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Abstract. DNA microarrays are used to 
simultaneously analyze the expression level of 
thousands of genes under multiple conditions; 
however, massive amount of data is generated 
making its analysis a challenge and an ideal 
candidate for massive parallel processing. Among 
the available technologies, the use of General 
Purpose computation on Graphics Processing 
Units (GPGPU) is an efficient cost-effective 
alternative, compared to a Central Processing 
Unit (CPU). This paper presents an 
implementation of algorithms using Compute 
Unified Device Architecture (CUDA) to determine 
statistical significance in the evaluation of gene 
expression levels for a microarray hybridization 
experiment designed and carried out at the 
Centro de Investigaciones Biológicas del 
Noroeste S.C. (CIBNOR). The obtained results 
are compared to traditional implementations. 
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Análisis de expresión genética en 
microarreglos utilizando algoritmos 

implementados en GPU 

Resumen. Los microarreglos de ADN permiten 
analizar simultáneamente el nivel de expresión de 
miles de genes ante condiciones múltiples; sin 
embargo, la gran cantidad de datos generados 
representa un reto para su análisis y los hace un 
candidato ideal para el procesamiento masivo 
paralelo. Dentro de las tecnologías disponibles, el 
uso de cómputo en tarjetas gráficas de propósito 

general (GPGPU), es una alternativa eficiente, en 
términos de costo-efectividad, comparada con 
respecto a las unidades de procesamiento central 
(CPU). Este artículo presenta la implementación 
de algoritmos utilizando la arquitectura de 
cómputo unificada (CUDA), para determinar la 
significancia estadística en la evaluación de 
niveles de expresión génica para un experimento 
de hibridación de microarreglos, diseñado y 
llevado a cabo en el Centro de Investigaciones 
Biológicas del Noroeste, S.C. (CIBNOR). Los 
resultados obtenidos se comparan con respecto a 
las implementaciones tradicionales.  

Palabras clave. GPU, microarreglos, CUDA. 

1 Introduction 

Recent technological advances in molecular 
biology and genomics have triggered an 
explosion in the amount of information generated; 
prominent examples of this growth can be easily 
observed in public databases of DNA sequences 
such as GenBank or UniProt where information 
doubles approximately every 6 months. 
Technologies such as next-generation 
sequencing or the use of a microarray to analyze 
gene expression allow large scale analyses to 
cover a large proportion of the genome of an 
organism, in contrast to only a few years ago, 
when techniques allowed genes to be analyzed 
only separately. For example, DNA microarrays, 
for the task of analyzing simultaneously the 
expression level of thousands of genes with 
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multiple conditions, has revolutionized molecular 
biology impacting academia and fields in 
medicine and pharmaceuticals, biotech, 
agrochemical and food industries.  

Today the costs of analyses of this 
information, in terms of economics, time, and 
resources, tend to be higher than its generation 
[1]. This growth in the amount of information 
generated in each experiment requires the use of 
new analysis technologies that go hand in hand 
with the data dimension. Bioinformatics, 
understood as an application of mathematics, 
statistics and information technologies for the 
analysis of genomic and proteomic signaling, has 
become the accepted solution to this challenge so 
far. 

One of the main features of a microarray is a 
large volume of data generated; therefore, one of 
the greatest challenges in this area involves 
handling and interpretation of these data. The 
size of generated information and its analysis with 
microarrays make them ideal candidates for 
parallel processing architectures taking 
advantage of many cores and multi-cores that are 
revolutionizing the high-performance computing. 
However, the use of clusters and supercomputers 
has remained prerogative of laboratories and 
universities with large resources. Meanwhile, the 
development of many-core architectures such as 
Graphics Processing Units (GPU), and 
specifically the Architecture of Unified Computing 
Devices (CUDA), proposed by NVIDIA in 2006 [2, 
4], allows researchers to design bioinformatics 
analysis algorithms with high-performance low-
cost devices but with high computing power. 

There are only a few studies using GPU's for 
microarray analyses. For example, an algorithm 
based on GPU's for the classification of genes 
expressed in a microarray has been developed 
recently [5]. The present paper reports the 
implementation of algorithms in CUDA to 
determine statistical significance in the evaluation 
of gene expression levels for a microarray 
hybridization experiment designed at CIBNOR 
and compares the obtained results with traditional 
implementations. 

2 Materials and Methods 

2.1 Microarrays 

DNA microarrays are devices that can measure 
the expression levels of thousands of genes in 
parallel. A microarray is a crystalline solid surface, 
usually a microscopic slide, which adheres 
specific DNA molecules for the purpose of 
detecting the presence and abundance of 
complementary molecules (nucleic acids) marked 
in a biological sample (via Watson-Crick 
hybridization duplex formation). In most 
experiments, microarray labeled nucleic acids 
derived from messenger RNA (mRNA) of a tissue 
sample of an organism are involved in the 
generation (coding) process of a protein 
microarray and therefore the degree of 
expression of a gene can be measured by 
quantifying the relative abundance of molecules 
attached [6].  

Fig. 1 shows the most commonly used 
experimental design for microarrays. The first 
step in the process is to extract genetic material 
from tissues from two different biological 
conditions, such as an abnormal condition and a 
normal control. Then the samples are labeled with 
different fluorophores; red for the sample tissue 
(with Cy5) and green for the control tissue (with 
Cy3), and hybridized on the microarray slide. 
These markers are used to identify the DNAs 
complementary to nucleic acids of interest in the 
sample by emitting light when illuminated by a 
laser in red and green, respectively. Both images 
are combined to obtain a color image, where the 
overexpressed genes acquire shades of red, 
inhibited genes are in green shades, and genes 
that have remained in the same condition in both 
samples are shown in yellow. Afterwards, an 
estimate of signal intensity in each case was 
carried out whereby corrections were made to 
normalize and adjust the signal to the dark 
background. 

The over-expression or under- expression of a 
given gene was represented as a fraction as 
defined in Equation 1. In this formula, genes that 
are over-expressed by a factor of 2 give a ratio of 
2, whereas under-expressed genes give values of 
0.5. Hence, it is preferable to use a logarithmic 
transformation with base 2, so that a doubly 
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overexpressed gene will generate a value of 1, 
whereas the value of an under-expressed gene 
will be -1, making interpretation of results more 
intuitive due to the natural symmetry of biological 
phenomena [6]. 

      
       

       
 (1) 

2.2 Statistical Analysis of Differential 
Expression 

Each gene spot gives a measure of expression 
that compares two samples for a given 
experiment. However, in order to represent the 
variability among a population of organisms, it is 
required to have repetitions of the experiment for 
different individuals to identify genes that are 
expressed differentially in a consistent way. 
Setting a threshold of expression and averaging 
the readings for the total number of organisms is 
not appropriate as it does not reflect the extent to 
which the expression levels vary for each 
individual, or takes into account the size of the 
sample, i.e., the number of agencies involved in 
the study. Therefore, a hypothesis test shall be 
used to determine whether a gene is differentially 
expressed. The null hypothesis for this 
experiment is that there is no difference in 
expression for both tissues. If this hypothesis 
were true, variability in the data would only 

represent the variability between individuals or a 
measurement error. The selection of differentially 
expressed genes should not be based on their 
proportion defined in Equation 1 but on a 
predefined value p (p = 0.001), i.e., the probability 
of observing a degree of change randomly. 

For the purpose of this study, the t-paired test 
was selected and calculated as shown in 
Equation 2. 

  
 ̅
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where  ̅ is the average of the ratio defined in 
Equation 1, S is the standard deviation calculated 
with Equation 3, and n is the number of biological 
replicates of the experiment. 

  √
∑      ̅   
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The p value is calculated from the statistical 
comparison with a t-distribution with an 
appropriate number of degrees of freedom, in this 
case the number of replicates minus one. 

2.3 Design of the Microarray 

As part of SAGARPA-CONACYT 2009-II project 
entitled "FUNCTIONAL GENOMICS 
APPLICATION AS A STRATEGY FOR 
IMPROVEMENT OF THE SHRIMP INDUSTRY" a 
microarray was designed specifically for shrimp 
from unique sequences from public databases 
(GenBank) and subtractive libraries generated in 
the Biological Research Center of the Northwest, 
S. C. (CIBNOR). The selection of sequences, pre-
processing, assembly and design of probes was 
carried out in CIBNOR, while the physical 
impression of the microarray was done by the 
company Biodiscovery, LLC (dba MYcroarray). 
Experimental challenges to various biological 
conditions were carried out at the CIBNOR, while 
the process of microarray hybridization and 
scanning was performed on DNA Microarray Unit 
at the Institute of Cellular Physiology, UNAM. 
Fig.2 shows an example of the microarray image 
generated for a given experiment and a zoom 
view. The Microarray image displayed is the result 

 

Fig. 1. Experimental design and use of microarrays 
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of combining the images of the slide of the 
challenge condition and the control slide, 
containing 61.440 genes arranged in 160 rows 
and 384 columns divided into two blocks. Each 
point represents a unique sequence of 70 bases, 

representative for the gene of interest. In the 
zoom view of the section, it is shown that not all 
gene spots in the microarray have the same 
intensity. 

The SPOTFINDER program was used for 
image analysis of microarrays to determine the 
level of expression of each gene from the set of 
points that form the image, which generates a 
table of maximum, minimum, and average 
intensity and background.  

2.4 Experimental Design 

In order to evaluate the use of parallel processing 
algorithms for the analysis of microarray gene 
expression, we developed the t-paired parametric 
analysis on the GPU cards with graphics 
processing routines developed in CUDA. From 
hybridization data of a microarray of 61.440 
genes, several subsets of data were generated by 
varying the number of genes selected for analysis 
and the number of replicates of the experiment. 
The computer equipment, in which the project 
was developed, has the following features: 
Processor Intel Core2Duo E8400 at 3.00 GHz 
with 2.0 GB RAM, 100 GB hard drive, operating 
system Fedora 12, with a GeForce 9800 GT (112 
CUDA cores, CUDA computing capability 1.1 with 
1024 MB dedicated memory and 256-bit memory 
interface). 

2.5 Implementing CUDA 

Fig. 3 shows a flowchart of operations and 
functions in CUDA to perform the t-paired test, as 
defined in Equation 2.  

          
 

Fig. 2. Microarray image and zoom view 

 

Fig. 3. Flow diagram of the t-paired test calculation in 

CUDA 
Fig. 4. Mapping of the data matrix to global memory 

Average Calculation

M(i,j,k)

Standard Deviation Calculation

sumatoria(M);

divisionesc(n);

restapow2(M);

divisionesc(n-1);

raiz();

t-Student Calculation

divisionesc(n1/2);

divisionmat();

t-student(i,j,k)

61,440 Genes

61,440 Genes

61,440 Genes 1
0

 R
ep

licas

384 Rows

160 Col.

61,440 Genes

...

FUNCTIONS:



Analysis of Genetic Expression with Microarrays using GPU Implemented Algorithms 361 

Computación y Sistemas Vol. 17 No.3, 2013 pp. 357-364 
ISSN 1405-5546 

 

 

 

 
Fig. 5. Code of the described functions 
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The three-dimensional matrix consisting of the 
microarray data from global memory was mapped 
into a two dimensional array, as illustrated in 
Fig. 4. 

The functions required for the computation are 
described below (see also Fig. 5).  

Step 1. Get the average of the data. 

To perform this operation, it is required to 
apply an algorithm that allows adding the 
elements of a row and subsequently dividing by 
the number of columns, thus obtaining the 
average. The required functions are: 

sumatoria(). Sum by Row. This algorithm 
receives an array of data to be processed and a 
vector as input parameters. The algorithm 
calculates the sum of all columns in each row of 
the array of data and stores the result in the 
vector. Each thread of each block is responsible 
for loading an element of the array in the shared 
buffer of each block, and the operations are 
performed using this buffer. 

divisionesc(). Division by a Scalar. This 
algorithm divides a vector by a scalar value, both 
are received as input parameters. Each thread 
loads a block of each vector element in the buffer 
and subsequently performs the operation. 

promedio(). Average. This algorithm is aided 
by the previous algorithms to obtain the average 
of each row. 

Step 2. Obtain the standard deviation. 

It is required to obtain the sum of the squares 
of the differences of the samples and the 
average. To do this we used the following 
algorithms: 

restapow2(). Square Difference. This algorithm 
receives an array and two vectors as input 
parameters. The algorithm subtracts from the 
elements of each row the corresponding value in 
the vector. The results are squared and stored.  

raiz(). Square Root. This algorithm computes 
the square root of each vector element. 

Step 3. Calculate the value of t.  

To complete the calculation, the following 
algorithm divides two vectors element by element. 

divisionmat(). Vector Division. This algorithm 
performs element-by-element division of two 
vectors and stores the result in a third vector. 

3 Results 

We compared the results in computation time for 
GPU implementation against the time obtained in 
a serial implementation using CPU, varying the 
number of genes involved in the analysis and the 
number of replicates in each experiment. 

Fig. 6 and 7 show the processing time for the 
algorithm using a CPU and GPU, with different 
numbers of genes analyzed and different 
numbers of replicas. 

4 Discussion 

Fig. 6 shows how the runtime of the t-test varies 
with respect to the number of genes involved in 
each replica and to the number of replicas n. For 
a given number of replicas, there is a linear 
increase with increasing the number of genes 

 

Fig. 6. Computation time using the CPU 

 

Fig. 7. Computation time using the GPU  
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involved. For a greater number of replicates, the 
slope becomes larger as the number of values 
used for each calculation grows. This behavior 
corresponds to what one would expect from a 
serial implementation developed using a CPU. 
Fig. 7 shows the corresponding times for the 
same calculation but now implemented on GPU. 
One can observe that the processing times 
remain approximately equal, in the order of one 
hundred thousandths of a second, regardless of 
the increase in the number of genes or the 
number of replicas. Fig. 8 shows the advantage of 
using calculation in parallel on the serial 
implementation. The process can be performed 
from 5 up to 30 times faster depending on the 
number of genes involved in comparison with the 
implementation using CPU. 

5 Conclusions 

Despite the GPU computing time being from 5 up 
to 30 times faster, the order of time spent on CPU 
and GPU, at first glance, does not justify the use 
of a parallel implementation, since both are made 
in fractions of a second. However, we must take 
into account that only the most basic statistical 
parametric test was implemented: a t-test in a 
single study with paired data. Microarray 
technology, however, is used in more complex 
experiments, where there may be multiple groups 
in which more than one condition is analyzed. 
Such experiments require more sophisticated 
analysis known as ANOVA and generalized linear 

models. Both techniques are similar to the t-test in 
that they require that the variability in the data 
follows a normal distribution. Bootstrap analysis 
can be applied to both techniques to generate the 
data distributions under no Gaussian 
assumptions. For that, new sets of data of the 
same dimensions are generated from the original 
data, as it is common to produce millions of these 
sets to generate the distributions [6]. In these 
cases, the advantage in speed of analysis 
presented in GPU implementations is fully 
justified. 
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