If at least
one piece has been placed, the algorithm
stops. Otherwise, the FFD algorithm is
applied.

- Next Fit (NF): Uses the current sheet to place
the next piece, otherwise opens a new one
and places the piece there.

- Next Fit Decreasing (NFD): Sorts the pieces
in a decreasing order, and the largest one is
placed according to NF.

- Best Fit (BF): Places the piece in the opened
sheet where it best fits (i.e., with the minimum
waste).

- Best Fit Decreasing (BFD): Same as the
previous one, but sorts the pieces in a
decreasing order.

- Worst Fit (WF): Places the piece in the
opened sheet where it worst fits (i.e., with the
largest waste).

- Djang and Fitch (DJD): Places pieces in a
sheet taking pieces by decreasing size until
the sheet is at least one third full. Then, it
initializes w, a variable indicating the allowed
waste, and looks for combinations of 1,2,…,5
pieces producing a waste w. If any
combination fails, it increases w accordingly.

The placement heuristics, described in detail in
[21], are the following:

- Bottom-Left (BLI): The piece starts at the top
right corner of the sheet, then slides down
and left with a sequence of movements until
no other movement is possible. The heuristic
does not allow the piece to skip around
another placed piece. It is a simple and fast
heuristic.

- Constructive Approach (CA): The heuristic
starts by placing the first piece at the bottom
and left of the sheet. Then, the next piece is
placed in one of the five positions:
(ẋ,0),(0,ẏ),(x,ẏ),(ẋ,ẏ) and (ẋ,y), where ẋ, x, ẏ and
y are the maximum and minimum coordinates
of x and y in relation to the first piece. For
each position, the next piece slides down and
left, and the one that places the piece
deepest (bottom and left) is chosen, except in
special cases, such as when a hole is formed.

- Constructive-Approach (Minimum Area)
(CAA): In this modification of the previous
heuristic, the best position from the list is
selected based on which one yields the
bounding rectangle with minimum area,
containing all pieces, and that fits in the
bottom left corner of the object.

- Constructive-Approach (Maximum
Adjacency) (CAD): With the first piece only
the four corners of the sheet are considered.
For the subsequent pieces, the possible
points are the same as in CA. For each
position in the list, the piece starts in that
position, and its adjacency (i.e., the common
boundary between its perimeter and the
placed pieces and the sheet edges) is

Fig. 2. Solution process for a problem using a
combination of single heuristics

326 Juan Carlos Gómez and Hugo Terashima-Marín

Computación y Sistemas Vol. 16 No. 3, 2012 pp. 321-334
ISSN 1405-5546

computed. Then, the piece is slid down and
left, and the adjacency is computed again.
The position with the largest adjacency is
selected as the position of the new piece.

Using the previous selection and placement
single heuristics, there are 40 different
combinations for the action to be taken in each
step of the solution process; these actions are
shown in Table 1.

4 Building Multi-Objective Hyper-
Heuristics

In this work, we adapted the evolutionary model
proposed in [21]. The original model produces
general hyper-heuristics using a simplified
representation of the state of a problem. In this
model, a chromosome consists of a number of
points in the simplified state space, with each

point being labeled with a given heuristic. Under
this schema, a chromosome represents a
complete recipe for solving a problem, using the
simple algorithm: until the problem is solved, (a)
determine the current problem state E, (b) find the

nearest point to it, (c) apply the heuristic attached
to the point, and (d) update the state. We use
such ideas and apply them with the NSGA-II
algorithm. The NSGA-II’s task is to find a set S of
Pareto-optimal chromosomes that are capable of
obtaining solutions for a wider variety of
problems, taking into consideration the tradeoff
between the two minimization objectives defined
in equations 1 and 2; the set of chromosomes in S
are the MOHHs we are seeking.

4.1 Representation

Each chromosome is composed by a variable
number of blocks. The initial number of blocks is
randomly created and after that, the evolutionary
process can create or delete blocks. In our model
each block includes nine numbers. The first eight
lie in the range 0,1 and represent the problem
state; the label is the ninth number, which
identifies a particular action (single heuristic).
Then, a block can be seen as a labeled point. The
NSGA-II’s task is to create and evolve a certain
number of such labeled points using the problem-
solving algorithm defined above, where Euclidean
distance is used to determine the nearest point.

In the problem state, the first three numbers
are related to rectangularity, a quantity that
represents the proportion between the area of a
piece and the area of a horizontal rectangle
containing it. These numbers represent the
fraction of remaining pieces with high
rectangularity 0.9, 1, medium rectangularity 0.5,
0.9, and low rectangularity 0, 0.5.

The fourth to seventh numbers are related to
the area of pieces, and are categorized as follows
(A0 is the sheet area, Ap is the piece area): huge
(A0/2<Ap), large (A0/3<Ap<A0/2), medium
(A0/4<Ap<A0/3), and small (Ap<A0/4). The eighth
number represents the fraction of the total
number of pieces that remain to be placed. The
label is selected from the combinations of single
heuristics showed in Table 1. Figure 3 gives a
graphical representation of a chromosome using
the simplified state space. This simplified feature

Table 1. List of possible actions

Selection Placement

No. Selection Placement

1 FF BLI

21 NFD BLI

2

CA

22

CA

3

CAA

23

CAA

4

CAD

24

CAD

5 FFD BLI

25 BF BLI

6

CA

26

CA

7

CAA

27

CAA

8

CAD

28

CAD

9 FFI BLI

29 BFD BLI

10

CA

30

CA

11

CAA

31

CAA

12

CAD

32

CAD

13 Filler+ BLI

33 WF BLI

14 FFD CA

34

CA

15

CAA

35

CAA

16

CAD

36

CAD

17 NF BLI

37 DJD BLI

18

CA

38

CA

19

CAA

39

CAA

20

CAD

40

CAD

Building General Hyper-Heuristics for Multi-Objective Cutting Stock Problems 327

Computación y Sistemas Vol. 16 No.3, 2012 pp. 321-334
ISSN 1405-5546

space intends to represent the essential
information about the geometry (rectangularity),
and the occupied and free space of the problem’s
whole configuration in a given step of the solution
process.

More features can be added or considered but
with the corresponding increase in complexity.
The current problem’s state is computed in each
step of the solution process, taking the
information stored in the model about the pieces
assigned, pieces free, and open (available)
sheets.

4.2 Fitness Function

Each MOHH is evaluated using two fitness
functions, one for the waste of space in the sheet
and another for the total time needed to place the
pieces on the sheet. The waste of space in a
given sheet and the corresponding fitness
function are defined as

1

0

1

k

ii
s a

W
A

 (3)

2

1
1

m

ii
W

FF
m

 (4)

where k is the number of pieces inside the sheet,
s(ai) the size of each piece, A0 the size of the

sheet, and m is the number of sheets used. The
second fitness function is defined as

 2 1

n

ii
FF t h a

 (5)

where t(h(ai)) is the required time to place the
piece ai using the heuristic h. During the NSGA-II

process, when a new individual is created (in the
first parent population or in the subsequent
children populations), a set of 5 problems,
randomly selected from the training set, is
assigned to it. Then, the individual is evaluated for
each of these problems using the previous fitness
functions; the fitness values are added and
averaged to obtain two final fitness values:

5

1 ; 1,2
5

j ii
j

FF p
FFT MOHH j

 (6)

where pi is the i-th problem assigned to the
individual, and the index j indicates the number of
fitness function. During the evolution, if an
individual from the parent population survives for
the next generation, a new problem is assigned to
it and the fitness functions are recomputed:

 1

; 1,2
1

l

j p jl

j

p

FFT n FF p
FFT MOHH j

n

(7)

where FFTlj is the value of the j-th total fitness
function for the generation l, np is the number of
problems the individual has solved until now, and
FFj(p) is the value of the j-th fitness function for
the new problem. This task of assigning new
problems to old individuals and recomputing their
fitness values stays in effect during the whole
evolutionary process.

4.3 Genetic Operators

In this work we use two uniform versions of cross-
over and mutation: the first version works at the
block level and the second one works with the
internal elements of each block. In the block level
cross-over, a random number of complete blocks
is exchanged between two parent individuals to
create two children individuals; since the number
of blocks in each chromosome (individual) is

Fig. 3. Graphical representation of a chromosome using
the simplified state space

328 Juan Carlos Gómez and Hugo Terashima-Marín

Computación y Sistemas Vol. 16 No. 3, 2012 pp. 321-334
ISSN 1405-5546

variable, the random number is less or equal to
the shortest chromosome. In the block level
mutation, given certain probability, a randomly
selected block can be deleted from the
chromosome or a randomly created block can be
added to the chromosome. In the internal level
cross-over and mutation, they select a random
number of blocks, and for each block, a random
number of values to be interchanged or mutate,
depending on the operator. Examples of cross-
over at the block level and the internal level are

shown in Figure 4. Examples of mutation at the
block level and the internal level are shown in
Figure 5.

5 Experimental Results

In this section we first present the problem
instances used to perform the experiments with
our model, then the experiments themselves,
including a discussion of the results

5.1 Problem Instances

For this work we generated 18 different types of
problems, with 30 instances for each type, totaling
540 instances. Their characteristics can be seen
in Table 2. We also added a problem from the
literature [10], which was scaled by a factor of 10
in order to have the sheet size of 300x300.
Instances of type G have unknown optimal
solutions, since they were produced from random
alterations of problems with known optimum.

Table 2. Description of problem instances

Type
Sheets
(size)

Pieces
Number of
Instances

Optimum

Fu 300x300 12 1 unknown

A 1000x1000 30 30 3

B 1000x1000 30 30 10

C 1000x1000 36 30 6

D 1000x1000 60 30 3

E 1000x1000 60 30 3

F 1000x1000 30 30 2

G 1000x1000 36 30 unknown

H 1000x1000 36 30 12

I 1000x1000 60 30 3

J 1000x1000 60 30 4

K 1000x1000 54 30 6

L 1000x1000 30 30 3

M 1000x1000 40 30 5

N 1000x1000 60 30 2

O 1000x1000 28 30 7

P 1000x1000 56 30 8

Q 1000x1000 60 30 15

R 1000x1000 54 30 9

Fig. 5. Examples of mutation operator at the block level

(a), by deleting a random selected block (1) and adding a
random created block (2); and at the internal level (b)

Fig. 4. Examples of cross-over operator at the block
level (a) and the internal level (b)

Building General Hyper-Heuristics for Multi-Objective Cutting Stock Problems 329

Computación y Sistemas Vol. 16 No.3, 2012 pp. 321-334
ISSN 1405-5546

5.2 Experiments with the Proposed Model

In the beginning of each experiment, the problem
instances are divided into the training set and the
test set. The NSGA-II is performed with the
training set only, until a termination criterion is
met and the set S of general MOHH’s has been
evolved. All instances in the test set are then
solved with each member of the set S and the
results are recorded. In order to test the overall
performance of the model, various experiments
were designed:

- Experiment I: Instances are divided into two
groups: Group 1 and Group 2. Group 1 is the
training set formed by instance types A, B, C,
D, E, F, G, H and I plus the Fu instance. After
running our model over the training set, a set
of Pareto-optimal MOHHs were obtained and
each one was tested with Set 2 (instance
types J, K, L, M, N, O, P, Q and R).

- Experiment II: This experiment is similar to
Experiment I, except that the training and test
sets are interchanged.

- Experiment III: This experiment takes the Fu
instance and 15 instances from each problem
type (from A through R) to form the training
set. The remaining instances form the test
set.

- Experiment IV: It is the same as Experiment
III, except that the training and test sets are
swapped.

We performed three independent runs of the
evolutionary process with NSGA-II for each
experiment. The settings used for the different
runs were for run 1: 36 individuals and 80
generations; for run 2: 36 individuals and 240
generations; and for run 3: 108 individuals and 80
generations; with all the runs sharing a mutation
probability of 0.1 (applied to each individual) and
a cross-over probability of 0.9. A single run for
one of the experiments, using the first settings,
takes about 12 hours to approximate the set S,
using our implementation in Java on a 2.8Ghz
Core2Duro PC with 4Gb in RAM.

Each run produced as output a Pareto-optimal
set Sexperiment;run containing about 24 MOHHs for

each experiment. Each one of the built MOHHs is
used to solve all the instances in the test set, the
results about the number of used sheets and the

required time to place all the pieces are recorded
and used later for comparisons. The sets
produced for each run were then combined per
experiment to obtain a unique single global set,

having SA=SA1SA2SA3; SB = SB1SB2SB3;

SC=SC1SC2SC3 and SD=SD1SD2SD3. Each global

set obtained contained about 70 MOHHs;
nevertheless, since the runs were performed
independently, there existed a probability of
having solutions inside the global set that were
dominated by other solutions, according to the
non-dominance criterion given in Definition 2.
Then, we run a final non-dominance filtering and
selected only the non-dominated MOHHs for each
global set, leaving about 20 final solutions for
each experiment.

Figure 6 presents the Pareto-optimal sets of
MOHHs resulting from the combination of the
three independent runs and the filtering using the
non-dominance criterion. These graphs
summarize the behavior of the selected MOHHs
on solving all the instances in the test set. Given
the definition of Equations 1 and 2, both
objectives z1 (number of sheets) and z2 (time of
placement) need to be minimized, then a point in
the (minimum sheets, minimum time) corner
would be the ideal solution; nevertheless, since
the objectives are opposite to each other, that
solution does not exist.

From these plots we can easily observe the
existent trade-off between the number of used
sheets and the time required to place the pieces.
The points more to the left tend to spend more
time in the placement process but using less
sheets, and the ones more to the right tend to do
the placement very fast but using more sheets. It
is possible to observe how significant
improvements in z1 can be achieved for "similar"
values of z2, i.e., there are MOHHs that solve the
problems using fewer sheets with a little increase
of time.

Since it is complicated to integrate in a single
table all the MOHHs built by the evolutionary
process (about 20) for each experiment; we
present in tables a selection of 12 MOHHs from
each set S, corresponding to each experiment.
We selected these MOHHs by taking the
extremes of the fronts (the most right and the
most left points in the above graphs) and the rest
we selected randomly.

330 Juan Carlos Gómez and Hugo Terashima-Marín

Computación y Sistemas Vol. 16 No. 3, 2012 pp. 321-334
ISSN 1405-5546

Tables 3, 4, 5 and 6 summarize the results for
each one of the experiments, using the selected

MOHHs from each set S as described above. The
second row of the tables represents the average
normalized time a MOHH needs to solve a
problem, using its combination of single
heuristics. The time is not in real time, but was
measured by assigning a time score to each
single heuristic, depending on the number of trials
or movements it requires to place a piece inside a
sheet; which in fact depends on the current
configuration of the previous placed pieces in the
sheet. These scores were assigned before the
experiments by solving all the problems with
every single heuristic to know the performance of
each one for every problem, where the most
expensive heuristic has a value of 100, and the
rest of the heuristics have a fraction of this time.
When applying the MOHH to solve a group of
problems, for every heuristic used during the
solution process its score is added and averaged
at the end by the number of problems solved. The
selected solutions are presented in the tables
sorted in decreasing time.

Given a single problem instance, there is a
single heuristic from the set of 40 heuristics that
solves it using the least number of sheets. Taking
this as a baseline, the rest of the rows in the
tables show the number of extra sheets a MOHH
needs to place all the pieces in comparison with
that best single heuristic. The number in each
cellis the percentage of problems where the
MOHH needs from -1 to more than 3 sheets to
place all pieces with respect to the collection of
best single heuristics. It is possible to observe
that when a small number of extra sheets (-1 or 0)
is needed, the time to perform the placement is
big, and the opposite: when the placement time is
small, the number of extra sheets is big due to the
conflicting objectives. This allows for a user to
select the best solution in accordance to his/her
particular needs: fastness (large number of extra
sheets), precision (small number of extra sheets)
or equilibrium.

For Experiment I, the built Pareto-front
presents a gap (shown in top left plot of Figure 4
and Table 3) between the left most point and the
rest of the points, this is due to the fact that the
test set includes more diversity in the number of
pieces and the optimum number of sheets, in
comparison with the training set (as shown in
Table 2). Then to solve a problem in the test set is

Fig. 6. Sets of non-dominated MOHHs (represented

as points) forming the Pareto-fronts for Experiments
I, II, III and IV

Building General Hyper-Heuristics for Multi-Objective Cutting Stock Problems 331

Computación y Sistemas Vol. 16 No.3, 2012 pp. 321-334
ISSN 1405-5546

Table 3. Average placing time for the test set and percentage of problems where each selected MOHH needs from -1 to more

than 3 sheets with respect to the collection of best single heuristics. Experiment I

HHA6 HHA1 HHA2 HHA3 HHA4 HHA5 HHA7 HHA8 HHA9 HHA10 HHA11 HHA12

91.68 Time 2926.06 363.26 299.75 197.89 118.11 11.58 4.37 3.56 2.58 2.17 1.63

% Sheets % % % % % % % % % % %

 -1 4.81 0.37

0.37 0 87.03 83.7 72.96 41.11 9.25

25.92 1 6.66 15.55 15.92 34.07 32.22 18.88 18.88 12.96 13.33 2.22 0.37

33.70 2 1.11 0.74 11.11 24.07 28.14 28.14 33.33 13.33 11.11 14.44

18.88 3 1.85 14.81 27.40 26.29 25.55 12.22 10.74 7.40

21.11 >3 0.37 11.11 11.48 19.62 25.55 26.66 28.14 61.11 75.92 77.77

Table 4. Average placing time for the test set and percentage of problems where each selected MOHH needs from -1 to more

than 3 sheets with respect to the collection of best single heuristics. Experiment II

 HHB1 HHB2 HHB3 HHB4 HHB5 HHB6 HHB7 HHB8 HHB9 HHB10 HHB11 HHB12

Time 979.40 575.27 348.11 265.22 207.53 189.02 141.46 7.12 5.87 3.30 2.92 1.30

Sheets % % % % % % % % % % % %

0 97.41 80.07 70.47 69.37 52.39 57.19 28.04 10.70 8.85 7.38 0.36 0.73

1 2.58 13.65 19.55 20.29 26.56 16.23 45.38 26.93 28.78 25.83 31.36 11.43

2 4.79 8.48 8.48 8.11 10.70 20.66 28.78 29.15 27.30 22.87 12.91

3 1.47 1.47 1.84 7.74 8.11 5.90 19.55 19.92 20.66 16.23 12.17

>3 5.16 7.74 14.02 13.28 18.81 29.15 62.73

Table 5. Average placing time for the test set and percentage of problems where each selected MOHH needs from -1 to more

than 3 sheets with respect to the collection of best single heuristics. Experiment III

 HHC1 HHC2 HHC3 HHC4 HHC5 HHC6 HHC7 HHC8 HHC9 HHC10 HHC11 HHC12

Time 2380.27 342.01 296.96 260.45 199.19 63.88 23.07 9.84 4.21 3.94 2.85 1.49

Sheets % % % % % % % % % % % %

-1 2.22 0.74

0 91.48 79.25 72.59 71.85 46.29 8.14 5.92 4.81 4.44 4.81 0.37 0.37

1 6.29 14.81 21.48 18.51 35.55 38.88 25.55 24.07 24.07 22.96 18.88 6.29

2 5.18 4.81 6.66 6.66 30.37 25.18 26.29 26.29 25.92 15.92 14.07

3 0.74 1.11 2.22 8.51 14.44 24.44 25.18 24.44 25.55 12.96 8.88

>3 0.74 2.22 8.14 18.88 19.62 20.74 20.74 51.85 70.37

332 Juan Carlos Gómez and Hugo Terashima-Marín

Computación y Sistemas Vol. 16 No. 3, 2012 pp. 321-334
ISSN 1405-5546

harder, and MOHHs solving these problems using
few sheets would tend to increase the solving
time faster. Then, in the case of Experiment II, we
observe a more continuous Pareto-front (top right
plot of Figure 4 and Table 4); because of the
opposite reason, to solve a problem in the test set
is easier given the less diversity, and MOHHs
solving these problems using few sheets do not
need to increase the solving time too much.

For Experiments III and IV, there is a
combination of problems from all the types and
the diversity is present in both the training and the
test set. Given that, solutions from the test set are
equally harder to solve than the ones from the
training set. In that sense, Pareto-fronts for
Experiments III and IV could be complementary,
and if we remove the two most left points of the
front III (bottom left plot of Figure 4 and Table 5),
the rest of the MOHHs perform similarly in both
Experiments III and IV (comparing bottom plots in
Figure 4 and Table 5 and 6). The previous finding
means that for Experiment IV, the algorithm is
missing a couple of solutions more to the left,
which in fact can be found if we add more runs of
the algorithm.

Hyper-heuristics and multi-objective cutting are
relatively novel areas, so the results presented in
this work are in an early stage to be directly
compared with other techniques, since there are
still few works developed in the area, and no work

on irregular cutting using the same objectives and
the same set of problems.

6 Conclusions

In this paper we have described experimental
results for a model based on the MOEA NSGA-II
which evolves combinations of condition-action
rules representing problem states and associated
selection and placement heuristics for solving
multi-objective 2D convex irregular cutting stock
problems, where our goal was to minimize the
(opposite) objectives of the number of sheets
used to cut a set of pieces and the total time to
place the pieces inside the sheets. These
combinations of rules built by the model are called
Multi-Objective Hyper-Heuristics (MOHHs). In
general, the model efficiently builds the set of
Pareto-optimal MOHHs after going through the
training phase using NSGA-II and the set of
training problems, and when applied to an unseen
test set of problems, those built MOHHs solve the
problems efficiently taking into account the trade-
off between the two objectives. The results are
truly encouraging, which could let the application
of our model based on MOHH to be used in other
areas and for other complex problems, where
optimization of several opposite objectives is
required. Several other considerations could be

Table 6. Average placing time for the test set and percentage of problems where each selected MOHH needs

from -1 to more than 3 sheets with respect to the collection of best single heuristics. Experiment IV

 HHD1 HHD2 HHD3 HHD4 HHD5 HHD6 HHD7 HHD8 HHD9 HHD10 HHD11 HHD12

Time 328.77 306.89 272.32 262.63 249.59 84.24 68.48 3.79 3.31 2.71 1.73 1.43

Sheets % % % % % % % % % % % %

0 75.27 74.16 69.37 68.63 65.68 8.48 11.43 4.05 0.73 0.73 0.36 0.36

1 20.29 20.66 21.03 21.40 20.66 25.83 21.03 24.35 18.81 13.65 5.53 5.53

2 3.69 4.79 7.74 7.38 7.01 35.05 32.47 30.62 20.66 15.86 14.02 13.28

3 0.73 0.36 1.47 2.21 4.42 20.66 19.92 20.29 19.55 17.71 11.80 10.70

>3 0.36 0.36 2.21 9.96 15.12 20.66 40.22 52.02 68.26 70.11

Building General Hyper-Heuristics for Multi-Objective Cutting Stock Problems 333

Computación y Sistemas Vol. 16 No.3, 2012 pp. 321-334
ISSN 1405-5546

taken into account when experimenting with
MOHHs, like using different MOEAs in order to
test and understand their behavior on producing
the Pareto-front for different problems. In
particular for the problem we tackled here, some
interesting ideas for future work involve extending
the proposed strategy to solve problems with
more complex structure like 3D packing problems;
including other objectives to be minimized, like
the balance weight, the number of cuts or the
heterogeneousness inside a sheet; or including
other kinds of pieces with arbitrary shapes.

Acknowledgements

This research was supported in part by ITESM
under the Research Chair CAT-144 and the
CONACYT Project under grant 99695 and the
CONACYT postdoctoral grant 290554/37720. A
shorter version of the paper has already appeared
in MICAI 2010.

References

1. Bittle, S.A. & Fox, M.S. (2009). Learning and

using hyper-heuristics for variable and value
ordering in constraint satisfaction problems. Annual
Conference Companion on Genetic and
Evolutionary Computation (GECCO’09), Montreal,
Canada, 2209-2212.

2. Burke, E., Hart, E., Kendall, G., Newall, J., Ross,
P., & Schulenburg, S. (2003). Hyper-heuristics:

An Emerging Direction in Modern Research
Technology. In Fred G. & Gary A. K. (Ed.),
Handbook of Metaheuristics (457-474). Boston:
Kluwer Academic Publishers.

3. Burke, E.K., McCollum, B., Meisels, A.,
Petrovic, S., & Qu, R. (2007). A Graph Based

Hyper-Heuristic for Educational Timetabling
Problems. European Journal of Operational
Research, 176(1), 177-192.

4. Burke, E.K., Curtois, T., Hyde, M., Kendall, G.,
Ochoa, G., Petrovic, S., & Vazquez-Rodriguez,
J.A. (2009). HyFlex: A Flexible Framework for the

Design and Analysis of Hyper-heuristics. 4
th
 Multi-

disciplinary International Scheduling Conference
(MISTA 2009), Dublin, Ireland, 790-797.

5. Chen, C.H., Feiring, B.R., & Chang, T.C.E.
(1994). The Cutting Stock Problem, A Survey.

International Journal of Production Economics,
36(3), 291-305.

6. Coello, C.A., Van Veldhuizen, D.A., & Lamont,
G.B. (2002). Evolutionary Algorithms for Solving

Multi- Objective Problems. New York: Kluwer
Academic.

7. Cowling, P.I., Kendall, G., & Soubeiga, E.
(2000). A Hyper-Heuristic Approach for Scheduling

a Sales Summit. Selected papers from the Third
International Conference on Practice And Theory
of Automated Timetabling III, (PATAT’00),
Konstanz, Germany, 176-190.

8. Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T.
(2002). A Fast Elitist Non-dominated Sorting

Genetic Algorithm for Multi-Objective Optimization:
NSGA-II. Parallel Problem Solving from Nature-
PPSN VI, Lecture Notes in Computer Science,
1917, 849-858.

9. Dyckhoff, H. (1990). A Typology of Cutting and

Packing Problems. European Journal of
Operational Research, 44(2), 145-159.

10. Fujita, K., Akagi, S., & Hirokawa, N. (1993).

Hybrid Approach for Optimal Nesting Using a
Genetic Algorithm and a Local Minimisation
Algorithm. 1993 ASME design technical
conferences--19th Design Automation Conference,
Albuquerque, USA, 477-484.

11. Geiger, M.J. (2008). Bin Packing Under Multiple

Objectives - a Heuristic Approximation Approach.
Fourth International Conference on Evolutionary
Multi-Criterion Optimization, Matsushima, Japan,
53-56.

12. Golden, B.L. (1976). Approaches to the Cutting
Stock Problem. AIIE Transactions, 8(2), 256-274.

13. Hopper, E. & Turton, B.C.H. (2001). An Empirical

Study of Meta-Heuristics Applied to 2D
Rectangular Bin Packing. Studia Informatica
Universalis, 2(1), 77-106.

14. Kantorovich, L.V. (1960). Mathematical Methods

of Organizing and Planning Production.
Management Science, 6(4), 366-422.

15. Lodi, A., Martello, S., & Monaci, M. (2002). Two-

dimensional Packing Problems: A Survey.
European Journal of Operational Research,
141(2), 241-252.

16. Muñoz, C., Sierra, M., Puente, J., Vela, C.R., &
Varela, R. (2007). Improving Cutting-Stock Plans

with Multi-Objective Genetic Algorithms. Second
International Work-conference on the Interplay
between Natural and Artificial Computation, Part I:
Bio-inspired Modeling of Cognitive Tasks (IWINAC
'07), La Manga del Mar Menor, Spain, 528-537.

334 Juan Carlos Gómez and Hugo Terashima-Marín

Computación y Sistemas Vol. 16 No. 3, 2012 pp. 321-334
ISSN 1405-5546

17. Ross, P. (2005). Hyper-Heuristics. In Burke, E. K.

& Kendall, G.(Eds.), Search Methodologies:
Introductory Tutorials in Optimization and Decision
Support Methodologies (529-556). New York:
Springer.

18. Ross, P., Schulenburg, S., Marín-Blázquez,
J.G., & Hart, E. (2002). Hyper-Heuristics: Learning

to Combine Simple Heuristics in Bin-Packing
Problems. Conference on Genetic and
Evolutionary Computation (GECCO '02), New
York, USA, 942-948.

19. Terashima-Marín, H., Flores-Álvarez, E.J., &
Ross, P. (2005). Hyper-Heuristics and Classifier

Systems for Solving 2D-Regular Cutting Stock
Problems. Conference on Genetic and
Evolutionary Computation (GECCO '05),
Washington, D.C., USA, 637-643.

20. Terashima-Marín, H., Farías-Zárate, C.J., Ross,
P., & Valenzuela-Rendón, M. (2006). A GA-Based

Method to Produce Generalized Hyper-Heuristics
for the 2D-Regular Cutting Stock Problem.
Conference on Genetic and Evolutionary
Computation (GECCO '06), Seattle, USA, 591-598.

21. Terashima-Marín, H., Ross, P., Farías-Zárate, C.
J., López-Camacho, E., & Valenzuela-Rendón,
M. (2010). Generalized Hyper-Heuristics for

Solving 2D Regular and Irregular Packing
Problems. Annals of Operations Research, 179(1),
369-392.

22. Wäscher, G., Hauβner, H. & Schumann, H.
(2007). An Improved Typology of Cutting and

Packing Problems. European Journal of
Operational Research, 183(3), 1109-1130.

Juan Carlos Gómez
received his Ph.D. degree
from INAOE, México, in
2007. Currently he works as
a Postdoctoral Fellow at the
Department of Computer
Science in the Katholieke
Universiteit Leuven,
Belgium. His research
interests are Machine

Learning, Information Retrieval, Evolutionary
Computing and Data Mining.

Hugo Terashima-Marín
received his Ph.D. degree
from the ITESM, Campus
Monterrey, Mexico, in 1998.
Currently he is a Professor
of Intelligent Systems and
Computer Science and
Director of Graduate
Studies in ITESM, Campus
Monterrey.

Article received on 09/02/2011; accepted on 03/11/2011.

