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Abstract. In this article we build multi-objective hyper-
heuristics (MOHHs) using the multi-objective 
evolutionary algorithm NSGA-II for solving irregular 2D 
cutting stock problems under a bi-objective 
minimization schema, having a trade-off between the 
number of sheets used to fit a finite number of pieces 
and the time required to perform the placement of 
these pieces. We solve this problem using a multi-
objective variation of hyper-heuristics called MOHH, 
whose main idea consists of finding a set of simple 
heuristics which can be combined to find a general 
solution, where a single heuristic is applied depending 
on the current condition of the problem instead of 
applying a unique single heuristic during the whole 
placement process. MOHHs are built after going 
through a learning process using the NSGA-II, which 
evolves combinations of condition-action rules 
producing at the end a set of Pareto-optimal MOHHs. 
We test the approximated MOHHs on several sets of 
benchmark problems and present the results. 

Keywords. Hyper-heuristics, multi-objective 
optimization, evolutionary computation, cutting 
problems. 

Construyendo híper-heurísticas 
generales para problemas de corte 

multi-objetivo 

Resumen. En este artículo se construyen Híper-
Heurísticas Multi-Objetivo (MOHH por las siglas en 
Inglés), utilizando el algoritmo evolutivo multi-objetivo 
NSGA-II, para solucionar problemas de corte irregular 
en 2D empleando un esquema bi-objetivo; teniendo un 
balance entre el número de hojas usadas para ajustar 
un número finito de piezas y el tiempo requerido para 
realizar el acomodo de las piezas. Este problema es 
resuelto usando las MOHHs, cuya idea principal 
consiste en encontrar un conjunto de heurísticas 

simples que puedan ser combinadas para encontrar 
una solución general; donde una heurística simple es 
utilizada dependiendo de la condición actual del 
problema, en vez de aplicar una única heurística simple 
durante todo el proceso de acomodo. Las MOHHs son 
construidas a través de un proceso de aprendizaje 
evolutivo utilizando el NSGA-II, el cual evoluciona 
combinaciones de reglas condición-acción 
produciendo al final un conjunto de MOHHs Pareto-
óptimas. Las MOHHs construidas son probadas en 
diferentes conjuntos de problemas y los resultados 
obtenidos son presentados aquí. 

Palabras clave. Híper-heurísticas, optimización multi-
objetivo, computación evolutiva, problemas de corte. 

1 Introduction 

Bin packing and cutting stock problems are well-
known classical problems with many applications 
in areas like operational research, logistics and 
related subjects. The basic idea and the main 
goal are to fit a finite number of pieces into a 
minimum number of bins, subject to a practical 
set of restrictions. For small combinatorial 
problems, exact methods like linear programming 
can be applied. However, when larger and more 
complex problems appear, exact solutions are not 
feasible since the search space grows 
exponentially and so does the time to find the 
optimal solution. Various heuristic and 
approximate approaches that guarantee finding 
near optimal solutions have been proposed 
[5, 15]. However, no reliable method which can 
solve a large variation of instances of a given 
problem has been found. 
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Hyper-heuristic (HH) is a method used to 
define a high-level heuristic that controls low-level 
heuristics [2]. The hyper-heuristic decides when 
and where to apply each single low-level 
heuristic, depending on the state of a given 
problem and the search space. In recent work 
[17, 18], evolutionary approaches have been used 
to generate hyper-heuristics for the 2D regular 
and irregular cutting stock problems [19, 20, 21]. 
These methods assemble a combination of single 
heuristics, taking into account the quality of partial 
solutions provided by the single heuristics. 

Until now, the majority of the works devoted to 
the problems of bin packing and cutting stock 
have been focused on mono-objective solutions 
like minimizing the trim loss or the number of bins 
used; however, these problems are naturally 
multi-objective, since several opposite objectives 
can be optimized at the same time. Just recently 
some works devoted to multi-objective cutting and 
packing problems have started to emerge [11, 
16]. The present article intends to contribute with 
another perspective of solution for these 
problems. In particular, we focus on problems 
involving 2D cutting where two objectives need to 
be minimized: the number of sheets used to cut a 
finite number of pieces with irregular convex 
shapes and the time required to perform the 
placement of all the pieces inside the sheets. 

The aim of this paper is to present a method 
based on the Multi-Objective Evolutionary 
Algorithm (MOEA) [6] NSGA-II [8] to approximate 
generalized Multi-Objective Hyper-Heuristics 
(MOHHs) in order to solve the cutting-stock 
problem described above. Our model is an 
adaptation of the one presented in [21]. Here we 
use NSGA-II with a variable-length 
representation, where this algorithm evolves 
combinations of condition-action rules through a 
learning process, producing at the end a set of 
Pareto-optimal MOHHs. Finally, we test the 
approximated MOHHs on several sets of 
benchmark problems. The results of the proposed 
model are truly encouraging.  

The remainder of this paper is organized as 
follows. Section 2 describes with more detail the 
bi-objective cutting-stock problem. Section 3 gives 
a description of the NSGA-II algorithm, the hyper-
heuristics and the single heuristics to be 
combined in the proposed solution model based 

on MOHH, which is presented in Section 4. This 
is followed by the experimental setup, the results 
and discussion in Section 5. Finally, Section 6 
includes our conclusions and some ideas for 
future work. 

2 Bi-objective Cutting Stock Problem 

The cutting stock and packing problems are 
among the earliest problems in the literature of 
operational research. Since 1939, when 
L.V. Kantorovich [14] studied their applications in 
industry, an extensive literature on these 
problems’ applications has developed. For 
example, B.L. Golden in [12] gives an abstract 
description of a variety of different solution 
methods; in [5] a number of solution methods are 
discussed; H. Dyckhoff [9] and Wäscher et al. [22] 
list a number of solution methods and 
applications, and present a systematic 
categorization of cutting and packing problems. 

In this paper, our interest is to solve instances 
of problems considered as 2D cutting stock 
problems with convex irregular shape pieces (with 
up to 8 sides). We can formally define this type of 
problems in the following way: given a set 
L=(a1,a2,…,an) of pieces to be cut, each one of 

size s(ai)(0,A0], from a set of m cutting stock 
sheets of size A0, the multi-objective goal of 

cutting the pieces from the sheets can be 
expressed as follows: 

minimize 
1 1

m

ii
z y


  (1) 

minimize 
2 1

n

ii
z t


  (2) 

s.t.   01

n

ii
s a mA


   

where Expression 1 minimizes the number yi  of 
the sheets needed to fit all the pieces, and 
Expression 2 minimizes the time to place all the 
pieces inside those sheets, where ti 

 indicates the 
required time to put the piece ai 

 inside a sheet, 
using a given heuristic. The restriction avoids that 
the total area of the pieces is bigger than the area 
of the sheet. In this work we also consider that all 
the sheets must have the same size and the 
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same square shape. An example of the type of 
problems we are interested in can be seen in 
Figure 1. 

Intuitively, the two objective functions 

presented are of conflicting nature. While a large 
number of sheets allow a very fast placement of 
all the pieces, with z20, the trim of material will 
be also large; on the other hand, a solution with 
z10 will tend to require more time to place all the 
pieces in the best position without wasting 
material. This means that not a single solution x 

exists in the set of feasible solutions X that 
equally minimizes both functions z1 and z2. This is 

a vector optimization problem in which a solution 

xX is evaluated with respect to a vector 
Z(x)=(z1(x),z2(x)). Then, the solution of the problem 
consists in identifying all outcomes of the Pareto-
set S, defined as follows [6]: 

Definition 1. Dominance: Z(x) is said to 

dominate Z(x’) iff zk(x)zk(x’)k=1,…,Kk|zk(x) 

zk(x’). We denote the dominance of Z(x) over 

Z(x’) with Z(x)Z(x’). 
Definition 2. Efficiency, Pareto-optimality: 

The vector Z(x), xX, is said to be efficient iff 

Z(x’),x’X|Z(x’)Z(x). The corresponding 
alternative x is called Pareto-optimal and the set 
of all alternatives is the Pareto-set S. 

3 Methods 

This section describes the Non-dominated Sorting 
Genetic Algorithm-II (NSGA-II), developed by K. 
Deb [8], and its adaptations to tackle the problem 
we have at hand.  Here we also describe the 
concept of hyper-heuristics and the set of 
selection and placement heuristics used during 
the solution process with our model. 

3.1 NSGA-II 

In this paper we use the NSGA-II algorithm to 
build general MOHHs (this process is described 
below). The NSGA-II is part of the so-called Multi-
Objective Evolutionary Algorithms (MOEAs) [6], 
which are methods suited well to solve multi-
objective problems given their natural way of 
producing a set of Pareto-optimal non-dominated 
solutions within a single run. The NSGA-II is one 
of the best known MOEAs which is characterized 
by good behavior and used as a reference in 
many works on multi-objective optimization; so 
this was our motivation to integrate it in our 
model. At the initial step of this algorithm, a 
random parent population P0 of size N is created. 
The population is sorted based on non-
domination. Each solution is assigned a fitness 
(or rank) equal to its non-domination level (1 is 
the best level, 2 is the next-best level, etc.). Thus, 
minimization of this rank is assumed. The normal 
binary tournament selection, recombination, and 
mutation operators are used to create an offspring 
population Q0 of size N. After that, a combined 
population Rt=Pt+Qt is formed. Next, the 
population Rt is sorted according to non-
domination, forming the fronts F=F1,F2,…. Since 
all previous and current population members are 
included in Rt, elitism is ensured. Now, the 
solutions belonging to the best non-dominated set 
F1 are of the best solutions in the combined 
population and must be emphasized more than 
any other solution inside it. If the size of F1 is 
smaller than N, all the members of the set F1 are 
chosen for the new population Pt+1. The remaining 
members of the population Pt+1 are chosen from 

subsequent non-dominated fronts in the order of 
their ranking. Thus, solutions from the set F2 are 

chosen next, followed by solutions from the set 
F3, etc. This procedure is continued until no more 
sets can be accommodated. The new population 
Pt+1 is now used for selection, crossover, and 
mutation to create a new population Qt+1, and the 
process is repeated until a stop criteria is 
satisfied. The NSGA-II main loop is shown in 
Algorithm 1. Inside this main process, we have 

two important sub-processes, the fast-non-

dom-sort procedure (shown in Algorithm 2), 

which accomplishes a fast sort of the current 

 

Fig. 1.  Example of an irregular cutting problem 
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population in different non-domination levels; and 

the crow-dist-assignment procedure (shown 

in Algorithm 3), which measures the crowding-
distance, a measure of density of solutions in the 
neighborhood used to preserve diversity among 
non-dominated solutions during the tournament 
selection and the population reduction phase. 

Algorithm 3. fast-non-dom-sort(P) 

1: for all pP do 

2: Sp 

3: np0 

4: for all qP do 

5: if p q then 

6: SpSpq 

7: else if q p then 

8: npnp+1 

9: end if 

10: end for 

11: if np=0 then 

12: prank1 

13: F1 F1p 

14: end if 

15: end for 

16: i1 

17: while Fi≠ do 

18: Q 

19: for all p Fi do 

20: for all qSp do 

21: nqnq-1 

22: if nq=0 then 

23: qranki+1 

24: Q Qq 

25: end if 

26: end for 

27: end for 

28: ii+1 

29: Fi Q 

30: end while 

3.2 Hyper-Heuristics 

Hyper-heuristics (HH) deal with the process of 
choosing a good single heuristic for solving the 
problem at hand. The idea is to discover a 
combination of single heuristics that can perform 
well on a whole range of problems and in such a 
way that one heuristic’s strengths make up for the 
drawbacks of another [2, 4, 18]. The rationale is 
that there is no unique best single heuristic to 
solve well a wide range of instances of a given 
problem type, since certain problems may contain 
features that would enable a specific heuristic to 
work well but those features may not be present 
in other problems. Then, a combination of 
heuristics, selectively applied based on the 
features present in a problem, may work well on a 
large number of problems. HH have been used 
recently to solve a variety of problems like 
constraint satisfaction problems [1], timetabling [3] 
and scheduling [7]. The idea of hyper-heuristics is 
shown in Figure 2, where, starting from a problem 
E, in a given state space, we apply the best single 
heuristic for the current features of the problem, 
this will transform the problem into a new state E’, 
with different features, where we can apply a new 
heuristic better appropriated for the new problem, 
this again will transform the problem into another 
state E’’, with other features. The process is then 
repeated until a complete solution has been 
constructed.  

Algorithm 1. NSGA-II main loop  

1: Qt+1make-new-population(Pt) 

2: RtPtQt 

3: Ffast-non-dom-sort(Rt) 

4: Pt+1 

5: i1 

6: while |Pt+1|+|Fi|N and Fi≠ do 

7: crow-dist-assignment(Fi) 

8: Pt+1Pt+1Fi 

9: ii+1 

10: end while 

11: sort(Fi, n ) 

12: Pt+1Pt+1Fi[1:(N-|Pt+1|)] 

13: tt+1 

Algorithm 2. crow-dist-assignment(I) 

1: l|I| 

2: for all i do 

3: I[i]distance0 

4: end for 

5: for all objectivem do 

6: Isort(I,m) 

7: I[1]distanceI[l]distance 

8: for i=2 to (l-1) do 

9: 
    

distance distance max min

1 1
[ ] [ ]

m m

m m

i i
i i

f f

  
 



I I
I I

 

10: end for 

11: end for 
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3.2.1 Single Heuristics 

The single heuristics used to be combined in our 
model with MOHHs to solve the 2D convex 
irregular cutting-stock problem must define the 
exact location of the pieces inside the sheet. In 
this work two kinds of single heuristics were 
considered: one kind for selecting the pieces and 
sheets, and the other for placing the pieces into 
the sheets. The selection heuristics are shown 
below. Some of these heuristics are described in 
more detail in [13,18]. 

- First Fit (FF): Considers the opened sheets 
in turn in a fixed order and places the piece in 
the first one it fits. 

- First Fit Decreasing (FFD): Sorts pieces in a 
decreasing order, and the largest one is 
placed according to FF. 

- First Fit Increasing (FFI): Sorts pieces in an 
increasing order, and the smallest one is 
placed according to FF. 

- Filler + FFD: Places as many pieces as 
possible within the open sheets. If at least 
one piece has been placed, the algorithm 
stops. Otherwise, the FFD algorithm is 
applied. 

- Next Fit (NF): Uses the current sheet to place 
the next piece, otherwise opens a new one 
and places the piece there. 

- Next Fit Decreasing (NFD): Sorts the pieces 
in a decreasing order, and the largest one is 
placed according to NF. 

- Best Fit (BF): Places the piece in the opened 
sheet where it best fits (i.e., with the minimum 
waste). 

- Best Fit Decreasing (BFD): Same as the 
previous one, but sorts the pieces in a 
decreasing order. 

- Worst Fit (WF): Places the piece in the 
opened sheet where it worst fits (i.e., with the 
largest waste). 

- Djang and Fitch (DJD): Places pieces in a 
sheet taking pieces by decreasing size until 
the sheet is at least one third full. Then, it 
initializes w, a variable indicating the allowed 
waste, and looks for combinations of 1,2,…,5 
pieces producing a waste w. If any 
combination fails, it increases w accordingly. 

The placement heuristics, described in detail in 
[21], are the following: 

- Bottom-Left (BLI): The piece starts at the top 
right corner of the sheet, then slides down 
and left with a sequence of movements until 
no other movement is possible. The heuristic 
does not allow the piece to skip around 
another placed piece. It is a simple and fast 
heuristic. 

- Constructive Approach (CA): The heuristic 
starts by placing the first piece at the bottom 
and left of the sheet. Then, the next piece is 
placed in one of the five positions: 
(ẋ,0),(0,ẏ),(x,ẏ),(ẋ,ẏ) and (ẋ,y), where ẋ, x, ẏ and 
y are the maximum and minimum coordinates 
of x and y in relation to the first piece. For 
each position, the next piece slides down and 
left, and the one that places the piece 
deepest (bottom and left) is chosen, except in 
special cases, such as when a hole is formed. 

- Constructive-Approach (Minimum Area) 
(CAA): In this modification of the previous 
heuristic, the best position from the list is 
selected based on which one yields the 
bounding rectangle with minimum area, 
containing all pieces, and that fits in the 
bottom left corner of the object. 

- Constructive-Approach (Maximum 
Adjacency) (CAD): With the first piece only 
the four corners of the sheet are considered. 
For the subsequent pieces, the possible 
points are the same as in CA. For each 
position in the list, the piece starts in that 
position, and its adjacency (i.e., the common 
boundary between its perimeter and the 
placed pieces and the sheet edges) is 

 

Fig. 2. Solution process for a problem using a 
combination of single heuristics 
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computed. Then, the piece is slid down and 
left, and the adjacency is computed again. 
The position with the largest adjacency is 
selected as the position of the new piece. 

Using the previous selection and placement 
single heuristics, there are 40 different 
combinations for the action to be taken in each 
step of the solution process; these actions are 
shown in Table 1. 

4 Building Multi-Objective Hyper-
Heuristics 

In this work, we adapted the evolutionary model 
proposed in [21]. The original model produces 
general hyper-heuristics using a simplified 
representation of the state of a problem. In this 
model, a chromosome consists of a number of 
points in the simplified state space, with each 

point being labeled with a given heuristic. Under 
this schema, a chromosome represents a 
complete recipe for solving a problem, using the 
simple algorithm: until the problem is solved, (a) 
determine the current problem state E, (b) find the 

nearest point to it, (c) apply the heuristic attached 
to the point, and (d) update the state. We use 
such ideas and apply them with the NSGA-II 
algorithm. The NSGA-II’s task is to find a set S of 
Pareto-optimal chromosomes that are capable of 
obtaining solutions for a wider variety of 
problems, taking into consideration the tradeoff 
between the two minimization objectives defined 
in equations 1 and 2; the set of chromosomes in S 
are the MOHHs we are seeking. 

4.1 Representation 

Each chromosome is composed by a variable 
number of blocks. The initial number of blocks is 
randomly created and after that, the evolutionary 
process can create or delete blocks. In our model 
each block includes nine numbers. The first eight 
lie in the range 0,1 and represent the problem 
state; the label is the ninth number, which 
identifies a particular action (single heuristic). 
Then, a block can be seen as a labeled point. The 
NSGA-II’s task is to create and evolve a certain 
number of such labeled points using the problem-
solving algorithm defined above, where Euclidean 
distance is used to determine the nearest point. 

In the problem state, the first three numbers 
are related to rectangularity, a quantity that 
represents the proportion between the area of a 
piece and the area of a horizontal rectangle 
containing it. These numbers represent the 
fraction of remaining pieces with high 
rectangularity 0.9, 1, medium rectangularity 0.5, 
0.9, and low rectangularity 0, 0.5. 

The fourth to seventh numbers are related to 
the area of pieces, and are categorized as follows 
(A0 is the sheet area, Ap is the piece area): huge 
(A0/2<Ap), large (A0/3<Ap<A0/2), medium 
(A0/4<Ap<A0/3), and small (Ap<A0/4). The eighth 
number represents the fraction of the total 
number of pieces that remain to be placed. The 
label is selected from the combinations of single 
heuristics showed in Table 1. Figure 3 gives a 
graphical representation of a chromosome using 
the simplified state space. This simplified feature 

Table 1. List of possible actions 

 
Selection Placement 

 
No. Selection Placement 

1 FF BLI 
 

21 NFD BLI 

2 
 

CA 
 

22 
 

CA 

3 
 

CAA 
 

23 
 

CAA 

4 
 

CAD 
 

24 
 

CAD 

5 FFD BLI 
 

25 BF BLI 

6 
 

CA 
 

26 
 

CA 

7 
 

CAA 
 

27 
 

CAA 

8 
 

CAD 
 

28 
 

CAD 

9 FFI BLI 
 

29 BFD BLI 

10 
 

CA 
 

30 
 

CA 

11 
 

CAA 
 

31 
 

CAA 

12 
 

CAD 
 

32 
 

CAD 

13 Filler+ BLI 
 

33 WF BLI 

14 FFD CA 
 

34 
 

CA 

15 
 

CAA 
 

35 
 

CAA 

16 
 

CAD 
 

36 
 

CAD 

17 NF BLI 
 

37 DJD BLI 

18 
 

CA 
 

38 
 

CA 

19 
 

CAA 
 

39 
 

CAA 

20 
 

CAD 
 

40 
 

CAD 
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space intends to represent the essential 
information about the geometry (rectangularity), 
and the occupied and free space of the problem’s 
whole configuration in a given step of the solution 
process. 

More features can be added or considered but 
with the corresponding increase in complexity. 
The current problem’s state is computed in each 
step of the solution process, taking the 
information stored in the model about the pieces 
assigned, pieces free, and open (available) 
sheets. 

4.2 Fitness Function 

Each MOHH is evaluated using two fitness 
functions, one for the waste of space in the sheet 
and another for the total time needed to place the 
pieces on the sheet. The waste of space in a 
given sheet and the corresponding fitness 
function are defined as 

 
1

0

1

k

ii
s a

W
A

 
  (3) 

2

1
1

m

ii
W

FF
m


  (4) 

where k is the number of pieces inside the sheet, 
s(ai) the size of each piece, A0 the size of the 

sheet, and m is the number of sheets used. The 
second fitness function is defined as 

  2 1

n

ii
FF t h a


  (5) 

where t(h(ai)) is the required time to place the 
piece ai using the heuristic h. During the NSGA-II 

process, when a new individual is created (in the 
first parent population or in the subsequent 
children populations), a set of 5 problems, 
randomly selected from the training set, is 
assigned to it. Then, the individual is evaluated for 
each of these problems using the previous fitness 
functions; the fitness values are added and 
averaged to obtain two final fitness values: 

 
 

5

1 ; 1,2
5

j ii
j

FF p
FFT MOHH j 

  (6) 

where pi is the i-th problem assigned to the 
individual, and the index j indicates the number of 
fitness function. During the evolution, if an 
individual from the parent population survives for 
the next generation, a new problem is assigned to 
it and the fitness functions are recomputed: 

 
   1

; 1,2
1

l

j p jl

j

p

FFT n FF p
FFT MOHH j

n

 
 



 
(7) 

where FFTlj is the value of the j-th total fitness 
function for the generation l, np is the number of 
problems the individual has solved until now, and 
FFj(p) is the value of the j-th fitness function for 
the new problem. This task of assigning new 
problems to old individuals and recomputing their 
fitness values stays in effect during the whole 
evolutionary process. 

4.3 Genetic Operators 

In this work we use two uniform versions of cross-
over and mutation: the first version works at the 
block level and the second one works with the 
internal elements of each block. In the block level 
cross-over, a random number of complete blocks 
is exchanged between two parent individuals to 
create two children individuals; since the number 
of blocks in each chromosome (individual) is 

 

Fig. 3. Graphical representation of a chromosome using 
the simplified state space 
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variable, the random number is less or equal to 
the shortest chromosome. In the block level 
mutation, given certain probability, a randomly 
selected block can be deleted from the 
chromosome or a randomly created block can be 
added to the chromosome. In the internal level 
cross-over and mutation, they select a random 
number of blocks, and for each block, a random 
number of values to be interchanged or mutate, 
depending on the operator. Examples of cross-
over at the block level and the internal level are 

shown in Figure 4. Examples of mutation at the 
block level and the internal level are shown in 
Figure 5. 

5 Experimental Results 

In this section we first present the problem 
instances used to perform the experiments with 
our model, then the experiments themselves, 
including a discussion of the results 

5.1 Problem Instances 

For this work we generated 18 different types of 
problems, with 30 instances for each type, totaling 
540 instances. Their characteristics can be seen 
in Table 2. We also added a problem from the 
literature [10], which was scaled by a factor of 10 
in order to have the sheet size of 300x300. 
Instances of type G have unknown optimal 
solutions, since they were produced from random 
alterations of problems with known optimum. 

Table 2. Description of problem instances 

Type 
Sheets 
(size) 

Pieces 
Number of 
Instances 

Optimum 

Fu 300x300 12 1 unknown 

A 1000x1000 30 30 3 

B 1000x1000 30 30 10 

C 1000x1000 36 30 6 

D 1000x1000 60 30 3 

E 1000x1000 60 30 3 

F 1000x1000 30 30 2 

G 1000x1000 36 30 unknown 

H 1000x1000 36 30 12 

I 1000x1000 60 30 3 

J 1000x1000 60 30 4 

K 1000x1000 54 30 6 

L 1000x1000 30 30 3 

M 1000x1000 40 30 5 

N 1000x1000 60 30 2 

O 1000x1000 28 30 7 

P 1000x1000 56 30 8 

Q 1000x1000 60 30 15 

R 1000x1000 54 30 9 

 

 

Fig. 5. Examples of mutation operator at the block level 

(a), by deleting a random selected block (1) and adding a 
random created block (2); and at the internal level (b) 

 

Fig. 4. Examples of cross-over operator at the block 
level (a) and the internal level (b) 
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5.2 Experiments with the Proposed Model 

In the beginning of each experiment, the problem 
instances are divided into the training set and the 
test set. The NSGA-II is performed with the 
training set only, until a termination criterion is 
met and the set S of general MOHH’s has been 
evolved. All instances in the test set are then 
solved with each member of the set S and the 
results are recorded.  In order to test the overall 
performance of the model, various experiments 
were designed: 

- Experiment I: Instances are divided into two 
groups: Group 1 and Group 2. Group 1 is the 
training set formed by instance types A, B, C, 
D, E, F, G, H and I plus the Fu instance. After 
running our model over the training set, a set 
of Pareto-optimal MOHHs were obtained and 
each one was tested with Set 2 (instance 
types J, K, L, M, N, O, P, Q and R). 

- Experiment II: This experiment is similar to 
Experiment I, except that the training and test 
sets are interchanged. 

- Experiment III: This experiment takes the Fu 
instance and 15 instances from each problem 
type (from A through R) to form the training 
set. The remaining instances form the test 
set. 

- Experiment IV: It is the same as Experiment 
III, except that the training and test sets are 
swapped. 

We performed three independent runs of the 
evolutionary process with NSGA-II for each 
experiment. The settings used for the different 
runs were for run 1: 36 individuals and 80 
generations; for run 2: 36 individuals and 240 
generations; and for run 3: 108 individuals and 80 
generations; with all the runs sharing a mutation 
probability of 0.1 (applied to each individual) and 
a cross-over probability of 0.9. A single run for 
one of the experiments, using the first settings, 
takes about 12 hours to approximate the set S, 
using our implementation in Java on a 2.8Ghz 
Core2Duro PC with 4Gb in RAM. 

Each run produced as output a Pareto-optimal 
set Sexperiment;run containing about 24 MOHHs for 

each experiment. Each one of the built MOHHs is 
used to solve all the instances in the test set, the 
results about the number of used sheets and the 

required time to place all the pieces are recorded 
and used later for comparisons. The sets 
produced for each run were then combined per 
experiment to obtain a unique single global set, 

having SA=SA1SA2SA3; SB = SB1SB2SB3; 

SC=SC1SC2SC3 and SD=SD1SD2SD3. Each global 

set obtained contained about 70 MOHHs; 
nevertheless, since the runs were performed 
independently, there existed a probability of 
having solutions inside the global set that were 
dominated by other solutions, according to the 
non-dominance criterion given in Definition 2. 
Then, we run a final non-dominance filtering and 
selected only the non-dominated MOHHs for each 
global set, leaving about 20 final solutions for 
each experiment. 

Figure 6 presents the Pareto-optimal sets of 
MOHHs resulting from the combination of the 
three independent runs and the filtering using the 
non-dominance criterion. These graphs 
summarize the behavior of the selected MOHHs 
on solving all the instances in the test set. Given 
the definition of Equations 1 and 2, both 
objectives z1 (number of sheets) and z2 (time of 
placement) need to be minimized, then a point in 
the (minimum sheets, minimum time) corner 
would be the ideal solution; nevertheless, since 
the objectives are opposite to each other, that 
solution does not exist.  

From these plots we can easily observe the 
existent trade-off between the number of used 
sheets and the time required to place the pieces. 
The points more to the left tend to spend more 
time in the placement process but using less 
sheets, and the ones more to the right tend to do 
the placement very fast but using more sheets. It 
is possible to observe how significant 
improvements in z1 can be achieved for "similar" 
values of z2, i.e., there are MOHHs that solve the 
problems using fewer sheets with a little increase 
of time. 

Since it is complicated to integrate in a single 
table all the MOHHs built by the evolutionary 
process (about 20) for each experiment; we 
present in tables a selection of 12 MOHHs from 
each set S, corresponding to each experiment. 
We selected these MOHHs by taking the 
extremes of the fronts (the most right and the 
most left points in the above graphs) and the rest 
we selected randomly. 
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Tables 3, 4, 5 and 6 summarize the results for 
each one of the experiments, using the selected 

MOHHs from each set S as described above. The 
second row of the tables represents the average 
normalized time a MOHH needs to solve a 
problem, using its combination of single 
heuristics. The time is not in real time, but was 
measured by assigning a time score to each 
single heuristic, depending on the number of trials 
or movements it requires to place a piece inside a 
sheet; which in fact depends on the current 
configuration of the previous placed pieces in the 
sheet. These scores were assigned before the 
experiments by solving all the problems with 
every single heuristic to know the performance of 
each one for every problem, where the most 
expensive heuristic has a value of 100, and the 
rest of the heuristics have a fraction of this time. 
When applying the MOHH to solve a group of 
problems, for every heuristic used during the 
solution process its score is added and averaged 
at the end by the number of problems solved. The 
selected solutions are presented in the tables 
sorted in decreasing time. 

Given a single problem instance, there is a 
single heuristic from the set of 40 heuristics that 
solves it using the least number of sheets. Taking 
this as a baseline, the rest of the rows in the 
tables show the number of extra sheets a MOHH 
needs to place all the pieces in comparison with 
that best single heuristic. The number in each 
cellis the percentage of problems where the 
MOHH needs from -1 to more than 3 sheets to 
place all pieces with respect to the collection of 
best single heuristics. It is possible to observe 
that when a small number of extra sheets (-1 or 0) 
is needed, the time to perform the placement is 
big, and the opposite: when the placement time is 
small, the number of extra sheets is big due to the 
conflicting objectives. This allows for a user to 
select the best solution in accordance to his/her 
particular needs: fastness (large number of extra 
sheets), precision (small number of extra sheets) 
or equilibrium. 

For Experiment I, the built Pareto-front 
presents a gap (shown in top left plot of Figure 4 
and Table 3) between the left most point and the 
rest of the points, this is due to the fact that the 
test set includes more diversity in the number of 
pieces and the optimum number of sheets, in 
comparison with the training set (as shown in 
Table 2). Then to solve a problem in the test set is 

 

Fig. 6. Sets of non-dominated MOHHs (represented 

as points) forming the Pareto-fronts for Experiments 
I, II, III and IV 
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Table 3. Average placing time for the test set and percentage of problems where each selected MOHH needs from -1 to more 

than 3 sheets with respect to the collection of best single heuristics. Experiment I 

HHA6  HHA1 HHA2 HHA3 HHA4 HHA5 HHA7 HHA8 HHA9 HHA10 HHA11 HHA12 

91.68 Time 2926.06 363.26 299.75 197.89 118.11 11.58 4.37 3.56 2.58 2.17 1.63 

             

% Sheets % % % % % % % % % % % 

 -1 4.81   0.37        

0.37 0 87.03 83.7 72.96 41.11 9.25       

25.92 1 6.66 15.55 15.92 34.07 32.22 18.88 18.88 12.96 13.33 2.22 0.37 

33.70 2 1.11 0.74  11.11 24.07 28.14 28.14 33.33 13.33 11.11 14.44 

18.88 3    1.85 14.81 27.40 26.29 25.55 12.22 10.74 7.40 

21.11 >3 0.37  11.11 11.48 19.62 25.55 26.66 28.14 61.11 75.92 77.77 

Table 4. Average placing time for the test set and percentage of problems where each selected MOHH needs from -1 to more 

than 3 sheets with respect to the collection of best single heuristics. Experiment II 

 HHB1 HHB2 HHB3 HHB4 HHB5 HHB6 HHB7 HHB8 HHB9 HHB10 HHB11 HHB12 

Time 979.40 575.27 348.11 265.22 207.53 189.02 141.46 7.12 5.87 3.30 2.92 1.30 

             

Sheets % % % % % % % % % % % % 

0 97.41 80.07 70.47 69.37 52.39 57.19 28.04 10.70 8.85 7.38 0.36 0.73 

1 2.58 13.65 19.55 20.29 26.56 16.23 45.38 26.93 28.78 25.83 31.36 11.43 

2  4.79 8.48 8.48 8.11 10.70 20.66 28.78 29.15 27.30 22.87 12.91 

3  1.47 1.47 1.84 7.74 8.11 5.90 19.55 19.92 20.66 16.23 12.17 

>3     5.16 7.74  14.02 13.28 18.81 29.15 62.73 

Table 5. Average placing time for the test set and percentage of problems where each selected MOHH needs from -1 to more 

than 3 sheets with respect to the collection of best single heuristics. Experiment III 

 HHC1 HHC2 HHC3 HHC4 HHC5 HHC6 HHC7 HHC8 HHC9 HHC10 HHC11 HHC12 

Time 2380.27 342.01 296.96 260.45 199.19 63.88 23.07 9.84 4.21 3.94 2.85 1.49 

             
Sheets % % % % % % % % % % % % 

-1 2.22    0.74        

0 91.48 79.25 72.59 71.85 46.29 8.14 5.92 4.81 4.44 4.81 0.37 0.37 

1 6.29 14.81 21.48 18.51 35.55 38.88 25.55 24.07 24.07 22.96 18.88 6.29 

2  5.18 4.81 6.66 6.66 30.37 25.18 26.29 26.29 25.92 15.92 14.07 

3  0.74 1.11 2.22 8.51 14.44 24.44 25.18 24.44 25.55 12.96 8.88 

>3    0.74 2.22 8.14 18.88 19.62 20.74 20.74 51.85 70.37 
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harder, and MOHHs solving these problems using 
few sheets would tend to increase the solving 
time faster. Then, in the case of Experiment II, we 
observe a more continuous Pareto-front (top right 
plot of Figure 4 and Table 4); because of the 
opposite reason, to solve a problem in the test set 
is easier given the less diversity, and MOHHs 
solving these problems using few sheets do not 
need to increase the solving time too much.  

For Experiments III and IV, there is a 
combination of problems from all the types and 
the diversity is present in both the training and the 
test set. Given that, solutions from the test set are 
equally harder to solve than the ones from the 
training set. In that sense, Pareto-fronts for 
Experiments III and IV could be complementary, 
and if we remove the two most left points of the 
front III (bottom left plot of Figure 4 and Table 5), 
the rest of the MOHHs perform similarly in both 
Experiments III and IV (comparing bottom plots in 
Figure 4 and Table 5 and 6). The previous finding 
means that for Experiment IV, the algorithm is 
missing a couple of solutions more to the left, 
which in fact can be found if we add more runs of 
the algorithm. 

Hyper-heuristics and multi-objective cutting are 
relatively novel areas, so the results presented in 
this work are in an early stage to be directly 
compared with other techniques, since there are 
still few works developed in the area, and no work 

on irregular cutting using the same objectives and 
the same set of problems. 

6 Conclusions 

In this paper we have described experimental 
results for a model based on the MOEA NSGA-II 
which evolves combinations of condition-action 
rules representing problem states and associated 
selection and placement heuristics for solving 
multi-objective 2D convex irregular cutting stock 
problems, where our goal was to minimize the 
(opposite) objectives of the number of sheets 
used to cut a set of pieces and the total time to 
place the pieces inside the sheets. These 
combinations of rules built by the model are called 
Multi-Objective Hyper-Heuristics (MOHHs). In 
general, the model efficiently builds the set of 
Pareto-optimal MOHHs after going through the 
training phase using NSGA-II and the set of 
training problems, and when applied to an unseen 
test set of problems, those built MOHHs solve the 
problems efficiently taking into account the trade-
off between the two objectives. The results are 
truly encouraging, which could let the application 
of our model based on MOHH to be used in other 
areas and for other complex problems, where 
optimization of several opposite objectives is 
required. Several other considerations could be 

Table 6. Average placing time for the test set and percentage of problems where each selected MOHH needs 

from -1 to more than 3 sheets with respect to the collection of best single heuristics. Experiment IV 

 HHD1 HHD2 HHD3 HHD4 HHD5 HHD6 HHD7 HHD8 HHD9 HHD10 HHD11 HHD12 

Time 328.77 306.89 272.32 262.63 249.59 84.24 68.48 3.79 3.31 2.71 1.73 1.43 

             

Sheets % % % % % % % % % % % % 

0 75.27 74.16 69.37 68.63 65.68 8.48 11.43 4.05 0.73 0.73 0.36 0.36 

1 20.29 20.66 21.03 21.40 20.66 25.83 21.03 24.35 18.81 13.65 5.53 5.53 

2 3.69 4.79 7.74 7.38 7.01 35.05 32.47 30.62 20.66 15.86 14.02 13.28 

3 0.73 0.36 1.47 2.21 4.42 20.66 19.92 20.29 19.55 17.71 11.80 10.70 

>3   0.36 0.36 2.21 9.96 15.12 20.66 40.22 52.02 68.26 70.11 
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taken into account when experimenting with 
MOHHs, like using different MOEAs in order to 
test and understand their behavior on producing 
the Pareto-front for different problems. In 
particular for the problem we tackled here, some 
interesting ideas for future work involve extending 
the proposed strategy to solve problems with 
more complex structure like 3D packing problems; 
including other objectives to be minimized, like 
the balance weight, the number of cuts or the 
heterogeneousness inside a sheet; or including 
other kinds of pieces with arbitrary shapes. 

Acknowledgements 

This research was supported in part by ITESM 
under the Research Chair CAT-144 and the 
CONACYT Project under grant 99695 and the 
CONACYT postdoctoral grant 290554/37720. A 
shorter version of the paper has already appeared 
in MICAI 2010. 

References 

1. Bittle, S.A. & Fox, M.S. (2009). Learning and 

using hyper-heuristics for variable and value 
ordering in constraint satisfaction problems. Annual 
Conference Companion on Genetic and 
Evolutionary Computation (GECCO’09), Montreal, 
Canada, 2209-2212. 

2. Burke, E., Hart, E., Kendall, G., Newall, J., Ross, 
P., & Schulenburg, S. (2003). Hyper-heuristics: 

An Emerging Direction in Modern Research 
Technology. In Fred G. & Gary A. K. (Ed.), 
Handbook of Metaheuristics (457-474). Boston: 
Kluwer Academic Publishers. 

3. Burke, E.K., McCollum, B., Meisels, A., 
Petrovic, S., & Qu, R. (2007). A Graph Based 

Hyper-Heuristic for Educational Timetabling 
Problems. European Journal of Operational 
Research, 176(1), 177-192. 

4. Burke, E.K., Curtois, T., Hyde, M., Kendall, G., 
Ochoa, G., Petrovic, S., & Vazquez-Rodriguez, 
J.A. (2009). HyFlex: A Flexible Framework for the 

Design and Analysis of Hyper-heuristics. 4
th
 Multi-

disciplinary International Scheduling Conference 
(MISTA 2009), Dublin, Ireland, 790-797. 

5. Chen, C.H., Feiring, B.R., & Chang, T.C.E. 
(1994). The Cutting Stock Problem, A Survey. 

International Journal of Production Economics, 
36(3), 291-305. 

6. Coello, C.A., Van Veldhuizen, D.A., & Lamont, 
G.B. (2002). Evolutionary Algorithms for Solving 

Multi- Objective Problems. New York: Kluwer 
Academic. 

7. Cowling, P.I., Kendall, G., & Soubeiga, E. 
(2000). A Hyper-Heuristic Approach for Scheduling 

a Sales Summit. Selected papers from the Third 
International Conference on Practice And Theory 
of Automated Timetabling III, (PATAT’00), 
Konstanz, Germany, 176-190. 

8. Deb, K., Agrawal, S., Pratap, A., & Meyarivan, T. 
(2002). A Fast Elitist Non-dominated Sorting 

Genetic Algorithm for Multi-Objective Optimization: 
NSGA-II. Parallel Problem Solving from Nature- 
PPSN VI, Lecture Notes in Computer Science, 
1917, 849-858. 

9. Dyckhoff, H. (1990). A Typology of Cutting and 

Packing Problems. European Journal of 
Operational Research, 44(2), 145-159. 

10. Fujita, K., Akagi, S., & Hirokawa, N. (1993). 

Hybrid Approach for Optimal Nesting Using a 
Genetic Algorithm and a Local Minimisation 
Algorithm. 1993 ASME design technical 
conferences--19th Design Automation Conference, 
Albuquerque, USA, 477-484. 

11. Geiger, M.J. (2008). Bin Packing Under Multiple 

Objectives - a Heuristic Approximation Approach. 
Fourth International Conference on Evolutionary 
Multi-Criterion Optimization, Matsushima, Japan, 
53-56. 

12. Golden, B.L. (1976). Approaches to the Cutting 
Stock Problem. AIIE Transactions, 8(2), 256-274.  

13. Hopper, E. & Turton, B.C.H. (2001). An Empirical 

Study of Meta-Heuristics Applied to 2D 
Rectangular Bin Packing. Studia Informatica 
Universalis, 2(1), 77-106. 

14. Kantorovich, L.V. (1960). Mathematical Methods 

of Organizing and Planning Production. 
Management Science, 6(4), 366-422. 

15. Lodi, A., Martello, S., & Monaci, M. (2002). Two- 

dimensional Packing Problems: A Survey. 
European Journal of Operational Research, 
141(2), 241-252. 

16. Muñoz, C., Sierra, M., Puente, J., Vela, C.R., & 
Varela, R. (2007). Improving Cutting-Stock Plans 

with Multi-Objective Genetic Algorithms. Second 
International Work-conference on the Interplay 
between Natural and Artificial Computation, Part I: 
Bio-inspired Modeling of Cognitive Tasks (IWINAC 
'07), La Manga del Mar Menor, Spain, 528-537. 



334 Juan Carlos Gómez and Hugo Terashima-Marín 

Computación y Sistemas Vol. 16 No. 3, 2012 pp. 321-334 
ISSN 1405-5546 

17. Ross, P. (2005). Hyper-Heuristics. In Burke,  E. K. 

& Kendall, G.(Eds.), Search Methodologies: 
Introductory Tutorials in Optimization and Decision 
Support Methodologies (529-556). New York: 
Springer.  

18. Ross, P., Schulenburg, S., Marín-Blázquez, 
J.G., & Hart, E. (2002). Hyper-Heuristics: Learning 

to Combine Simple Heuristics in Bin-Packing 
Problems. Conference on Genetic and 
Evolutionary Computation (GECCO '02), New 
York, USA, 942-948. 

19. Terashima-Marín, H., Flores-Álvarez, E.J., & 
Ross, P. (2005). Hyper-Heuristics and Classifier 

Systems for Solving 2D-Regular Cutting Stock 
Problems. Conference on Genetic and 
Evolutionary Computation (GECCO '05), 
Washington, D.C., USA, 637-643. 

20. Terashima-Marín, H., Farías-Zárate, C.J., Ross, 
P., & Valenzuela-Rendón, M. (2006). A GA-Based 

Method to Produce Generalized Hyper-Heuristics 
for the 2D-Regular Cutting Stock Problem. 
Conference on Genetic and Evolutionary 
Computation (GECCO '06), Seattle, USA, 591-598. 

21. Terashima-Marín, H., Ross, P., Farías-Zárate, C. 
J., López-Camacho, E., & Valenzuela-Rendón, 
M. (2010). Generalized Hyper-Heuristics for 

Solving 2D Regular and Irregular Packing 
Problems. Annals of Operations Research, 179(1), 
369-392.  

22. Wäscher, G., Hauβner, H. & Schumann, H. 
(2007). An Improved Typology of Cutting and 

Packing Problems. European Journal of 
Operational Research, 183(3), 1109-1130. 

Juan Carlos Gómez 
received his Ph.D. degree 
from INAOE, México, in 
2007. Currently he works as 
a Postdoctoral Fellow at the 
Department of Computer 
Science in the Katholieke 
Universiteit Leuven, 
Belgium. His research 
interests are Machine 

Learning, Information Retrieval, Evolutionary 
Computing and Data Mining. 

Hugo Terashima-Marín 
received his Ph.D. degree 
from the ITESM, Campus 
Monterrey, Mexico, in 1998. 
Currently he is a Professor 
of Intelligent Systems and 
Computer Science and 
Director of Graduate 
Studies in ITESM, Campus 
Monterrey. 

Article received on 09/02/2011; accepted on 03/11/2011. 

 


