
Solving Multiple Queries through a Permutation Index in GPU

Mariela Lopresti, Natalia Miranda, Fabiana Piccoli, and Nora Reyes

LIDIC. Universidad Nacional de San Luis,
Ejército de los Andes 950 - 5700, San Luis,

Argentina

{omlopres, ncmiran, mpiccoli, nreyes}@unsl.edu.ar

Abstract. Query-by-content by means of similarity
search is a fundamental operation for applications that
deal with multimedia data. For this kind of query
it is meaningless to look for elements exactly equal
to the one given as query. Instead, we need to
measure dissimilarity between the query object and each
database object. The metric space model is a paradigm
that allows modeling all similarity search problems.
Metric databases permit to store objects from a metric
space and efficiently perform similarity queries over
them, in general, by reducing the number of distance
evaluations needed. Therefore, the goal is to preprocess
a particular dataset in such a way that queries can be
answered with as few distance computations as possible.
Moreover, for a very large metric database it is not
enough to preprocess the dataset by building an index,
it is also necessary to speed up the queries via high
performance computing using GPU. In this work we
show an implementation of a pure GPU architecture to
build a Permutation Index used for approximate similarity
search on databases of different data nature and to
solve many queries at the same time. Besides, we
evaluate the tradeoff between the answer quality and
time performance of our implementation.

Keywords. Metric space, approximate similarity search,
permutation index, high performance computing, GPU.

Resolución de múltiples consultas
usando ı́ndice de permutación en GPU

Resumen. Realizar consultas por contenido, a trav és de
búsquedas de similitud, es una operaci ón fundamental
para aplicaciones relacionadas con datos multimedia.
En este tipo de consultas no tiene sentido buscar
elementos exactamente iguales a uno dado como
consulta. En su lugar, es necesario medirla disimilitud
entre el objeto de consulta y cada objeto de la base de
datos. El modelo de espacio métrico es un paradigma
que permite modelar todos los problemas de búsqueda
por similitud. Las bases de datos métricas permiten
el almacenamiento de objetos de un espacio m étrico y
responder consultas por similitud de manera eficiente,
generalmente, mediante la reducci ón del número de

evaluaciones de distancia. En consecuencia, el objetivo
es pre-procesar el conjunto de datos de manera que
las consultas pueden ser respondidas con el menor
número posible de cálculos de distancia. Más aún,
para grandes bases de datos métricas no basta con
procesar previamente el conjunto de datos mediante la
creación de un ı́ndice, también es necesario acelerar
las consultas mediante el uso de computaci ón de
alto desempeño, una alternativa es utilizar GPU. En
este trabajo se muestra una implementaci ón de una
arquitectura de GPU pura para construir el Pemutation
Index, el cual nos permite resolver en paralelo múltiples
consultas por similitud aproximadas en bases de
datos de diferente naturaleza. Además se evalúa
el compromiso entre la calidad de respuesta y el
desempeño de nuestra aplicación. Finalmente se
presentan resultados experimentales.

Palabras clave. Espacios métricos, búsquedas
aproximadas por similitud, ı́ndice de permutaci ón,
computación de alto desempeño, GPU.

1 Introduction

Due to an increasing interest in manipulating and
retrieving multimedia data, nowadays the problem
of similarity search receives much attention. The
metric space model is a paradigm that allows
modeling all similarity search problems. A metric
space (X , d) is composed of a universe of valid
objects X and a distance function d : X ×
X → R+ defined on them. The distance function
determines the similarity (or dissimilarity) between
two given objects and satisfies several properties
which make it a metric. Given a dataset of | U |=
n objects, a query can be trivially answered by
performing n distance evaluations, but sequential
scan does not scale for large problems. To reduce
the number of distance evaluations is important
for achieving better results. Therefore, in many
cases preprocessing the dataset is a good option
to solve queries with as few distance computations

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356 ISSN 1405-5546

as possible. An index helps to retrieve the
objects from U that are relevant to the query by
making much less than n distance evaluations
during searches [6]. One of these indices is the
Permutation Index [5].

Moreover, for a very large metric database it is
not enough to preprocess the dataset by building
an index, it is also necessary to speed up the
queries by using high performance computing
(HPC). In order to employ HPC to speed up the
preprocess of the dataset to obtain an index and
to answer posed queries, the Graphics Processing
Unit (GPU) represents a good alternative. The
GPU is attractive in many application areas due to
its characteristics, especially because of its parallel
execution capabilities and fast memory access.
They promise more than an order of magnitude
speedup over conventional processors for some
non-graphics computations.

A GPU computing system consists of two basic
components: the traditional CPU and one or more
GPUs (Streaming Processor Array). The GPU
can be considered as a manycore coprocessor
able to support fine grain parallelism (a lot of
threads run in parallel, all collaborating in the
solution of the same problem) [14, 19]. GPU is
different from other parallel architectures because
it shows flexibility in local resource allocation to
the threads. In general, a GPU multiprocessor
consists of several stream multiprocessors, each of
them having multiple processing units, records and
on-chip memory. Each stream multiprocessor can
run a variable number of threads. There are many
tools to program the GPU, CUDA is one of them.

CUDA is a standard C/C++ extended by several
keywords and constructs. Its programming
model is SPMD (Single Process-Multiple Data)
with two main characteristics: parallel work
through concurrent threads and memory hierarchy.
A CUDA program consists of multiple phases
executed on either CPU or GPU.

In metric spaces, indexing and query resolution
are the most common operations. They have
several aspects that accept optimizations through
the application of high performance computing
techniques. There are many parallel solutions
for some metric space operations implemented
for GPU. Querying by k-NN has attracted the
greatest attention of researchers in the area, so
there are many solutions which consider GPU. In
[1, 4, 11, 13, 15] different proposals were made,
all of them are improvements of the brute force

algorithm (sequential scan) to find the k-NN of a
query object. The improvements differ in which
process part is parallelized or which methodology
is applied.

Beside different parallel implementations of scan
sequential, there are other proposals [1, 2, 24]
which implement solutions for metric indices: List
of Clusters, SSS-Index and Spaguettis index.

In all previous research, the authors report
benefits which are strictly linked to the
characteristics and architecture of the GPU.

The rest of the paper is organized as follows:
Section 2 describes all previous concepts
necessary to understand our work and state
of art in the use of GPU to accelerate metric
indices; Section 3 introduces the sequential
version of Permutation Index; Sections 4, 5, and
6 describe the characteristics of our proposal and
its empirical performance. Finally, the conclusions
and future work are presented.

2 Previous Concepts

In this section, we explain the main concepts
necessary to develop this work.

2.1 Metric Space, Queries and Index

A metric space (X , d) is composed of a universe of
valid objects X and a distance function d : X×X →
R+ defined among them. The distance function
determines the similarity (or dissimilarity) between
two given objects and satisfies several properties
such as strict positiveness (except d(x,x) = 0,
which must always hold), symmetry (d(x, y) =
d(y,x)), and the triangle inequality (d(x, z) ≤
d(x, y)+ d(y, z)). The finite subset U ⊆ X with size
n = |U |, is called the database and represents the
set of objects of the search space. The distance
is assumed to be expensive to compute; hence
it is customary to define the search complexity
as the number of distance evaluations performed,
disregarding other components.

There are two main searching techniques of
interest [6, 25, 21]: Range Searching and the k
Nearest Neighbors (k-NN). The goal of the range
search (q, r)d is to retrieve all objects x ∈ U within
the radius r from the query q (i.e., (q, r)d = {x ∈
U/d(q,x) ≤ r}). In k-NN queries, the objective
is to retrieve the set k-NN(q) ⊆ U such that |

Susana
Cuadro de texto
342 Mariela Lopresti, Natalia Miranda, Fabiana Piccoli, and Nora Reyes

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

k − NN(q) |= k and ∀x ∈ k − NN(q), v ∈ U ∧ v /∈
k − NN(q), d(q,x) ≤ d(q, v).

When the index is defined, it helps to retrieve
the objects from U that are relevant to the query
by making much less than n distance evaluations
during searches. The information saved in the
index may vary, some indices store a subset of
distances between objects, and others maintain
only a range of distance values. In general, there
is a tradeoff between the quantity of information
maintained in the index and the query cost it
achieves. More information an index stores (it
uses more memory), lower query cost it obtains.
However, there are some indices that use memory
better than others. Therefore in a database of n
objects, the largest quantity of information an index
could store is the n(n − 1)/2 distances among all
element pairs from the database. This is usually
avoided because O(n2) space is unacceptable for
realistic applications [10].

Proximity searching in metric spaces usually is
fulfilled in two stages: preprocessing and query
time. During the preprocessing stage an index
is built. It is used during the query time to
avoid some distance computations. Basically
the state of the art in this area can be divided
into two families [6]: pivot-based algorithms and
compact partition-based algorithms. In the first
case, the index consists of a set of pivots
{p1, . . . , pm} ⊆ U , which computes and keeps
(in a data structure, usually like a tree) some (or
all) distances {d(p1,x), d(p2,x), . . . , d(pm,x)},x ∈
U . Queries are solved considering all pivots. In
the second case, the space is divided into small
compact zones. A set of objects, called centers,
{c1, . . . , cs} ⊆ U is chosen, and the rest of the
elements is distributed into s zones defined in
different ways by the centers ci. The index is
composed by the centers, the elements of each
zone, and often some additional distances.

There is an alternative to “exact” similarity
searching called approximate similarity searching
[7], where accuracy or determinism is traded for
faster searches [6][25][21][20], it encompasses
approximate and probabilistic algorithms. The goal
of approximate similarity search is to significantly
reduce search times by allowing some errors in the
query outcome.

In approximate algorithms one usually has a
threshold ε as a parameter, so that the retrieved
elements are guaranteed to have a distance to the
query q at most (1 + ε) times of what was asked

for [3]. On the other hand, probabilistic algorithms
state that the answer is correct with high probability.
Some examples are [22, 17]. In the next section
we detail a probabilistic method called Permutation
Index [5].

2.2 GPGPU

Mapping general-purpose computation onto GPU
implies a use of graphics hardware to solve any
applications, not necessarily of graphic nature.
This is called GPGPU (General-Purpose GPU).
GPU computational power is used to solve
general-purpose problems [14, 19]. Parallel
programming over GPUs has many differences
from parallel programming in a typical parallel
computer, the most relevant are the number of
processing units, CPU-GPU memory structure and
the number of parallel threads.

Every GPGPU program has many basic steps.
First, the input data is transferred to the graphics
card. Once the data are in place on the card, many
threads can be started (with little overhead). Each
thread works over its data, and at the end of the
computation, the results must be copied back to
the host main memory.

Not all kind of problems can be solved
in the GPU architecture, the most suitable
problems are those that can be implemented with
stream processing and using limited memory, i.e.,
applications with abundant parallelism.

The Compute Unified Device Architecture
(CUDA), supported by the NVIDIA Geforce
8 Series, is able to use GPU as a highly
parallel computer for non-graphics applications
[14, 18]. CUDA provides an essential high-level
development environment with standard C/C++
language. It defines the GPU architecture as
a programmable graphic unit which acts as a
coprocessor for CPU. It has multiple streaming
multiprocessors (SMs), each of them contains
several (8, 32 or 48, depending on the GPU
architecture) scalar processors (SPs).

The CUDA programming model has two
main characteristics: the parallel work through
concurrent threads and the memory hierarchy.
The user supplies a single source program
encompassing both host (CPU) and kernel (GPU)
code. Each CUDA program consists of multiple
phases which are executed on either CPU or GPU.
All phases that exhibit little or no data parallelism
are implemented in CPU. Otherwise, if the phases

Susana
Cuadro de texto
Solving Multiple Queries through a Permutation Index in GPU 343

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

present much data parallelism, they are coded as
kernel functions in GPU. A kernel function defines
the code to be executed by each thread launched
in the parallel phase.

GPU computation considers a hierarchy of
abstraction layers: grid, blocks and threads. The
threads, basic execution unit that executes the
kernel function, in the CUDA model are grouped
into blocks. All threads in a block function on one
SM and communicate among each other through
the shared memory. Threads in different blocks
can communicate through the global memory.
Beside shared and global memory, threads have
their local variables. All thread−blocks form a grid.
The number of grids, blocks per grid and threads
per block are parameters fixed by the programmer
and adjustable to improve performance.

With respect to memory hierarchy, CUDA
threads may access data from multiple memory
spaces during their execution. Each thread has
private local memory and each block has shared
memory visible to all its threads. These memories
have the same lifetime that the kernel. All threads
have access to the same global memory and two
additional read-only memory spaces: the constant
and texture memory spaces which are optimized
for different memory usages. The global, constant
and texture memory spaces are persistent across
launched kernel by the same application. Each
kind of memory has its own access cost, and the
global memory accesses are the most expensive.

3 Sequential Permutation Index

Let P be a subset of the database U , P =
{p1, p2, . . . , pm} ⊆ U , and it is called the permutant
set. Every element x of the database sorts
all the permutants according to the distances to
them, thus forming a permutation of P : Πx =
〈pi1 , pi2 , . . . pim〉. More formally, for an element x ∈
U , its permutation Πx of P satisfies d(x, Πx(i)) ≤
d(x, Πx(i + 1)), where the elements at the same
distance are chosen in an arbitrary but consistent
order. We use Π−1x (pij) for the rank of an element
pij in the permutation Πx. If two elements are
similar, they will have a similar permutation [5].

Basically, the permutation-based algorithm is an
example of a probabilistic algorithm; it is used to
predict proximity between elements by using their
permutations. The algorithm is very simple. At
the offline preprocessing stage, it computes the

permutation for each element in the database.
All these permutations are stored and form the
index. When a query q arrives, its permutation
Πq is computed. Then, the elements in the
database are sorted in the increasing order of
the similarity measure between permutations, then
they are compared against the query q following
the specified order until some stopping criterion is
achieved. The similarity between two permutations
can be measured, for example, by Kendall Tau,
Spearman Rho, or Spearman Footrule metrics [8].
All of them are metrics, because they satisfy the
aforementioned properties. We use the Spearman
Footrule metric because it is not expensive to
compute and according to the authors in [5]
it has a good performance to predict proximity
between elements. The Spearman Footrule
distance is the Manhattan distance L1, that
belongs to the Minkowsky’s distance family, which
estimates the distance between two permutations.
Formally, Spearman Footrule metric F is defined
as F (Πx, Πq) =

∑m
i=1 |Π−1x (pi)−Π−1q (pi).

This distance F (Πx, Πq) can be computed in
O(m) time [8]. Therefore, during the preprocessing
phase we first compute the mn distances d(x, pi),
and then compute and sort all the permutations
for each element x in the database. This stage
costs O(nm logm) of additional time, and requires
O(nm logm) bits to store the whole index.

At query time, we first compute the real
distances d(q, pi) for every pi ∈ P , then we obtain
the permutation Πq. Next, we sort the elements x ∈
U in the increasing order according to F (Πx, Πq)
(sorting can be done incrementally, because only
some of the first elements are actually needed).
Then U is traversed in that sorted order, evaluating
the distance d(q,x) for each x ∈ U . For range
queries with radius r, each x that satisfies d(q,x) ≤
r is reported, and for k-NN queries the set of
the k smallest distances calculated so far and the
corresponding elements are maintained.

Algorithm 1 shows the process for a range
query. The efficiency and the quality of the answer
obviously depend on database fraction f : as f
grows, the efficiency degrades, but the answer
quality improves. A way to obtain good values for f
is discussed in [5].

Susana
Cuadro de texto
344 Mariela Lopresti, Natalia Miranda, Fabiana Piccoli, and Nora Reyes

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

RangeQuery(element q, radius r, database fraction f)
1. Let A[1,n] be an array of tuples and U = {x1, . . . ,xn}
2. Compute Π−1

q

3. For i← 1 to n do

4. A[i]← 〈
xi,F (Πxi

, Πq)
〉

5. SortIncreasing(A) /* by second component of tuples */
6. For i← 1 to fn do
7. 〈x, s〉 ← A[i]
8. If d(q,x) ≤ r Then Report x

Algorithm 1. Range query of q with radius r in a
permutation index

4 GPU-CUDA Permutation Index

Fig. 1 shows how the GPU-CUDA system works
with a permutation index, presenting the processes
of indexing and querying. The indexing process
has two stages, and the querying process includes
four steps. In this last process, we pay special
attention to a particular step, which is sorting.
The next sections detail the characteristics of each
process, their steps and peculiarities.

4.1 Building a Permutation Index

Building a permutation index in GPU involves at
least two steps. The first step calculates the
distance among all objects in the database and
the permutants. The second step sets up the
signatures of all objects in the database, i.e., all
object permutations. The process input is the
database and the permutants. When the process
ends, the index is ready to be queried. The idea
is to divide the work in thread blocks; each thread
calculates the permutation object according to the
global permutant set.

In the first task (Distances(O,P)), the number
of blocks will be defined according to the size
of the database and the number of threads per
block which depends on the quantity of resources
required by each block. At the step end, each
thread block saves its calculated distances in the
device memory. This stage requires a structure
of size M × N (M : permutant number and N :
database size) and an auxiliar structure of fixed
size defined in the shared memory of a block (it
stores the permutants, if the permutant size is
greater than auxiliar structure size, the process
is repeated until all distances to permutants are
calculated).

The second step (Permutation Index(O)) takes
all distances calculated in the previous step and
determines the permutations of each object in the
database: its signature. To establish the object

permutation, each thread considers an object in
the database and sorts the permutants according
to their distance. The output of the second step is
the Permutation Index, which is saved in the device
memory. Its size is N ×M .

4.2 Solving Approximate Queries

The permutation index allows answering all kinds
of queries in an approximated manner. Queries
can be “by range” or “k-NN”. This process implies
four steps. In the first step, the permutation of the
query object is computed. This task is carried out
by as many threads as there are permutants. The
task of the next step is to compare all permutations
in the index with the query permutation. Such
comparison is done through the Footrule distance,
one thread by object in the database. In the third
step, the calculated Footrule distances are sorted.
As sorting methodology, we implement Quick-sort
in the GPU; its characteristics are explained
bellow. Finally, depending on the query type, the
selected objects have to be evaluated. During
this evaluation, the Euclidean distance between
the query object and each candidate element is
calculated again. Only the specified percentage of
the database is considered at this step, for example
the 10% (it can be a parameter). If the query is by
range, the elements in the answer will be such that
their distances are less than the reference range.
If it is k-NN query, once each thread computes the
Euclidean distance, all distances are sorted (using
GPU-Qsort) and the results are the first k elements
of the sorted list.

Considering the sorting algorithm, we describe
a parallel Quicksort algorithm for GPU, called
GPU-Qsort. The designed algorithm takes into
account the highly parallel nature of graphics
processors (GPUs) and the CUDA capabilities of
1.2 or higher.

GPU-Qsort carries out the task in two stages:
Local-Qsort and Merge-Reduction. The first
stage, Local-Qsort, has a data sequence as
input and its output is N sorted subsequences.
Each subsequence is ordered by a thread block
according to the iterative quick sort. Therefore,
there are N thread blocks, where the number
of threads by block is fixed and determined in
relation to the resources required by the block.
Each block chooses a local pivot (it has to belong
to the input data list of the block) and divides
the data sequence in two subsequences: one

Susana
Cuadro de texto
Solving Multiple Queries through a Permutation Index in GPU 345

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

Permutations Calculus

Approximate Query

database

Query

Approximate
Answer

Distances(O, P)

Distances(Query, P)

Footrule Distances

GPU-Qsort

Local-QS

Reducction(Merge)

KNN Query

Permutation Index(O)

 Where:
 O is dataset

 P is permutants set

Range Query

GPU

Fig. 1. Indexing and querying in GPU-CUDA permutation index

has the elements smaller than the pivot and
another has the elements greater or equal than
the pivot. The pivot is the median among three
elements of data subsequence: the first, the middle
and the last element [23]. Each block works
independently of other blocks thus eliminating the
need of synchronization among threads of different
blocks. Based on the selected pivot, all elements
lower than the pivot are moved to the left of the
pivot, and the elements which are greater or equal
to the pivot are shifted to the pivot’s right. The task
is fulfilled by using shared memory and each thread
can determine the position for its element in the
shared structure (using CUDA atomic functions).

The process is applied iteratively to two
subsequences using a stack. The stack saves
all subsequences that still remain to be sorted.
When there are two ready subsequences to be
processed, one is selected and the other is pushed
in the stack. When one subsequence is sorted, the
subsequence on the top of the stack is selected
for processing. The iterative process ends when
the stack is empty and the list is sorted. When the
number of elements in the sequence is less than
eight, it is sorted in a sequential manner, because
the process overhead is too large compared to the
sequence size.

At the end of this stage, each one of N
blocks copies its sorted subsequence to the device
memory. The output is the N sorted subsequence.

For the second stage of GPU-Qsort,
Merge-Reduction, its input is the N sorted
list and the output is the whole sorted sequence.
This phase makes a reduction; the reduction
operation is a merge of sorted lists. A block
merges two lists at a time. Therefore, log2N
iterations are necessary to find the final result.
This stage requires
N

2 � blocks with 32 threads per
each block and an auxiliar structure in the device
memory.

In both stages, different techniques are used
to optimize the performance: the use of shared
memory, anticipatory copies and coalesced access
to global memory.

5 Parallel Solution of Many Queries

In large-scale systems such as Web Search
Engines indexing multimedia content, it is critical to
efficiently deal with streams of queries rather than
with single queries. Therefore, it is not enough
to speed up the time to answer only one query,
but it is necessary to leverage the capabilities of
the GPU to answer several queries in parallel.
So we have to show how to achieve efficient and
scalable performance in this context. We need
to devise algorithms and optimizations specially
tailored to support high-performance parallel query
processing in GPU. GPU has software and
hardware characteristics which allow us to think of
solving many approximated queries in parallel. To

Susana
Cuadro de texto
346 Mariela Lopresti, Natalia Miranda, Fabiana Piccoli, and Nora Reyes

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

this end, the system presented in Fig. 1 is modified
and shown in Fig. 2. In this Figure it can be
observed that the permutation index is built once
and then used to answer many queries.

Therefore, the amount of resources required for
this processing is equal to the amount of resources
required to compute a query multiplied by the
number of parallel queries resolved.

In order to answer many approximate queries in
parallel, GPU receives the query set and has to
solve all queries in the set. In parallel processing,
each query applies the process explained in 4.2,
therefore the amount of resources required for this
is equal to the amount of resources to compute a
query multiplied by the number of queries solved
in parallel. The number of queries to be solved
in parallel is determined according to the GPU
resources, mainly its memory. If q are parallel
queries, m is the required memory quantity per
query and i is the required memory for the
permutation index, then q∗m+i is the total required
memory to solve q queries in parallel.

Once the q parallel queries are solved, the
results are sent from the GPU to the CPU through
a single transfer via PCI-Express.

Solving many queries in parallel involves careful
management of blocks and their threads. At
the same time, blocks of different queries are
accessed in parallel. Hence it is important to
have good administration of threads. i.e. to
trace which query is solved and which database
element is responsible. This task can be fulfilled by
establishing a relationship among Thread Id, Block
Id, Query Id, and Database Element.

6 Experimental Results

Our experiments considered different database
sizes: 4KB, 29KB, 68KB, and 84KB, on a metric
database consisting of English words using the
Levenshtein distance, also called edit distance
(the minimum number of character insertions,
deletions, and substitutions needed to make two
strings equal). The analysis was made for
three GeForce GPU whose characteristics (Global
Memory, SM, SP, Clock rate, Compute Capability)
are GTX330: (512MB, 6, 48, 1.04GHz, 1.2),
GTX520MX: (1024MB, 1, 48, 1.8GHz, 2.1) and
GTX550Ti: (1024MB, 4, 192, 1.96GHz, 2.1). The
CPU is an Intel core i3, 2.13 GHz and 3 GB of

memory. The results are expressed in speedup
(Sp = TimeSec

TimePar
).

In this paper, we do not display the speedup of
construction of Permutation Index. These results
are illustrated in [16].

Fig. 3 and 4 show the obtained acceleration
in range queries (3) and k-NN (4) queries for
three database sizes and different number of
permutants. In these results, 80 queries are solved
in parallel. As it can be noticed range queries
show improvements with respect to k-NN queries,
but in both cases the achieved speedup is very
good. In all cases, the influence of database size
is clear, but good performance is achieved. The
best results are for the largest database and the
maximum number of permutants.

Tables 1 and 2 show the obtained throughput
(number of queries by second) by our
implementation. The results clearly show the
benefits for all used architectures of GPU. In every
case and query kind, the number of queries by
second is high.

Table 1. Range search throughput

Permut. GTX520MX GTX550Ti GTX330
128 27639,72 29310,63 16973,21
100 28188,86 28907,35 16279,76
80 28921,82 29621,19 16828,75
64 29539,57 29362,77 16379,24
32 29144,71 29582,42 16774,19
16 29255,39 29248,81 16464,29
5 28197,27 29604,32 16474,46

Table 2. k-NN search throughput

Permut. GTX520MX GTX550Ti GTX330
128 19824,25 19377,68 10850,85
100 18816,38 19696,23 10956,71
80 19771,86 19203,07 11051,72
64 19797,83 18857,32 11137,65
32 19774,12 19289,62 10263,80
16 18785,79 19645,99 11237,29
5 19906,59 19121,16 11262,48

We can also observe that the number of
permutants is not so important; for each GPU
architecture and for all number of permutants, the
throughput is similar, quasi constant.

Fig. 5 and 6 show the behavior of two operations:
Range Query (Fig. 5) and k-NN Query (Fig.

Susana
Cuadro de texto
Solving Multiple Queries through a Permutation Index in GPU 347

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

Permutations Calculus

Approximate Query

database

Approximate
Answers

GPU

Queries
Distances(Query, P)

Footrule Distances

GPU-Qsort

KNN Q Range Q

Query 0

Distances(Query, P)

Footrule Distances

GPU-Qsort

KNN Q Range Q

Query (n-1)

. . .

Fig. 2. Solving q queries in GPU-CUDA permutation index

6) for the biggest database and three numbers of
permutants (5, 64, 128) when we vary the number
of parallel queries in three GPUs. It can be seen
that the best speedup was obtained when the
number of queries is equal to 80 and the number
of permutants is maximum. Also, the influence
of GPU architecture is clear: when it has more
resources, better speedup is achieved. Fig. 5(b)
and 6(b) present these results.

As it was mentioned previously, approximate
similarity searching may obtain an inexact answer.
That is, if a k-NN query of an element q ∈
X is posed to the index, it answers with the k
elements viewed as the k closest elements from
U only between the elements that are actually
compared with q. However, since we want to save
as many distance calculations as we can, q will
not be compared against many potentially relevant
elements. If the exact answer of k-NN(q) =
{x1,x2, . . . ,xk}, it determines the radius rk =
max1≤i≤k{d(xi, q)} needed to enclose these k
closest elements to q. An approximate answer
of k-NN(q) could obtain some elements z whose
d(q, z) > rk. On the other hand, an approximate
range query of (q, r)d can answer a subset of
the exact answer, because it is possible that
the algorithm has not reviewed all the relevant
elements. However, all the answered elements
will be at a distance less or equal to r, so they
belong to the exact answer to (q, r)d. We evaluate

the retrieval effectiveness through most commonly
used measures: recall and precision. Recall is the
ratio of relevant documents retrieved for a given
query to the number of relevant documents for that
query in the database. Precision is the ratio of the
number of relevant documents retrieved to the total
number of documents retrieved. Both recall and
precision take on values between 0 and 1.

For k-NN searches, the experiments consider
the values of k of 2, 4, and 16; and for the radii
range the values are 1, 2, and 3. For the parameter
f of the Permutation Index which indicates the
fraction of database revised during searches, we
consider 10%, 20%, and 30% of the database size.
The number of permutants used for the index are
64 and 128. In each case, the results shown are the
average over 1000 different queries and 80 queries
solved in parallel. In this paper, we do not display
the speedup of construction of the Permutation
Index. These results are illustrated in [16].

Our focus is to evaluate the tradeoff between the
answer quality and time performance of our parallel
index with respect to the sequential index. For each
k-NN or range query we have previously obtained
the exact answer, that is Rel(), and we obtain the
approximate answer Retr(). Fig. 7 illustrates the
average answer quality obtained for both kinds of
queries, considering the Permutation Index with
64 (Fig. 7(a)) and 128 (Fig. 7(b)) permutants,
respectively. It can be noticed that the Permutation

Susana
Cuadro de texto
348 Mariela Lopresti, Natalia Miranda, Fabiana Piccoli, and Nora Reyes

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 16 32 64 80 100 128

S
p
e
e
d
U
p

Permutants

Range SpeedUp - DB: 4KB

GTX520MX
GTX550Ti
GTX330

(a) Range Search 4KB.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 16 32 64 80 100 128

S
p
e
e
d
U
p

Permutants

Range SpeedUp - DB: 29KB

GTX520MX
GTX550Ti
GTX330

(b) Range Search 29KB.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 16 32 64 80 100 128

S
p
e
e
d
U
p

Permutants

Range SpeedUp - DB: 86KB

GTX520MX
GTX550Ti
GTX330

(c) Range Search 84KB.

Fig. 3. Speedup of range search queries on three different GPUs

Susana
Cuadro de texto
Solving Multiple Queries through a Permutation Index in GPU 349

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

 0

 100

 200

 300

 400

 500

 600

 700

5 16 32 64 80 100 128

S
p
e
e
d
U
p

Permutants

k-NN SpeedUp - DB: 4KB

GTX520MX
GTX550Ti
GTX330

(a) k-NN Search 4KB.

 0

 100

 200

 300

 400

 500

 600

 700

5 16 32 64 80 100 128

S
p
e
e
d
U
p

Permutants

k-NN SpeedUp - DB: 29KB

GTX520MX
GTX550Ti
GTX330

(b) k-NN Search 29KB.

 0

 100

 200

 300

 400

 500

 600

 700

5 16 32 64 80 100 128

S
p
e
e
d
U
p

Permutants

k-NN SpeedUp - DB: 86KB

GTX520MX
GTX550Ti
GTX330

(c) k-NN Search 84KB.

Fig. 4. Speedup of k-NN search queries on three different GPUs

Susana
Cuadro de texto
350 Mariela Lopresti, Natalia Miranda, Fabiana Piccoli, and Nora Reyes

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 10 50 80

S
p
e
e
d
U
p

Number of Queries

Range SpeedUp - GTX520MX

128 permutants
64 permutants
5 permutants

(a) GTX520MX

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 10 50 80

S
p
e
e
d
U
p

Number of Queries

Range SpeedUp - GTX550Ti

128 permutants
64 permutants
5 permutants

(b) GTX550Ti

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 10 50 80

S
p
e
e
d
U
p

Number of Queries

Range SpeedUp - GTX330

128 permutants
64 permutants
5 permutants

(c) GTX330

Fig. 5. Speedup of range search queries for different number of parallel queries

Susana
Cuadro de texto
Solving Multiple Queries through a Permutation Index in GPU 351

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

 0

 100

 200

 300

 400

 500

 600

 700

5 10 50 80

S
p
e
e
d
U
p

Number of Queries

k-NN SpeedUp - GTX520MX

128 permutants
64 permutants
5 permutants

(a) GTX520MX

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

5 10 50 80

S
p
e
e
d
U
p

Number of Queries

k-NN SpeedUp - GTX550Ti

128 permutants
64 permutants
5 permutants

(b) GTX550Ti

 0

 100

 200

 300

 400

 500

 600

 700

5 10 50 80

S
p
e
e
d
U
p

Number of Queries

k-NN SpeedUp - GTX330

128 permutants
64 permutants
5 permutants

(c) GTX330

Fig. 6. Speedup of k-NN search queries for different number of parallel queries

Susana
Cuadro de texto
352 Mariela Lopresti, Natalia Miranda, Fabiana Piccoli, and Nora Reyes

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

Index retrieves a high percentage of exact answer
only by reviewing a little fraction of the database.
For example, 10% retrieves 85% for 2-NN queries
both with 64 and 128 permutants. It needs to
review 20% to retrieve almost 80% of the exact
answer for k = 4 and k = 16 with 64 and 128
permutants. The effectiveness in range queries
decreases as the radius grows. For r = 1 the index
retrieves almost 80% of relevant objects.

6.1 GPU-Qsort with Other Solution

There are many quick sort libraries, one of them is
Thrust. It is a part of CUDA repositories.

Thrust library provides a collection of
fundamental parallel algorithms such as scan,
sort and reduction. It solves a complementary
set of problems, namely, (1) those that are
implemented efficiently without a detailed mapping
of work onto the target architecture or (2) those that
do not merit or simply will not receive significant
optimization effort by the user. With this library,
developers describe their computation using a
collection of high-level algorithms and completely
delegate the decision of how to implement the
computation to the library. This abstract interface
allows programmers to describe what to compute
without placing any additional restrictions on how
to carry out the computation [12]. A disadvantage
of Thrust is that it may isolate the developer from
the hardware and expose only a subset of the
hardware capabilities. In some circumstances,
the C++ interface may become too awkward or
verbose [9].

We compared our implementation with a solution
based on Thrust library. We used the Thrust
as a black box. Fig. 8 shows the comparison
considering four database sizes. The results are
the average over one hundred executions.

In the figure, we can observe that our
implementation obtains better speedup than the
solution using Thrust library. Besides, it
is important to notice the independence of
GPU-Qsort from GPU characteristics, it works fine
in all GPU.

7 Conclusions and Future Work

As it is mentioned before, in large-scale systems
such as Web Search Engines indexing multimedia
content, it is critical to efficiently deal with
streams of queries rather than with single queries.
Therefore, it is not enough to speed up the time
to answer only one query, but it is necessary to
solve several queries at the same time. In this
work we present a solution to solve many queries
in parallel taking advantage of GPU architecture:
it is a massively parallel architecture having a high
throughput due to its capacity of parallel processing
of thousands of threads.

In this work we show an implementation that
uses a Pemutation Index to solve approximate
similarity search on a database of words. However,
it is possible to extend our proposal easily to other
metric databases of different data nature such
as vectors, documents, DNA sequences, images,
music, among others.

The empirical results have shown improvements
in each architecture of GPU considered. Both
speedup and throughput obtained are very good,
showing better performance when the load work is
hard.

Besides, the implemented GPU-Pemutation
Index showed good performance, allowing us
to increase the fraction f of database that
will be examined to obtain better and accurate
approximate results. This affirmation is made in
function of an extensive validation process carried
out to guarantee the quality of the solution provided
by the GPU.

In future, we plan to make an exhaustive
experimental evaluation considering other kinds of
databases, and to compare our implementation
with other solutions that apply GPU in the scenario
of metric space approximate searches.

Acknowledgements

We wish to thank the UNSL for allowing
us to access their computational resources.
This research has been partially supported
by Project UNSL-PROICO-30310 and Project
UNSL-PROICO-330303.

Susana
Cuadro de texto
Solving Multiple Queries through a Permutation Index in GPU 353

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30

R
ec

al
l

Revised fraction of database

Answer quality for n = 86,016 words, 64 permutants

2-NN
4-NN

16-NN
r = 1
r = 2
r = 3

(a) 64 permutants

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30

R
ec

al
l

Revised fraction of database

Answer quality for n = 86,016 words, 128 permutants

2-NN
4-NN

16-NN
r = 1
r = 2
r = 3

(b) 128 permutants

Fig. 7. Recall of approximate-k-NN and range queries obtained with permutation index

 0

 8

 16

 24

 32

4 29 68 84

S
p
e
e
d
U
p

DB (KB)

GPU-Qsort vs Thrust

GPU-Qsort: GTX520MX
GPU-Qsort: GTX550Ti
GPU-Qsort: GTX330

Thrust: GTX520MX
Thrust: GTX550Ti

Thrust: GTX330

Fig. 8. Speedup of GPU-Qsort and thrust on three different GPUs

Susana
Cuadro de texto
354 Mariela Lopresti, Natalia Miranda, Fabiana Piccoli, and Nora Reyes

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

References

1. Barrientos, R., Gomez, J., Tenllado, C., & Prieto,
M. (2010). Heap based k-nearest neighbor search
on gpus. In XXI Jornadas de Paralelismo. 559–566.

2. Barrientos, R. J., Gomez, J., Tenllado, C., Prieto,
M., & Marin, M. (2011). kNN Query Processing in
Metric Spaces using GPUs. volume 6852. ISBN
978-3-642-23399-9, 380–392.

3. Benjamin, B. & Navarro, G. (2004). Probabilistic
proximity searching algorithms based on compact
partitions. Discrete Algorithms, 2(1), 115–134. ISSN
1570-8667. doi:10.1016/S1570-8667(03)00067-4.

4. Bustos, B., Deussen, O., Hiller, S., & Keim, D.
(2006). A graphics hardware accelerated algorithm
for nearest neighbor search. In Proc. International
Conference on Computational Science (ICCS’06)
Part IV, volume 3994 of LNCS. Springer, 196–199.

5. Chavez, E., Figueroa, K., & Navarro, G. (2005).
Proximity searching in high dimensional spaces with
a proximity preserving order. In Proc. 4th Mexican
International Conference on Artificial Intelligence
(MICAI), LNAI 3789. 405–414.

6. Chávez, E., Navarro, G., Baeza-Yates, R., &
Marroquı́n, J. (2001). Searching in metric spaces.
ACM Comput. Surv., 33(3), 273–321.

7. Ciaccia, P. & Patella, M. (2010). Approximate
and probabilistic methods. SIGSPATIAL
Special, 2(2), 16–19. ISSN 1946-7729.
doi:10.1145/1862413.1862418.

8. Fagin, R., Kumar, R., & Sivakumar, D. (2003).
Comparing top k lists. In Proceedings of
the fourteenth annual ACM-SIAM symposium on
Discrete algorithms, SODA ’03. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA.
ISBN 0-89871-538-5, 28–36.

9. Farber, R. (2011). CUDA Application Design
and Development. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1st edition. ISBN
0123884268, 9780123884268.

10. Figueroa, K., Chávez, E., Navarro, G., & Paredes,
R. (2009). Speeding up spatial approximation
search in metric spaces. ACM Journal of
Experimental Algorithmics, 14, article 3.6.

11. Garcia, V., Debreuve, E., Nielsen, F., & Barlaud,
M. (2010). k-nearest neighbor search: fast
GPU-based implementations and application to
high-dimensional feature matching. In IEEE
International Conference on Image Processing.
Hong Kong, –.

12. Hoberock, J. & Bell, N. (2010). Thrust: A parallel
template library. Version 1.3.0.

13. Kato, K. & Hosino, T. (2010). Solving k-nearest
neighbor problem on multiple graphics processors.
In ACM, editor, 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing,
CCGRID. 769–773.

14. Kirk, D. B. & Hwu, W. W. (2010). Programming
Massively Parallel Processors, A Hands on
Approach. Elsevier, Morgan Kaufmann. ISBN
978-0-12-381472-2.

15. Liang, S., Liu, Y., Wang, C., & Jian, L. (2010).
Design and evaluation of a parallel k-nearest
neighbor algorithm on CUDA-enabled GPU. In IEEE
2nd Symposium on Web Society (SWS). ISBN
978-1-4244-6356-5, 53 – 60.

16. Lopresti, M., Miranda, N., Piccoli, F., & Reyes,
N. (2012). Efficient similarity search on multimedia
databases. In XVIII Congreso Argentino de Ciencias
de la Computación, CACIC 2012. 1079–1088.

17. Moreno-Seco, F., Micó, L., & Oncina, J.
(2003). A modification of the laesa algorithm
for approximated k-nn classification. Pattern
Recognition Letters, 24(1), 47 – 53. ISSN
0167-8655. doi:10.1016/S0167-8655(02)00187-3.

18. NVIDIA (2012). Nvidia cuda compute unified device
architecture, programming guide version 4.2. In
NVIDIA.

19. Owens, J., Houston, M., Luebke, D., Green, S.,
Stone, J., & Phillips, J. (2008). GPU Computing.
IEEE, 96(5), 879 – 899.

20. Patella, M. & Ciaccia, P. (2009). Approximate
similarity search: A multi-faceted problem. J.
Discrete Algorithms, 7(1), 36–48.

21. Samet, H. (2005). Foundations of Multidimensional
and Metric Data Structures (The Morgan Kaufmann
Series in Computer Graphics and Geometric
Modeling). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA. ISBN 0123694469.

22. Singh, A., Ferhatosmanoglu, H., & Tosun, A.
(2003). High dimensional reverse nearest neighbor
queries. In The twelfth international conference on
Information and knowledge management, CIKM ’03.
ACM, New York, NY, USA. ISBN 1-58113-723-0,
91–98. doi:10.1145/956863.956882.

23. Singleton, R. (1969). Algorithm 347: an efficient
algorithm for sorting with minimal storage [m1].
Commun. ACM, 12(3), 185–186. ISSN 0001-0782.

24. Uribe-Paredes, R., Valero-Lara, P., Arias, E.,
Sánchez, J. L., & Cazorla, D. (2011). A GPU-Based
Implementation for Range Queries on Spaghettis
Data Structure. In ICCSA (1), volume 6782 of
Lecture Notes in Computer Science. Springer. ISBN
978-3-642-21927-6, 615–629.

Susana
Cuadro de texto
Solving Multiple Queries through a Permutation Index in GPU 355

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

25. Zezula, P., Amato, G., Dohnal, V., & Batko,
M. (2006). Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol.32.
Springer.

Mariela Lopresti received
her B.Sc. degree from the
Universidad Nacional de San
Luis, Argentina, in 2005.
She pursues her M.Sc. in
Computer Science at the
Universidad Nacional de San
Luis, where she is also an

assistant professor. Her research interests include
similarity searching, non-conventional database,
parallel algorithms, HPC, and GPGPU.

Natalia Miranda received
her B.Sc. degree from
the Universidad Nacional
de San Luis, Argentina, in
2005. Currently, she is a
Ph.D. student in Computer
Science at the Universidad
Nacional de San Luis, where

she is also an assistant professor and has a
CONICET scholarship. Her research interests
include multimedia data, similarity searching,
non-conventional database, parallel algorithms,
HPC, and GPGPU.

Fabiana Piccoli received
her B.Sc. degree from the
Universidad Nacional de San
Luis, Argentina, in 1995, the
M.Sc. degree in Computer
Science from the Universidad
Nacional de Sur, Argentina, in
2001, and the Ph.D. degree in

Computer Science from the Universidad Nacional
de San Luis, Argentina, in 2005, where she is
currently a professor. Her research interests
include parallel systems, parallel models and
paradigm, parallel algorithms, HPC, and GPGPU.
She has more than 70 technical contributions in
national and international conference proceedings,
books and journals.

Nora Reyes received her B.Sc.
degree (with honor) and M.Sc.
degree in Computer Science
from the Universidad Nacional
de San Luis, Argentina, in 1999
and 2002, respectively, where
she is currently a professor
and has been the head of the

Departamento de Informática for 6 years. Her
research interests include algorithms, similarity
searching, non-conventional database, information
retrieval, and data structures in general. She has
more than 40 technical contributions in national
and international conference proceedings and
journals.

Article received on 19/02/2013; accepted on 25/07/2013.

Susana
Cuadro de texto
356 Mariela Lopresti, Natalia Miranda, Fabiana Piccoli, and Nora Reyes

Susana
Cuadro de texto
Computación y Sistemas Vol. 17 No.3, 2013 pp. 341-356ISSN 1405-5546

