
Computación y Sistemas Vol. 17 No.1, 2013 pp.69-77
ISSN 1405-5546

Unit Tests of Software in a University Environment

Darlene Gómez, Dalila Jústiz, and Martha Delgado

Instituto Superior Politécnico José Antonio Echeverría (CUJAE), La Habana,
Cuba

{dgomez, djustiz, marta}@ceis.cujae.edu.cu

Abstract. Quality is a necessary feature to be achieved

by a system or application after its development is
completed. Tests contribute to software quality, but
testing is a process that requires much time. This
process starts at the beginning of the construction of a
system and ends before the implementation. This paper
presents an analysis of a set of tools for automatic test
execution, with emphasis on unit testing, and describes
a proposal of using such tools in a university
environment of project development. This proposal
responds to the need of combining commercial tools
with other path generation tools and test cases.

Keywords. Software quality, test cases, test tools,

software test.

Pruebas unitarias en proyectos de
software en el entorno universitario

Resumen. La calidad es una característica necesaria

que debe ser alcanzada por el sistema o aplicación una
vez finalizado su desarrollo. Las pruebas contribuyen a
la calidad del software, aunque es un proceso que
requiere de un alto porcentaje de tiempo. Estas deben
comenzar desde que el desarrollador inicia la
construcción del sistema y deben finalizar antes del
despliegue del mismo. Este trabajo se centra en las
pruebas que se hacen a los pequeños componentes
que conforman el sistema. En él se presenta un
análisis de un grupo de herramientas de ejecución
automática de pruebas, haciendo énfasis en las
pruebas unitarias, y esboza una propuesta de
utilización de estas en un entorno de desarrollo de
proyectos en el marco universitario. En esta propuesta
se sustenta la necesidad de combinar estas
herramientas comerciales con otras de generación de
caminos y casos de prueba.

Palabras Claves. Calidad de software, pruebas de

software, diseño de pruebas, herramientas de pruebas.

1 Introduction

The testing phase is important for the software
development process to meet the requirements
set by the users and the clients. But one does not
have to postpone testing till this stage. When a
developer starts developing software, verification
and debug of the code must be performed, but
these processes are usually ignored by the
development team.

A successful test does not mean that there are
no errors, but rather that no other errors were
detected by this particular test [21].

A university environment is characterized by
the presence of students and professors in a
software development group where they perform
research and accomplish production tasks. The
proposal in [22] is to perform a development
process in such environment. This proposal
includes definition of methodological aspects and
selection of tools to computerize the process. But
it does not consider aspects related to the
execution of unit tests.

Therefore it is necessary to have techniques
for designing test cases and tools to support unit
tests.

There are many authors who deal with the
issue of software testing [7, 13, 18, 23, 24, 24] but
it is generally agreed that software testing is
merely the process of executing a system or a
component with the purpose to measure and
improve quality, under specified conditions, and
also with the intention of finding errors, observing
and recording the results, and evaluating some
aspects of the system or component.

According to [23, 24, 26], two basic
approaches or methods of testing are white box
testing, or structural approach, and black box
testing, or functional approach.

mailto:dgomez,%20djustiz%20,%20marta@ceis.cujae.edu.cu

70 Darlene Gómez, Dalila Jústiz, and Martha Delgado

Computación y Sistemas Vol. 17 No.1, 2013 pp.69-77
ISSN 1405-5546

The black box approach tends to discover
functional errors occurring in the implementation
of requirements or design specifications. They are
focused on input and output functions. They also
check the correct handling of external functions
provided or supported by the software and the
observed behavior. Transformations which occur
may not be seen, only the input and output
functions are known [23, 24].

The white box or structural approach discovers
errors which occur in the coding of a program.
They are focused on the internal structure of the
program (analyze execution paths). They also
verify the correct implementation of the internal
units, structures and their relations. They
emphasize internal error reduction [23, 24, 26].

White box tests are also known as unit tests
focused on the internal processing logic and data
structures within a component. This type of test
can be applied at the same time to multiple
components.

This article aims at contributing to test process
improvement and outlines the idea of generating
test cases from a source code linking it to test
execution tools. We also intend to show
developers the importance of test path generation
from their source code using as a basis the
techniques for designing test cases.

2 Unit Test

According to [23], unit tests are focused on each
individual component, ensuring that it works
properly as a unit, thus verifying the smallest unit
of software design. In [29], it is stated that
generally in object-oriented tests it is assumed
that a test unit is a class. Thus it checks that the
state of an instance of a class is correct for input
data. Unit tests are designed to verify the
functionality and structure of each component
individually once it has been coded [18].

White box testing should be able to run at least
once all independent paths from each module,
and to use the true and the negative part of a
decision which is no more than running unlimited
cycles and using all the internal data structures [4].

White box testing is a design method that uses
the control structure described as part of the
design at the component level to derive test

cases. Therefore, the software engineer can
derive test cases which [23].

1. Ensure that all independent paths within the
module have been exercised at least once;

2. Exercise the true and false options of all
logical decisions;

3. Execute all loops at their boundaries and
within their operational limits;

4. Exercise internal data structures to ensure
their validity.

There are different techniques of designing
white box tests [1, 2, 17, 23, 31] including
condition testing, data flow testing, loop testing,
basic road test, and coverage testing of
decision/condition. In this work, the last two tests
are emphasized.

A basic path test has the aim of finding a
logical complexity measure of procedural design
and uses this measure to guide the definition of a
basic set of execution paths. The obtained test
cases guarantee that during the test each
program statement is executed at least once
(statement coverage). For designing tests using
the basic path principle, one must follow the
steps: (1) get the flow graph from the design or
code module; (2) get the cyclomatic complexity of
the flow graph; (3) define the basic set of
independent paths; (4) determine the test cases
that allow the execution of each of the
components mentioned previously; (5) run each
test case and verify that the results are as
expected [23].

In a flow graph, each node represents one or
more procedural statements. A single node may
correspond to a sequence of steps of a process
and a decision. The arrows (edges) represent the
flow of control. A node predicate contains a
condition and is characterized because two or
more edges start in it. The regions are the areas
that limit edges and nodes, and they include the
areas located outside the graph [23].

The cyclomatic complexity is a measure that
gives an idea of the logic complexity of a
program; it is used to determine the number of
paths to search. The following aspects must be
considered: (1) if there is coincidence with the
number of regions of the flow graph; (2) the
cyclomatic complexity, V(G) of a flow graph G, is
defined as V(G) = Edges - Nodes + 2; (3) the

Unit Tests of Software in a University Environment 71

Computación y Sistemas Vol. 17 No.1, 2013 pp. 69-77
ISSN 1405-5546

cyclomatic complexity, V (G) of a flow graph G is
also defined as V(G) = Predicate Nodes + 1 [23].

An independent path is any path that
introduces to a program at least one new set of
processing instructions or a new condition, which
from the point of view of the flow chart must travel
along at least one edge which has not been run
before [23].

A test of coverage decision/condition is
described as follows. The coverage is the amount
of code covered by a set of test cases. There are
many ways to measure how much code has been
covered. Here are some of them. A condition is a
pair of algebraic expressions connected by a
relational operator (<,>, =,> =, <=, <>). A decision
is a list of conditions connected by logical
operators (AND, OR). The coverage decision
criterion is satisfied when each decision and each
condition are evaluated true or false at least once.
This guarantees the decision coverage, i.e., that
the decision of which part of conditions is to be
made true or false is accomplished at least once
[29].

3 Tools for Automatic Execution of
Unit Tests

A testing process should be supported by tools
that help to design and execute test cases. In
order to characterize the environment, 15 projects
were interviewed, of which approximately 67%
use Visual Studio 2010 as IDE in C#, while the
13% use Eclipse for JAVA. Making the use of
these technologies as a starting point, a search
for tools which support unit testing was done. The
features are described as follows.

JUnit: a set of libraries of the xUnit family
developed by Erich Gamma and Kent Beck, it is
free software, open source component. It
supports testing Java applications. It integrates
Eclipse development environment, NetBeans and
JDeveloper and performs unit testing. There are
two versions of JUnit families: 3.x and 4.x. The
4.x versions make use of new features of Java.
They automatically generate test cases [14].

TestNG: a framework for tests that works with
Java. It is based on JUnit (for Java) and NUnit
(for. NET), but introduces new features which
make them more powerful and easy to use. It is

open source and integrates with three major Java
IDEs: Eclipse, IntelliJ IDEA, and NetBeans. As
supporting evidence, it incorporates Hudson as a
continuous integration server and Maven as a
build system. It performs different categories of
tests such as unit, functional, end to end and
integration tests. It does not generate test cases
[15].

Jtest: a software quality testing platform that
allows development teams to increase
productivity and quality. It is not a free tool; it
focuses on practices for validating Java code.
Jtest is a customized version of Eclipse IDE and
its applications. It perfectly integrates with
ParasoftSOAtest, IntelliJ, IDEA, and RAD, as well
as with CVS, ClearCase, Subversion, and
StarTeam. It develops unit tests and functional
tests. It is able to automatically generate all
necessary unit tests, taking into account the
parameters of code coverage and trying to find
evidence that result in runtime errors [16].

NUnit: it belongs to the family called xUnit
testing tools. It is free software, open source, and
is integrated with the development environment. It
is a unit testing framework written in C# for all
languages .NET. It supports the basic languages
such as NET and C#, J#, VB and C++. It performs
unit testing. Developers can easily complete
NUnit tests; this tool also offers a graphical
interface to view the results of a test. NUnit
compares expected values and values generated,
if these are different, the test does not pass,
otherwise the test is successful [20].

Visual Studio Unit Testing Framework
(MSTest): Microsoft Visual 2010 has a testing
framework known as MSTest. This is not free
software; it has a complete set of functions for the
trial test of Visual Studio Team System that runs
in the IDE. It incorporates the code coverage
analysis once the tests have run as well as the
code generation testing methods. This tool allows
unit testing, load tests, and fitness tests. One of
the key features of the test team for Visual Studio
is the ability to load test data from a database and
then use this data in the test methods [19].

Unitils: an open source library in Java,
integrated with Eclipse, Hibernate, and Spring.
Unitils is used to implement the business and
persistence layers and access to data. It is also
used with JUnit and TestNG. It manipulates

http://translate.google.com/translate?hl=es&prev=_t&sl=es&tl=en&u=http://es.wikipedia.org/wiki/JUnit
http://translate.google.com/translate?hl=es&prev=_t&sl=es&tl=en&u=http://es.wikipedia.org/wiki/Lenguaje_de_programaci%25C3%25B3n_Java
http://translate.google.com/translate?hl=es&prev=_t&sl=es&tl=en&u=http://es.wikipedia.org/wiki/JUnit
http://translate.google.com/translate?hl=es&prev=_t&sl=es&tl=en&u=http://es.wikipedia.org/wiki/NUnit
http://translate.google.com/translate?hl=es&prev=_t&sl=es&tl=en&u=http://translate.googleusercontent.com/translate_c%3Fhl%3Des%26prev%3D/search%253Fq%253Dtestng%2526hl%253Des%2526biw%253D1280%2526bih%253D880%2526prmd%253Dimvns%26rurl%3Dtranslate.google.com.cu%26sl%3Den%26u%3Dhttp://en.wikipedia.org/wiki/Eclipse_%2528software%2529%26usg%3DALkJrhiMwz6H4Y5aqjw9jRpCXTu4ZJrRxg
http://translate.google.com/translate?hl=es&prev=_t&sl=es&tl=en&u=http://translate.googleusercontent.com/translate_c%3Fhl%3Des%26prev%3D/search%253Fq%253Dtestng%2526hl%253Des%2526biw%253D1280%2526bih%253D880%2526prmd%253Dimvns%26rurl%3Dtranslate.google.com.cu%26sl%3Den%26u%3Dhttp://en.wikipedia.org/wiki/IntelliJ_IDEA%26usg%3DALkJrhhBlLsppUzefpwKalRgkArNULAsGA
http://translate.google.com/translate?hl=es&prev=_t&sl=es&tl=en&u=http://translate.googleusercontent.com/translate_c%3Fhl%3Des%26prev%3D/search%253Fq%253Dtestng%2526hl%253Des%2526biw%253D1280%2526bih%253D880%2526prmd%253Dimvns%26rurl%3Dtranslate.google.com.cu%26sl%3Den%26u%3Dhttp://en.wikipedia.org/wiki/NetBeans%26usg%3DALkJrhiM1Lo3mZwfBIvjgKsUc3SMt18_Ng

72 Darlene Gómez, Dalila Jústiz, and Martha Delgado

Computación y Sistemas Vol. 17 No.1, 2013 pp.69-77
ISSN 1405-5546

different libraries like DBUnit for testing a
database and EasyMock for testing the
integration between objects aimed at achieving
unit tests, integration tests and transactional tests.
It does not generate test cases [29].

Taking into account the characteristics of the
environment and the interview with project
managers, the following comparison criteria for
tool selecting were defined: (1) it is free software,
(2) it is open source, (3) it is integrated with
Eclipse, (4) it is integrated with Visual Studio, and
(5) it generates test cases.

The determining factors in this selection were
the automatic generation of test cases and the
integration with the Eclipse IDE and Visual Studio
which are most commonly used in development
projects. Therefore, the selected tools were JUnit
and MSTest Visual Studio.

Although MST is better than NUnit for being a
free software and open source, it was not
selected because most of the projects use Visual
Studio as IDE and they are accustomed to this
environment. Although Unitils and TestNG meet
the same criteria, JUnit was selected due to its
high level of usability.

4 Tools for Generating Test Cases

There is a set of tools that automatically generate
test cases based on different parameters [8,10,
11, 12, 26, 27].
A university environment is made up of students,
teachers and specialists engaged in software
development, but the teaching practice consumes
much of their time. To speed up the testing
process, there is a need for tools that generate
test cases automatically.

CP generation is a key element to consider
during the development of a software product,
because it reduces the time the test team
dedicates to this activity. The paper [8]
documents the development of a component for
generating automatic test paths, starting with the
detailed descriptions of functional requirements
guided by patterns proposed in the component.

The idea outlined in the work is to combine
elements used in the solution of [8] with the
existing tools designed to run unit tests. It is

intended to complement the tools to perform unit
tests with the case generation component from
the solution code. It allows developers to save
time when designing test cases.

5 Experiment

This experiment displays the feasibility of
generating test paths from the source code and
achieving an automatic analysis of the basic path
and decision/condition coverage techniques
exemplified below manually.

5.1 Unit Testing in Java code and Using JUnit

To show how JUnit tools are used, a test applied
to the "Withdraw" method has been developed,
which belongs to a small project of bank money
transactions.

This method receives as a parameter a value
which is the amount of money to be withdrawn. If
this amount of money is a negative value, it
throws an exception, and if the balance is less
than the amount to be withdrawn, it displays
another exception that the balance is insufficient;
otherwise it creates a new movement of
transactions, passes the parameters it has, and
adds them to a list.

Table 1. Comparison of tools

Tools Approaches

1 2 3 4 5

JUnit x x x

Jtest

x

x

Unitils x x x

TestNG x x x

NUnit x x

x x

Visual Studio
(MSTest)

x x

Unit Tests of Software in a University Environment 73

Computación y Sistemas Vol. 17 No.1, 2013 pp. 69-77
ISSN 1405-5546

To set the number of test cases needed to be
designed for conducting a test as completely as
possible; the design technique applied is basic
path and decision/condition coverage. At the
initial step, the flow graph of the method is
generated. At the second step, the cyclomatic
complexity of the function is calculated using any
of the ways outlined above. In this case, we used
the formula V(G) = P + 1, where P is the number
of node predicates in the function and V(G) is the
cyclomatic complexity. Assigning a value to the
variable P, we obtain P = 2 and if the full
calculation is done, the result is V(G) = 3. So
there are three test cases needed to cover all
lines of code in the function, as well as the
verification of conditionals in their true and false
options.

Taking as an input source code of the method
in Fig. 1 the solution proposed in [8], a set of
paths is obtained which represent the graph in
Fig. 2. From this information, we can generate
values for each path by analyzing its structure,
specifically the conditionals, and applying the
decision/condition coverage technique explained
above. For the example of the method presented
in Fig. 1, there are two choices D1 >> "x <= 0"
and D2 >> "getBalance() <= x". The specific data
for test cases can be as in Table 3.

Considering the decisions D1 and D2, we have
the following three test cases:

A result of the application of this technique is
that three test cases must go across the code
completely. We noted that there is a match
between the results of both techniques. In this
case, three test cases should be performed for
the sample method.

Next, a Java class that contains the test
method of Fig. 1 is implemented.

Fig. 3 shows how to make a statement which
contains the test method. A void type method for

public void withdraw (double x) throws Exception
{
 if (x <= 0)

 throw new Exception (“Not possible to withdraw
a negative quantity”);

 if (getBalance() < x)
 throw new Exception (“Balance insufficient”);

 Movement m = new Movement();
 m.setConcept (“Withdrawn in cash”);
 m.setImport (-x);
 movements.add (m);
}

Fig. 1. "Withdraw" method

Fig. 2. Flow graph of the method "Withdraw"

Table 2. Value assignment

 True value False value

D1 X<=0 x>0

D2 getBalance() <=x getBalance() >x

Table 3.Test cases and combination of values

 Test Case 1 Test Case 2 Test Case 3

D1 True False False

D2 False True False

Exit The
exception is

raised,
balance

cannot be
withdrawn.

The
exception of
insufficient

balance
rises.

Records
a new

movement of
money.

public void testWithdraw()
{
 try
 {
 account.withdraw (1000);
 }
 catch (Exception e) {}
 assertTrue(account.getBalance() == 0.0)
}

Fig. 3.Test method declaration

74 Darlene Gómez, Dalila Jústiz, and Martha Delgado

Computación y Sistemas Vol. 17 No.1, 2013 pp.69-77
ISSN 1405-5546

each test to be performed must be created. The
name of the method to be tested must be with the
¨test¨ prefix. Test cases are considered
successful or unsuccessful depending on the
sentence to be included in the test cases, and it is
of the Assert type which is the claim of a
proposition (code line) in a program where the
developer places it wherever he/she considers
that its statement is always true. Then assertTrue
is used whenever we want to validate that the
condition is true.

5.2 Unit Testing in C# Code and Using Visual
Studio (Mstest)

For demonstrating how to use the Visual Studio
MSTest tool, a test method applied to the method
"LevelComp_Employee" for “Manage Skills levels”
has been developed, where a competency can be
generic or technique, the first are the emotional
and behavioral characteristics and the other is
specific skills or techniques which people present.

The method is shown in Fig. 4. This method
receives as a parameter an identification card,
and calls another method which searches for a
particular identity card in a list of employees to
verify if the employee exists. If the employee
exists, he/she is sought by the employee position
as its identifier, then due to that assignment, the
query is performed by searching for office skill
IDs, and a list of those skill levels which the

Fig. 5. Flow graph of the method

"Employee Competency Levels”

Table 4. Value assignment

 True value False value

D1 Emp!=null Emp!=null

Table 5. Combination of test cases and securities

 Test Case 1 Test Case 2

D1 True False

Exit Full list EmptyList

public List<LEVEL_COMP> LevelComp_Employee
(string pCI)
{
 NO_EMPL employee = GetEmployeeByCI(pCI);
 if (employee!= null)
 {
 String pos =
 Convert.ToString(employee.ID_EMPL);
 NO_POS position = PositionEmpl(employee.ID);

 var query = (from c in context.POS_COMP
 join d in context.LEVEL_COMP on

c.NO_COMPEID equals
d.NO_COMPEID

 where c.NO_POSID == position.ID
 select d.Distinct();
 List<LEVEL_COMP> listQuery;
 try
 {
 listQuery = query.ToList();
 }
 catch (System.Exception ex)
 {
 throw new FaultException<UnknowException>(new

UnknowException (ex.Message), ex.Message);
 }
 List<LEVEL_COMP> list =
 new List<LEVEL_COMP>();
 foreach (var item in listQuery)
 {
 list.Add (item);
 }
 return list;
 }
 return null;
}

Fig. 4. "Employee Competency Levels" method

Unit Tests of Software in a University Environment 75

Computación y Sistemas Vol. 17 No.1, 2013 pp. 69-77
ISSN 1405-5546

employee seeks is returned, otherwise the
method returns an empty list.

The same basic path technique as in
“Withdraw” method is applied. Due to this, the
flow graph is made up (1) using the cyclomatic
complexity whose value is equal to two, it is
determined with the formula V(G) = P + 1. So two
test cases are obtained which are necessary to
cover all lines of code in the function; (2) using
the technique of decision/condition coverage.The
decision D1 >> "emp! = Null" is obtained. Specific
data for the test cases can be as in Table 4.

Considering the decision D1, we have two test
cases presented in Table 5.

As a result of the application of this technique,
there are two test cases necessary to go across
the code completely. It can be noted that the
results of both techniques match. There are two
test cases to be performed for the sample
method. Then a Visual Studio class containing
each of the test cases with data required is
implemented.

As shown in Fig. 6, TestMethod() is
automatically assigned to each test method. Each
test corresponds to a unique method in the test
code to be tested. Test methods are stored in a
test class that is assigned to the attribute
TestClass().

6 Future Work

This experiment has opened new opportunities for
further research. The proposed method currently
works in the following directions:

5. Adding new functionality to the solution in [8]
which can generate a sequence of
instructions to be executed by each test case
paths, from a code to a specific method.

6. Suggesting algorithms to process each of the
paths identified, determining the conditional
execution flow resulting in the combination of
values needed to test this way.

7. Integration of these results with automatic test
execution tools so that test cases with
corresponding values are generated in the
language of this tool.

7 Conclusions

During this work, the techniques for designing test
cases have been identified and implemented as
practical examples. Tools that support unit testing
for the codes C# and Java were also selected, as
they are the languages most used in projects of
software development in the university
environment. We identified the need to combine,
in the environments of software development at a
particular university, automatic test execution
tools with other tools which generate paths and
values for each of the test cases.

References

1. Alba M.,“A Test Generation Solution to Automate
Software Testing”. Journal Advances in Systems
and Computer Science, ISSN 1657-7663, Medellín,
Vol. 8, No. 2, 2011.

2. Bardin, S. & Hermann, P. (2008). Structural
Testing of Executables. 1

st
 International

Conference on Software Testing, Verification, and
Validation, Lillehammer, Norway, 22–31.

3. Bouquet, F., Grandpierre, C., Legeard, B., &
Peureux, F. (2008). A Test Generation Solution to
Automate Software Testing. 3

rd
 International

Workshop on Automation of Software Test
(AST’08), Leipzig, Germany, 45–48.

Namespace EtesTesting
{

 [TestClass]
 public class CompetenciesTesting
 {

 [TestMethod]
 public void LevelComp_Employee()
 {

EtesTesting.Indy.Competencies.NomenclCompetClient
client = new
Indu.Competencies.NomenclCompetClient();

 string ci = “87032209140”;
 client.LevelComp_Employee(ci);
 }

 }
}

Fig. 6. Test method declaration

76 Darlene Gómez, Dalila Jústiz, and Martha Delgado

Computación y Sistemas Vol. 17 No.1, 2013 pp.69-77
ISSN 1405-5546

4. Braude, E.J. (2001). Software engineering: an
object-oriented perspective. New York: Wiley.

5. Bregieiro, J.C., Zenha, M., & Fernandéz, F.
(2008). A Strategy for Evaluating Feasible and

Unfeasible Test Cases for the Evolutionary
Testing of Object-Oriented Software. 3

rd

International Workshop on Automation of Software
Test (AST’08), Leipzig, Germany, 85–92.

6. López, C., Yañez, C., Gutierrez, A., & Felipe, E.
(2008). Adequacy Checking of Personal Software

Development Effort Estimation Models Based
upon Fuzzy Logic: A Replicated Experiment.
Computación y Sistemas, 11(4), 333–348.

7. Craig, R.D. & Jaskiel, S.P. (2002). Systematic
Software Testing. Boston: Artech House.

8. De la Torre W., “Component for automatic

generation of test cases paths”. Thesis, ISPJAE,
Havana, Cuba, 2012.

9. Gutiérrez, J.J., Escalona, M.J., Mejías, M., &
Torres, J. (2006). Modelos y Algoritmos para la
Generación de Objetivos de Prueba. XV Jornadas
de Ingeniería del Software y Bases de Datos
(JISBD 2006). Retrieved from
www.lsi.us.es/~javierj/publications/JISBD35.pdf.

10. Gutiérrez, J.J., Escalona, M.J., Mejías, M., &
Reina, A.M. (2006). Modelos de Pruebas para
Pruebas del Sistema, XV Jornadas de Ingeniería
del Software y Bases de Datos (JISBD 2006),
Retrieved from
http://users.dsic.upv.es/workshops/dsdm06/files/d
sdm06-07-Gutierrez.pdf.

11. Gutiérrez, J.J., Escalona, M.J., Mejíuas, M., &
Torres, J. (2007). Derivation of test objectives
automatically. Advances in Information Systems
Development, (435–446), New York, NY : Springer.

12. Gutiérrez, J.J., Escalona, M.J., Mejías, M.,
Torres, J., & Torres-Zenteno, A. (2007).

Generación automática de objetivos de prueba a
partir de casos de uso mediante partición de
categorías y variables operacionales, XII Jornadas
de Ingeniería del Software y Bases de Datos,
Retrieved from
www.lsi.us.es/~javierj/publications/JISBD07.pdf.

13. IEEE Standard Glossary of Software Engineering
Terminology. 610.12-1990.

14. JUnit., (s.f.). JUnit Official Site [Ref. of May 16,
2012]. Retrieved from www.junit.org.

15. TestNG. (s.f.). TestNG Official Site [Ref. of May
24, 2012]. Retrieved from www.testng.org.

16. Jtest. (2008). Parasoft Jtest [Ref. of May 30,

2012]. Retrieved from http://odinlatin.com/wp-

content/uploads/2010/10/Jtest_NEWDS06_ESP_
PDF21.pdf.

17. Mendoza, L.E., Pérez, M.A., & Grimán A.C.
(2005). Prototipo de Modelo Sistémicode calidad
(MOSCA) del Software. Computación y Sistemas,
8(3), 196–217.

18. Myers, G.J. (2004). The Art of Software Testing.
(2

nd
 ed.). Hoboken, N.J.: John Wiley & Sons.

19. MSDN. (s.f.). Información general de pruebas

unitarias. [Ref. of June 8, 2012]. Retrieved from
http://msdn.microsoft.com/es-
es/library/ms182516%28v=vs.80%29.aspx.

20. NUnit. (2002-2007). NUnit Official Site, [Ref. on

June 3, 2012]. Retrieved from
http://www.nunit.org/.

21. Pfleeger, S.L. (2006). Software engineering:

Theory and Practice (3
rd

 ed.). Upper Saddle River,
N.J.: Pearson/ Prentice-Hall.

22. Polo, D. “Definition of a software development
process in a university setting”. Studies Center
and Systems Engineering. Havana, Cuba, Instituto
Superior Politecnico Jose Antonio Echaverría,
2011.

23. Pressman, R.S. (2005). Software Engineering, A
practitioner’s Approach (6

th
 ed.). Boston, Mass.:

McGraw-Hill,

24. Piattini., “Analysis and Design of Computer
Applications Management. A software engineering
perspective”, 2007.

25. Patton, R. (2006). Software Testing (2
nd

Ed.).

Indianapolis, IN: Sams Publishing.

26. Rodríguez E., “Importance of software testing”,
2011.

27. Sevilla et al., "Open HMI Tester", 2010, [Ref. on

October 5, 2012]. Available at:
http://www.catedrasaes.org/trac/wiki/ProjectsOht

28. TheFreeLibrary. (2002). I-Logix Launches
Statemate MAGNUM Automatic Test Generator,

[Ref. on October 5, 2012]. Retrieved from
http://www.thefreelibrary.com/ILogix+Launches+St
atemate+MAGNUM+Automatic+Test+Generator.-
a083021729.

29. Usaola., “Testing Information Systems”. University

of Castilla-La Mancha Department of Technology
and Information Systems

30. Unitils. (2011). Unitils Official Site, [Ref. on June
4, 2012]. Retrieved from http://www.unitils.org.

31. Yagüey, A. & Garbajosa, J. (2009). Comparativa

práctica de las pruebas en entornos tradicionales
y ágiles. Revista Española de Innovación, Calidad
e Ingeniería del Software (REICIS). 5(4), 19–32.

http://www.lsi.us.es/~javierj/publications/JISBD35.pdf
http://users.dsic.upv.es/workshops/dsdm06/files/dsdm06-07-Gutierrez.pdf
http://users.dsic.upv.es/workshops/dsdm06/files/dsdm06-07-Gutierrez.pdf
http://www.lsi.us.es/~javierj/publications/JISBD07.pdf
http://www.junit.org/
http://www.testng.org/
http://odinlatin.com/wp-content/uploads/2010/10/Jtest_NEWDS06_ESP_PDF21.pdf
http://odinlatin.com/wp-content/uploads/2010/10/Jtest_NEWDS06_ESP_PDF21.pdf
http://odinlatin.com/wp-content/uploads/2010/10/Jtest_NEWDS06_ESP_PDF21.pdf
http://msdn.microsoft.com/es-es/library/ms182516%28v=vs.80%29.aspx
http://msdn.microsoft.com/es-es/library/ms182516%28v=vs.80%29.aspx
http://translate.google.com/translate?hl=es&prev=_t&sl=es&tl=en&u=http://www.nunit.org/
http://www.catedrasaes.org/trac/wiki/ProjectsOht
http://www.thefreelibrary.com/ILogix+Launches+Statemate+MAGNUM+Automatic+Test+Generator.-a083021729
http://www.thefreelibrary.com/ILogix+Launches+Statemate+MAGNUM+Automatic+Test+Generator.-a083021729
http://www.thefreelibrary.com/ILogix+Launches+Statemate+MAGNUM+Automatic+Test+Generator.-a083021729
http://www.unitils.org/

Unit Tests of Software in a University Environment 77

Computación y Sistemas Vol. 17 No.1, 2013 pp. 69-77
ISSN 1405-5546

Darlene Gómez received the
B.Sc. degree in Informatics
Engineering from the Higher
Polytechnic Institute José
Antonio Echeverría (CUJAE),
Havana, Cuba, in 2010. Her
research areas are Software
Engineering and Software
Quality.

Dalila Jústiz received the M.Sc.
degree at Higher Polytechnic
Institute José Antonio
Echeverría (CUJAE), Havana,
Cuba. Her research areas are
Software Engineering and
Software Quality.

Martha Delgado received her
M.Sc. and Ph.D. degrees from
Higher Polytechnic Institute José
Antonio Echeverría (CUJAE),
Havana, Cuba. Her research
areas are Software Engineering
and Software Quality.

Article received on 23/10/2012; accepted on 07/01/2013.

