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Abstract. In this paper, we address the problem of
reducing the time for finding an object. We consider both
the time taken by our software to generate a search plan
and the expected time to find the object when the plan
is executed. The object is sought with a 7 degree of
freedom mobile manipulator robot with an “eye-in-hand”
sensor. The sensor is limited in both range and field
of view. We propose two main strategies: 1) to coordi-
nate the motion of robot’s degrees of freedom optimizing
only those most relevant for the task, and 2) to repair
a previously computed plan whenever the environment
changes locally. We have implemented all our algorithms
and present simulation results in realistic environments.

Keywords. Search, path planning, 3D visibility, 3D
coverage.

1 Introduction

In this paper, we address the problem of reducing
the time for finding an object. The object is sought
with a 7 degree of freedom mobile manipulator
robot with an “eye-in-hand” sensor. The sensor is
limited in both range and field of view. A search
plan corresponds mainly to a set of sensing config-
urations to be visited and an order for visiting those
configurations.

In [20], the authors investigated the problem of
finding an object in a 3D environment for the case
of a point robot equipped with an omnidirectional
sensor. In [20], the authors have also introduced
a probabilistic sampling method to decompose the
workspace into convex regions. In [3, 5] the au-
thors extended their work to a mobile manipulator
robot equipped with a sensor limited in both field
of view and range; a method to approximate the

visibility region in 3D of the limited sensor is pro-
posed, convex regions are used to facilitate this
approximation.

We have found that the main disadvantage of
the approach presented in [5] is that for large
and complex 3D environments, the time needed
to compute a plan might be excessively large, in
the order of several hours. We have found that the
task taking the longest computational running time
corresponds to optimizing the motion of a large
number of robot’s degrees of freedom (DOF) for
generating paths that minimize the expected value
of the time to find an object. The computational
running time of our algorithm refers to the time
taken by our software to generate a plan to find the
object. The expected value of the time refers to the
average time in which the object will be found by
executing that plan. So the first time refers to the
generation of the plan, and the second one to the
performance in average of this plan when the plan
is executed.

In this paper, we propose two approaches for re-
ducing the computational running time to generate
a plan while preserving the expected value of the
time to find the object.

First, we propose a strategy of selecting the most
important DOF to be optimized. This strategy sig-
nificantly reduces the computational running time
to generate a plan. Furthermore, our motion plan-
ner coordinates the translation of the robot base
and the rotations of the arm’s links such that the ex-
pected value of the time remains almost the same
compared with the case of optimizing all robot’s
DOF.

Second, we propose a method to repair a
previously computed plan, for dealing with local
changes in a 3D environment. The algorithm
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presented in [5] receives as input a 3D map of
the environment and returns as output a search
plan. Once the plan is generated, whenever the
environment changes, a new plan should be com-
puted. In this paper, we present a technique that
allows us to avoid the generation of a new plan
from the beginning. For example, imagine the
following scenario: a plan has been generated
for finding some object inside a house, but after
the generation of the plan, some furniture inside
the house has changed its location, however, the
house building has not changed. In this kind of
situations, the method proposed in this paper is
applicable and useful. We base our approach on
a 3D convex region decomposition, in which the
environment is divided. The plan is repaired by
generating a new subset of sensing configurations
and a new order for visiting those configurations,
considering only the convex regions related to the
change in the map of the 3D environment. An
important advantage of repairing a plan instead of
generating the whole plan again is that the time
needed to repair the plan is in general significantly
smaller than the time needed to generate the whole
plan again. Moreover, in our experiments, we have
found that this technique does not considerably or
systematically increase the expected value of the
time for finding the object.

The main distinguishing features of this work
compared with the research presented in [4] are as
follows. 1) We propose a method to coordinate the
motion of robot’s DOF optimizing only those most
relevant for the task. 2) We present a comparison
between optimizing all the robot’s DOF as in [5]
versus optimizing an appropriate subset of DOF,
in terms of both the computational running time
needed to generate a plan and the expected value
of the time to find an object. 3) For the strategy
of repairing plans, we present cases in which the
percentage of the modified environment varies and
we also compare the results.

Before proceeding to the description of the pro-
posed approach, several points are important to
keep in mind:

— The task that we are addressing requires to
deal with problems of high computational com-
plexity: e.g., generation of a minimum convex

cover [15], determination of an order to visit
sensing locations that minimizes the expected
value of the time for finding the object [21], and
computation of shortest paths for a robot with
7 DOF [11, 13].

— We deal with geometric aspects often ne-
glected in order to find an object: e.g., 3D
visibility computation, a robot with no trivial
geometry, and a sensor limited in both range
and field of view.

— We propose an approach that requires only a
few minutes to generate a search plan, which
diminishes the expected value of the time to
find the object when the plan is executed. We
also propose an approach to repair the plan
for a local change of the environment.

— Any computer vision algorithm used to detect
the object sought needs first to have that ob-
ject inside the robot’s field of view. It is this
issue that our paper focuses on, that is, the
task is to put the object within the robot’s field
of view.

The rest of this paper is organized as follows. In
Section 2, we present related works. In Section
3, we briefly describe a general method for a plan
generation. In Section 4, we present an approach
for coordinating the motions of robot’s DOF and for
optimizing only those most relevant for the task.
A comparison of the results in terms of both the
computational running time needed to generate a
plan and the expected value of the time to find
an object is also presented. In Section 5, we
present a method to repair a previously computed
plan. In Section 6, results for repairing a plan
are presented. Finally, in Section 7, we present
conclusions and future work.

2 Related Work

Our search problem is related to robot motion plan-
ning, coverage, and art gallery problems.

In robot motion planning [11, 13], a typical goal is
to find a collision-free path to move a robot (a me-
chanical system, which may have many degrees
of freedom) from an initial to a final configuration.
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Efficient algorithms have been proposed to solve
this problem. These algorithms use sampling to
capture connectivity of high dimensional configura-
tion or state spaces, for example, [9, 8, 14, 23], just
to name some classical works. In our work we also
want to connect sensing configurations, but we
have an additional goal. We are interested in repre-
senting the free space inside the 3D workspace for
searching for an object and not only in representing
the configuration space for avoiding robot collision.
Nevertheless, we need to find collision-free paths
to move the robot between sensing configurations.
Our main interest is to address the problem of
finding a static object. This adds a new aspect to
our planning problem.

In coverage problems (e.g., [7, 1]), the goal is
usually to sweep a known environment with the
robot or with the viewing region of a sensor. In this
problem, it is often desirable to minimize sensing
overlap so as not to cover the same region more
than once. Our problem is related to the coverage
problem in the sense that any strategy guarantee-
ing to find an object must sense the whole environ-
ment.

The traditional art gallery problem is to find a
minimal placement of guards such that their re-
spective visibility regions completely cover a poly-
gon [16, 22, 6]. As we will see below in Section 3,
a set of sensing configurations that collectively see
the environment could be used as part of a solution
to our search problem. Notice that in contrast to the
works presented in [16, 22] and [6] we consider a
3D environment and not a polygon.

In [24], the authors propose an approach for
adaptive motion planning of robots with many de-
grees of freedom such as mobile manipulators
in dynamic environments with moving obstacles.
In [10], an approach is proposed that enables a
robotic system to react to unforeseen and unpre-
dictable events. In particular, a method is proposed
to switch from sensor-guided motions to trajectory-
following motions. However, in [24] and [10] the
authors do not propose a method for approximating
3D visibility computation and search for an object,
so our paper addresses these problems.

There has been a considerable amount of re-
search on search problems in robotics. Several
authors have proposed methods for looking for one

or several objects with robots, e.g., [2, 12, 17]. In
[12], a method is proposed for looking for multiple
objects with several robots; the method is based on
dynamic programming, and the authors’ objective
is to minimize the expected time to find the objects.
The proposed method addressed only the case of
2D environments and robots have simple geom-
etry. In [2], the authors describe an interesting
decentralized Bayesian approach to coordinating
multiple autonomous sensor platforms searching
for a single non-evading object. The approach
is applied to a team of airborne search vehicles
looking for a stationary target lost at sea. However,
the proposed approach does not deal at all with
obstacles in the environment that produce motion
and visibility obstructions. In [17], an approach for
visual search of a given target is proposed. This
approach optimizes the probability of finding the
target given a fixed cost limit in terms of a total
number of robotic actions the robot requires to find
a visual target. A robotic realization in a 3D en-
vironment is presented. However, a collision-free
path for the robot to move is calculated considering
only a 2D environment, and the authors propose
as future work a more advanced path planning
capability.

3 Original Plan Generation

In our problem formulation, we assume that the
environment is known, but we do not have in-
formation about the location of the static object
being searched. This is equivalent to defining a
uniform probability density function (pdf) modeling
the object location. We believe that this reasoning
is general given that we do not need to assume a
relation between a particular type (class) of object
and its possible location (for instance, balloons are
floating but shoes lie on the ground), which could
reduce the scope of the applications.

The robot senses the environment at discrete
configurations qi (also known as guards, from the
art gallery problem [16]). Let’s call V (qi) the visi-
bility region associated to the limited sensor. Our
searching strategy is as follows. First, the whole
environment is divided into a set of convex regions.
To split the environment into convex regions we
use the probabilistic convex cover proposed in [20].
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That method divides the environment into a set
called {Cr}, so that the union of all Cr covers the
whole environment, that is,

⋃
r Cr = int(W ). The

interior of the workspace int(W ) is the free space
inside a 3D environment, Cr denotes a convex
region in the 3D environment, and r indexes the
region label. Note that all points inside Cr can be
connected by a clear line of sight from any point
p(x, y, z) inside Cr. Second, each convex region is
covered with the sensor frustum denoted by F .

We establish a route to cover the whole en-
vironment by decomposing the problem into two
parts: first, an order to visit convex regions Cr

is established, second, sensing configurations in
a configuration space C of 7 dimensions are gen-
erated to collectively cover each convex region.
These sensing configurations are linked in a graph
and perform a graph search to establish the order
to visit the configurations associated to a single
convex region.

In [21] it has been shown that the problem of
determining the global order for visiting sensing
locations which minimizes the expected value of
the time to find an object is NP-hard, even in a 2D
polygonal workspace with a point robot. Hence,
in [21], an efficient algorithm has been proposed,
which aims just to diminish the expected value of
the time. In this paper, we use that algorithm to
establish the orders for visiting convex regions and
for visiting sensing configurations inside a single
convex region. Below, we briefly describe the main
concepts applied in the algorithm proposed in [21].

The route followed by the robot corresponds to
an order of visiting sensing configurations qi,k that
starts with the robot’s initial configuration and in-
cludes every other configuration. While qi refers
to a configuration, qi,k refers to the order in which
configurations are visited. That is, the robot always
starts at qi,0, and the kth configuration that the
robot visits is referred to as qi,k.

For any route R, we define the time to find the
object T as the time it takes to go through the
configurations – in a given order – until the object
is first seen. The expected value of the time to find
an object depends on two main factors: 1) the cost
of moving the robot between two configurations,
which is the elapsed time, and 2) the probability

mass of seeing the object, which is equivalent to
the gain.

The expected value of the time that a route takes
to find the object is defined as follows:

E [T |R] =
∑
j

tjP (T = tj) , (1)

where

P (T = tj) =
V olume

(
V (qi,j) \

⋃
k<j V (qi,k)

)
V olume(int(W ))

.

(2)

Here, tj is the time it takes the robot to go
from its initial configuration – through all sensing
configurations along the route – until it reaches the
jth visited configuration qi,j , i refers to the label
(identifier) of the configuration. Since the robot
only senses at specific configurations, P (T = tj) is
the probability of seeing the object for the first time
from configuration qi,j . The probability of seeing
the object for the first time from configuration qi,j
is proportional to the volume visible from qi,j minus
the volume already seen from configurations qi,k,
∀k < j as stated in Eq. 2.

We use the utility function defined below to mea-
sure how convenient it is to visit a determined
configuration from another:

U (qk, qj) =
P (qj)

Time (qk, qj)
. (3)

This means that if a robot is currently in qk, the
utility of going to configuration qj is directly pro-
portional to the probability of finding the object
there and inversely proportional to the time it must
invest in traveling. A robot using this function to
determine its next destination will tend to prefer
configurations that are close and/or configurations
where the probability of seeing the object is high.
P (qj) is equal to P (T = tj) defined in Eq. 2.

The utility function in Eq. 3 is sufficient to define
a 1-step greedy algorithm. At each step, simply
evaluate the utility function for all available configu-
rations and choose the one with the highest value.
This algorithm has a running time of O

(
n2
)
, for n

configurations.
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However, it might be convenient to explore sev-
eral steps ahead instead of just one to try to “es-
cape local minima” and improve the quality of the
solution found. So, we use this utility function to
drive a partially greedy algorithm. This algorithm
is able to explore several steps ahead without in-
curring a too high computational cost. In the worst
case, this algorithm has a running time complexity
of O

(
n3 log n

)
. A description of this algorithm can

be found in [21], together with a comparison be-
tween the performance of the algorithm (in terms
of the expected value of the time to find the object)
vs. the optimal path. We emphasize that this
algorithm often reduces in 3 orders of magnitude
the computational running time compared with the
algorithm needed to find the optimal solution, which
is exponential since the optimization problem to be
solved is NP-hard.

3.1 Paths to Move between Convex Regions

Since the expected value of the time depends on
the cost (time) of moving the robot between sens-
ing configurations, we need to find shortest paths
to move the robot between convex regions. The
actual paths depend on the metric used to measure
the cost to move between convex regions. One way
to define the cost between two configurations X
and Y in a D-dimensional configuration space is

‖X − Y ‖Λ ≡ (X − Y )T Λ(X − Y ), (4)

where Λ is a diagonal matrix with positive weights
λ1,λ2, . . . λD assigned to the different DOF. By
weighting each DOF differently, we can assign dif-
ferent priorities to the two main components of our
system: the mobile base and the robotic arm.

To find the shortest path between one given
convex region and all the others, we use the wave-
front expansion (called NF1) proposed in [11]. We
apply the method proposed in [11] to compute
the shortest path for the mobile robotic base, the
degrees of freedom related to the robotic arm are
planned using a sampling method, such that the
robot does not collide with the obstacle. Optimizing
only a subset of all robot’s degrees of freedom
greatly reduces the computational running time to
generate a global path to explore the environment
(see Section 4). Furthermore, we also coordinate

the motion of the robot’s base and the robot’s arm,
such that the expected value of the time to find an
object does not increase even if only some DOF
are optimized (see also Section 4).

3.2 Selecting and Connecting Sensing
Configurations Inside a Single Convex
Region

The method proposed in [3, 5] to cover each con-
vex region with a limited sensor is based on sam-
pling.

Sensing configurations q(i,r) are generated with
a uniform probability distribution in a configuration
space C of 7 dimensions: a sensing configuration
q(i,r) is associated to a given region Cr. Each
convex region has an associated set Sr of point
samples sr ∈ Sr. Each point sample sr lies in the
3D space and is defined by a 3-dimensional vector
p(x, y, z). Sr is used to cover the convex region Cr

with a limited sensor.
The algorithm for selecting sensing configura-

tions has been inspired from the algorithm pre-
sented in [6], the latter was designed to cover the
boundary ∂P of a polygon P . We have extended
this method to cover the interior of the polyhedral
representation of a 3D environment int(W ).

In the proposed method, the point samples lying
inside the frustum associated to a sensing config-
uration q(i,r) are used to approximate the actual
visibility region V (q(i,r)). The robot’s configurations
used to cover a convex region have the property
that all of them place the sensor inside the convex
region being sensed. This property allows us to
approximate the visibility region of the limited sen-
sor without complex 3D visibility computations. The
visibility region of the limited sensor at configura-
tion q(i,r) is approximated by

V (q(i,r)) =
⋃
s

sr ∈ int(F ∩ Cr), (5)

where s indicates sample points.
While covering the region Cr, we also mark as

sensed and logically remove all samples sv belong-
ing to the region Cv, v 6= r, if sv ∈ int(F ∩Cr ∩Cv).
It is guaranteed that these samples are not oc-
cluded from configuration q(i,r). In Figure 1, dark
(magenta) dots are used to show the set Sv, and
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Fig. 1. Sets {sr} and {sv)}

light gray (yellow) dots represent the set of point
samples Sr belonging to the region in which the
sensor resides and inside the frustum. A convex
region Cr is totally covered if⋃

s

sr ∈ int(Cr) = Sr. (6)

Sensing configurations are selected based on
the cardinality of its point samples. Iteratively, we
select the configurations with the largest cardinality
of point samples sr until all the set Sr is sensed.
Redundant sensing configurations with low point
samples’ cardinality are avoided, yielding a re-
duced set containing only sensing configurations
with high cardinality of point samples and a small
number of redundant point samples.

Additionally, in our sensing configuration sam-
pling scheme, we reject candidate sensing configu-
rations in whose view the frustum is in collision with
the robot itself, thus avoiding occlusions generated
by the robot body. We also reject sensing configu-
rations that produce a collision of the robot with the
obstacles and robot self-collisions.

Since we want to have options to move the robot
between sensing configurations and thus further
reduce the expected value of the time to find the
object, we connect the sensing configurations of
each set {q(i,r)} into a fully connected graph. For
reducing the computational time to cover the en-
vironment with a limited sensor, we estimate the

cost to move between sensing configurations as a
straight line in the configuration space C.

In the motion planning problem of generating
collision-free paths to move between configura-
tions, we use a lazy collision checking scheme
[18, 19]. Since we proceed visiting convex regions
one by one, it is likely to find collision free paths
among configurations to cover the same convex
region. Often a small region can be covered with
small robot motions, and big regions offer a large
open space to move the robot. We postpone the
collision checking until an order of sensing con-
figurations is established. Evidently, sometimes
the fully connected graph splits into two connected
components; if so, we use an RRT [14] to find a
collision-free path between the two components.
We point out that in our experiments we have found
that only 1

10 of the total number of paths to sense
convex regions are computed with an RRT. All
other times, a straight line in C was enough to find
collision-free paths.

To cover a single convex region, the robot travels
a tour, so the first sensing configuration and the last
one are the same; this allows preserving the path
and its cost of moving between convex regions,
and consequently, the order to visit them which has
been previously planned.

4 Coordinating the Motion of Degrees
of Freedom

The coordination of the DOF motion is general in
the sense that it is possible to coordinate the mo-
tion of the different degrees of freedom optimizing
only a subset of them. However, the determination
of the cost of moving each degree of freedom de-
pends on the specifics of the application. In large
environments and having as a goal to reduce the
expected value of the time to find an object, it is
typically more convenient to optimize the motion of
the robot base. Consequently, we consider that
the coordinates (x, y) defining the position of the
robot’s base are the most important DOF for our
problem. Hence, we optimize only these two DOF.
The shortest path between a given convex region
and all the others is found using the wavefront ex-
pansion (called NF1) proposed in [11]. We plan the
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motion of the other DOF using a sampling proce-
dure. Thus, a robot path to move between convex
regions is a sequence of robot’s configurations, in
which some DOF are planned optimally and the
others do not produce collisions between the robot
and the obstacles.

Furthermore, our motion planner coordinates the
translation of the robot base and the rotations of
base and the arm’s links, such that both translation
and rotations happen at once. If the maximal rota-
tional speed for the DOF of the robot arm is large
enough, the arm can move to its destination within
the time that the base moves. In this specific case
the cost of moving the arm is zero. In other words,
when the robot finishes a translation motion, the
degrees of freedom of the robotic arm are already
in their desired final configuration. The translation
time is divided in several intervals, each of them
has a time stamp such that there is a limited num-
ber of iterations for the DOF of the robotic arm to
reach their desired final value.

Finally, it is important to clarify that the trajectory
of the robotic base might be different when the
motion of all the DOF are computed using the
wavefront expansion, compared with the trajectory
in which the motions of the robotic arm DOF are
computed based on a sampling procedure. Our
sampling procedure might not find a collision-free
configuration needed to obtain the true shortest
path for the base (for a given resolution of the
wavefront). Consequently, the expect value of the
time to find the object will also be different. In
our experiments (see next section), we have found
that using our coordination approach, the expected
value of the time to find the object does not in-
crease considerably, while the computational run-
ning time to generate a plan is drastically reduced
from several hours to a few minutes.

4.1 Simulation Results

All the results presented in this paper were ob-
tained with a regular PC running Linux OS, the
processing speed of the CPU is 2.2 GHz. The pro-
gramming language used to obtain our simulation
results was C++.

In Figures 2 a) and b) an example of a global
path to visit convex regions is shown, in this ex-
ample only the DOF related to the position of the
robotic base are optimized. In Figures 2 c) and
d) another example is shown. In this case all the
DOF of the robot are computed using a wavefront
expansion. Figures 2 b) and d) show a view taken
from “under the ground” in order to better see the
motion of the robot’s base. Notice that the paths of
the robot’s base are a bit different.

In Figures 3 and 4 a more complex environment
is shown. This environment was divided in 23
convex regions. Figures 3 a) and b) show some of
these convex regions with a (red) mesh. Observe,
for instance, the convex regions under the chair
and the table. In this environment, we have run
20 different simulations, in 10 of them we have
optimized only the motion of the robot’s base and
in the other 10 we have optimized all robot’s DOF.
In Table 1, we present the mean of both the compu-
tational running time needed to compute the paths
to visit all the convex regions and the mean of the
expected value of the time to find the object E[t].
These results clearly show that using our coordi-
nation approach, the expected value of the time
to find the object does not increase considerably,
while the computational running time to generate a
plan is drastically reduced. In these experiments,
the expected value of the time has increased only
by 13%, while the computational running time to
compute the global path was reduced almost 60
times.

Figure 4 a) shows an example of the global path
to visit all convex regions, in which only the motion
of the robot’s base is optimized. Figure 4 b) shows
an example of the global path to visit all convex
regions, in which all robot’s DOF are optimized.

5 Repairing a Plan

In [20], the authors have proposed an algorithm for
a convex cover. That algorithm is based on sam-
pling and divides the environment into overlapping
convex regions. Roughly, the algorithm works as
follows: first, to capture the size and shape of the
workspace W one generates a set of independent,
uniformly distributed samples S in the interior of
W . Among these samples, one chooses a hidden
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(a) Optimizing the motion of the robot’s base (b) Robotic base’s motion

(c) Optimizing all robot’s DOF (d) Robotic base’s motion

Fig. 2. Optimizing some degrees of freedom

Table 1. Statistics of experiment shown in Figure 4

Number of DOF Number of convex regions Computational running time E[t]
2 DOF 23 11 min 40 sec. 41.20 units
7 DOF 23 10 hrs 51 min. 36.43 units

guard set G. A set is called a hidden guard set if
it covers the environment and individual members
of the set are not visible to each other. There will
be a set of sample points that only one particular
guard can see. This set of points is called the
kernel of the guard g ∈ G. Second, guard kernels
are divided into convex regions by using convex
hulls. The resulting convex regions are expanded
by adding sample points as long as doing so does
not generate a collision with the obstacles. The
main idea behind this convex cover algorithm is
that by “growing” convex regions around the guard
kernels, one can generate a low cardinality convex

cover (a detailed description of this algorithm can
be found in [20]). Note that, it has been proved
that a minimum convex cover even in a polygon is
also an NP-hard problem [15]; therefore, the aim
is just to obtain an efficient algorithm that tries to
generate as few convex regions as possible. It has
been found that in practice this algorithm does find
a minimal cardinality set in some instances [5].

5.1 Modifying the Convex Cover to Deal with
Changes in the Environment

Changes in the environment are detected using the
original convex cover. Indeed, a change of loca-

Computación y Sistemas, Vol. 19, No. 1, 2015, pp. 29–45
doi: 10.13053/CyS-19-1-1910

Judith Espinoza and Rafael Murrieta-Cid36

ISSN 2007-9737



(a) (b)

Fig. 3. Some of the convex regions

(a) Optimizing the motion of (b) Optimizing all robot’s DOF
the robot’s base

Fig. 4. A more complex environment

tion of an obstacle in the environment will produce
the following modifications over the convex regions
originally generated. 1) The regions related to the
original location of the obstacle must be modified,
and 2) the regions related to the new position of the
obstacle must also be modified. Let us call the first
set of regions {C}t and the second set, {C}t+1.

Note that we use the word “obstacle” to refer to
an element of the environment which is moved to
modify the original environment. This element, the
so-called obstacle, is not the sought object. The
sought object location is not known deterministi-
cally.

To define which regions are members of {C}t, it
is necessary to detect the regions which are adja-

cent to the original obstacle position. A way of de-
tecting these regions is by measuring the distance
between the convex regions and the obstacle. All
regions which are closer than a given small ε to the
obstacle are members of {C}t. The set of regions
{C}t has an associated set of point samples called
St. The point samples in the interior of the union
of all the regions in {C}t form the set St, that is,
St =

⋃
s s ∈ int({C}t).

To define which regions are members of {C}t+1

is simple. Merely all original convex regions are
tested for collision with the obstacle at its new lo-
cation, those regions in collision belong to {C}t+1.
The set of regions {C}t+1 has also an associated
set of point samples called St+1 which is defined
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by St+1 =
⋃

s s ∈ int({C}t+1) It is also needed
to determine the point samples in collision with the
original and new obstacle locations. Let’s call the
set of point samples in collision with the obstacle
at its original location Obst, and the set of samples
in collision with the obstacle at its new location,
Obst+1.

The key idea to compute the new convex regions
needed to take into account the change of the map
is the following: only a subset of the samples used
to compute the original convex cover are given as
input to the algorithm that generates the local con-
vex cover decomposition considering the change in
the map. Let’s call this subset S∆, S∆ is the union
of the point samples belonging to the sets St, St+1,
and Obst minus the samples belonging to the set
Obst+1, that is,

S∆ =
⋃
s

s ∈
(
St

⋃
St+1

⋃
Obst

)
\Obst+1. (7)

The polyhedral representation of the environ-
ment considering the new obstacle location and
the set of point samples S∆ are given as inputs to
the convex cover algorithm proposed in [20]. The
algorithm returns as outputs a new set of convex
regions needed to take into account the change in
the environment. This set is denoted {C}∆.

Let’s call {F} the set of all the original convex
regions, and {N} the set of all convex regions
after having modified the environment. This new
set of convex regions is composed by the original
regions that have not been eliminated (i.e. {F} \
({C}t

⋃
{C}t+1 ) plus the set {C}∆, that is,

{N} = ({F} \ ({C}t
⋃
{C}t+1))

⋃
{C}∆; {N} to-

tally covers the modified environment.

5.2 Modifying the Orders to Visit Convex
Regions and Sensing Configurations

As it was mentioned above, the problem of gener-
ating an order to visit sensing configurations was
planned in two steps: first an order to visit convex
regions is computed (we call it a global plan). Sec-
ond, for every convex region an order to visit sens-
ing configurations is established. We will show now
that this heuristic of dividing a large problem into

several smaller sub-problems facilitates to repair a
previously computed plan.

To repair a previously computed search path
and under the assumption that the change in the
environment is local, it makes sense to modify the
global plan only locally, preserving as much as
possible the order to visit convex regions. This ap-
proach has the advantage that the computational
running time to repair the plan is typically smaller
than the one needed to recompute the whole global
plan, adding reactivity to the re-planning process.

For repairing the plan, the spatial location of the
new convex regions is taken into account. Further-
more, the new convex regions will appear at spatial
locations related to the site occupied by the regions
belonging to {C}t and {C}t+1.

The goal of algorithm 1 is to compute a new
order for visiting regions preserving as much as
possible the original global plan. Let’s call {O}F
the ordered set of original convex regions, and
{O}N the new ordered set of convex regions.

First, the set {F} is ordered according to which
region is visited earlier (by the robot) in the original
global plan (line 1 of algorithm 1).

Regions Cr,j index the elements of this set; r
refers to the region’s label (region’s identifier), and
j refers to the jth visited region. Regions Cv ∈
{C}∆ are the new generated regions, v refers to
the region’s label.

Regions Cr,k index the elements of {O}N (k
refers to the kth visited region in the new set
{O}N ).

Second, all regions Cr,j ∈ ({C}t
⋃
{C}t+1) are

eliminated in the new plan.
Every region Cr,j ∈ ({C}t

⋃
{C}t+1) is checked for

collision with every region Cv ∈ {C}∆. Notice that
more than one region Cv might intersect the same
region Cr,j . All regions in {C}∆, which intersect
the same Cr,j are stored in the set {C}aux (line 7
of algorithm 1). Let’s call aj the cardinality of the
set {C}aux, for each region Cr,j .

In algorithm 1 (line 10), the Local-Order method
is used to establish the order of visiting regions in
{C}aux; qrobot ∈ Cr,k denotes the first visited robot
configuration in the convex region Cr,k. Local-
Order does the following. Assuming that the robot
is located at qrobot ∈ Cr,k, 1-step ahead evaluation
of the utility function in Eq. 3 is used to establish
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Algorithm 1 Computing the new order to visit con-
vex regions

Input: Sets: {F}, ({C}t
⋃
{C}t+1), {C}∆.

Output:{O}N new ordered set of convex regions
1. {O}F ← Order{F};
2. k = 1, e = a = 0;
for j = 1 to |{O}F | do

3. Cr,j ← {O}F ;
if Cr,j ∈ ({C}t

⋃
{C}t+1) then

4. {C}aux ← ∅;
5. e = e+ 1;
for n = 1 to |{C}∆| do

6. Cv ← {C}∆;
if (Cr,j

⋂
Cv 6= ∅) then

7. {C}aux ← Cv;
8. a = a+ 1;

end if
end for
9.{C}∆ ← {C}∆ \ {C}aux;
10. Local-Order({C}aux,qrobot ∈ Cr,k);
11. {O}N ← {C}aux;

else if Cr,j /∈ ({C}t
⋃
{C}t+1) then

if e = 0 then
12. {O}N ← Cr,j ;
13. k = j;

else if e 6= 0 then
14. k = j + a− e;
15. Cr,k = Cr,j ;
16. {O}N ← Cr,k;

end if
end if

end for

the region Cv,k+1. The region which maximizes Eq.
3 is chosen to be the k+1 region to be visited in the
new order. Assuming now that the robot is located
at qrobot ∈ Cv,k+1 and again using 1-step ahead
utility function evaluation, the remaining (aj − 1)
regions in {C}aux are evaluated to determine the
visited region Cv,k+2 ∈ {O}N , and so forth until all
aj regions are ordered. For establishing an order
for visiting regions in {C}aux, the case in which the
robot is already located in the region Cv,k ∈ {C}aux
must be considered. This means that the cost to
travel to this region is zero, and therefore there is
no need to evaluate Eq. 3.

Third, the regions Cr,j /∈ ({C}t
⋃
{C}t+1) are

included in the new order with the following simple
rules: if no region Cr,j has been eliminated then
k = j, and a region Cr,k has the same place in the
order as a region Cr,j (line 12 of algorithm 1). If
at least one region Cr,j has been eliminated from
the original plan then k = j + a − e, in which a is
the number of new regions added to the new plan
up to an ordered element j, and e is the number
of regions which have been eliminated also up to j
(lines 14, 15 and 16 of algorithm 1).

Note that each region Cv ∈ {C}∆ is included
only once in the new plan. The location of the first
region Cr,j which intersects the region Cv is taken
into account to establish the order of the region Cv

in the new plan. Once the region Cv is included in
the new plan, it is eliminated from {C}∆ (line 9 of
algorithm 1). This procedure avoids redundancy in
the new plan. Since regions Cv ∈ {C}∆ replace
regions Cr,j ∈ ({C}t

⋃
{C}t+1), there is no need of

including a region Cv more than once. The new
order is complete when all original Cr,j regions
have been considered.

The collision-free paths to move the robot be-
tween new convex regions in {C}∆, and between a
region in {F} and a region in {C}∆ are computed
using the approach described in Section 4. Finally,
new local plans are computed for visiting sensing
configurations associated to every new region in
{C}∆. These local plans are computed with the
approach described in Section 3.2.

Given that in our original global plan for cover-
ing the environment with the limited sensor, while
covering region Cr, all samples sp belonging to
the region Cp (p 6= r) are marked and logically
removed (whenever sp ∈ int(F ∩ Cr ∩ Cp)), then
it is necessary to recompute new local plans for
regions Cr,j /∈ ({C}t

⋃
{C}t+1), which intersected

the regions that have been eliminated and which
were ordered ahead in the original order of visiting
convex regions. Those new local plans are also
computed with the approach described in Section
3.2.

6 Simulation Results for Repairing a
Plan

In this section we present two representative ex-
periments, called 1 and 2, in which the portion of
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(a) Region Cid9,1 (b Region Cid7,2 (c) Path Cid1,5 → Cid2,6

Fig. 5. Finding an object

(a) Global path (b) Covering region Cid2,6

with the limited sensor

Fig. 6. (a) Global path and (b) covering region Cid2,6

the modified environment is different. In the figures
a (cyan) mesh is used to show the convex regions.

In experiment 1, the environment was initially
divided in 11 convex regions, 44 sensing configura-
tions had to cover the environment with the limited
sensor. The original order to visit convex regions
was the following: Cid9,1 → Cid7,2 → Cid6,3 →

Cid11,4 → Cid1,5 → Cid2,6 → Cid3,7 → Cid8,8 →
Cid5,9 → Cid10,10 → Cid4,11.

Figure 5 (a) shows the initial robot configuration
and the convex region Cid9,1. Figure 5 (b) shows
the robot having the sensor inside the region Cid7,2.
Figure 5 (c) shows the path to move between the
regions Cid1,5 and Cid2,6.
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(a) New obstacle location (b) Path Cid18,2 → Cid16,3 (c) Path Cid12,8 → Cid1,9

and region Cid18,2

Fig. 7. New order

Figure 6 (a) shows the global path to visit convex
regions. Figure 6 (b) shows with light gray (yellow)
the point samples used to approximate the visibility
region of the limited sensor.

The original plan was modified as follows:
({C}t

⋃
{C}t+1)={Cid4,11,Cid5,9,Cid6,3,Cid7,2,Cid8,8,

Cid9,1,Cid10,10,Cid11,4}.
C∆ = {Cid12,Cid13,Cid14,Cid15,Cid16,Cid17,Cid18,
Cid19}. Thus, 8 regions were removed from the
original plan and 8 new regions were generated.
The new order for visiting convex regions is
Cid17,1 → Cid18,2 → Cid16,3 → Cid14,4 → Cid13,5 →
Cid19,6 → Cid15,,7 → Cid12,8 → Cid1,9 → Cid2,10 →
Cid3,11. 43 sensing configurations were needed to
cover the modified environment.

Figure 7 (a) shows the new obstacle (a book-
shelf) location and the robot having the sensor in-
side the region Cid18,2. Figure 7 (b) shows the path
between the regions Cid18,2 and Cid16,3. Figure 7
(c) shows the path between the regions Cid12,8 and
Cid1,9.

Figure 8 (a) shows the 4 sensing configuration
that collectively covers the convex region Cid18,2

with the limited sensor. Figure 8 (b) shows the new
global path to visit all convex regions.

The sub-order, sensing configurations, and
paths to cover the room in which the obstacle has

changed its location were modified. However, the
sub-order, the paths, and the sensing configura-
tions to cover the other two rooms were preserved.

Now, we present experiment 2, in which the
obstacle (again a bookshelf) has been moved from
the first to the last room, see figures 9 a) and
b). Figure 10 a) shows the original global path for
searching for the object, and Figure 10 b) shows
the modified path.

In Tables 2 and 3, the two experiments are sum-
marized and compared in terms of the number of
convex regions, the number of sensing configura-
tions to cover the whole environment, the computa-
tional running time to generate the original search
plan, the computational running time to repair the
plan, and the expected value of the time to find
the object E[t]. Table 2 presents the results for
the original plan generation, while Table 3 presents
the results for the plan reparation. Notice that in
experiment 1 the expected value of the time was
actually improved with the new plan.

Comparing experiment 1 with experiment 2, it
can be observed that the computational running
time to repair the plan is larger in experiment 2
compared with experiment 1. In experiment 1 only
one of the three rooms has suffered a change due
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(a) Sensing configurations, (b) New global path
region Cid18,2

Fig. 8. (a) Sensing configurations, Cid18,2, and (b) new global path

Table 2. Parameters of original search plan

Experiment # of convex # of sensing computational E[t]
regions configurations running time to

generate the plan
1 11 44 1 min 58 sec. 796 units
2 10 49 2 min. 31 sec. 776.3 units

to the obstacle’s change of location, while in exper-
iment 2, two of the three rooms have changed due
to the obstacle’s change of location. In other words,
the change of the environment in experiment 1 is
more local while in experiment 2 the change of the
environment is larger; this explains why the time
to repair the plan is bigger. However, we highlight
the fact that even in experiment 2, in which the
change of the environment is more considerable,
the time to repair the plan is still smaller than the
time to generate the original search plan. These
two experiments are the representative examples
of other simulations we have run; in general, we
have found that the expected value of the time for
finding the object is almost the same after having
updated the plan. In contrast, the computational
running time needed to systematically repair the
plan is smaller than the time needed to generate
the whole plan again.

The time saved by repairing a plan vs. generat-

ing a new one depends on the change of the en-
vironment. A practical way to estimate this change
can be computed as follows. First, compute the vol-
ume of the convex regions that have been modified
minus the volume of their intersections; subtracting
the volume of intersections avoids counting the
same volume more than once. Second, divide this
volume by the total volume of free space in the
environment. This total volume corresponds to the
sum of the volume of all the convex regions minus
their intersection. The resulting value is normalized
between zero and one. The smaller this value is,
the more convenient is to repair a plan instead of
generating a new one. In our experiments, we have
also observed, that for almost empty environments,
the expected time to find the object is often larger
than for environments with many obstacles. Notice
that in an almost empty environment there is more
empty space to be covered with the limited sensor,
and consequently more sensing configurations are
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(a) Initial obstacle location (b) Final Obstacle location

Fig. 9. (a) Initial obstacle location and (b) final obstacle location

Table 3. Parameters of repaired plan

Experiment # of convex # of sensing computational E[t]
regions configurations running time to

repair the plan
1 11 43 21.5 sec. 771.68 units
2 10 42 1 min. 12 sec. 793.7 units

required to cover the whole environment. However,
in a clutter environment, the computational running
time to generate the robot’s paths to visit sensing
configurations is larger than in an almost empty
environment.

7 Conclusions and Future Work

In this paper, we have addressed the problem of
reducing the time for finding an object in a 3D
environment. The object is sought with a 7 de-
gree of freedom mobile manipulator robot with an
“eye-in-hand” sensor. The sensor is limited in both
range and field of view. First, we have proposed
a strategy for coordinating the motion of robot’s
degrees of freedom optimizing only those most rel-
evant for the task. Second, we have proposed an
approach for repairing previously computed plans.
We have shown that whenever the environment
changes locally, our plan can also be repaired lo-
cally. We base our approach on a 3D convex region
decomposition dividing the environment. The plan
is repaired by generating a new subset of sensing
configurations and a new order for visiting those

configurations, considering only the convex regions
related to the change in the map of the 3D environ-
ment.

The two proposed strategies are significant, be-
cause they considerably reduce the computational
running time to generate a plan while the expected
value of the time remains almost the same. The
coordination of the robot’s degrees of freedom,
optimizing only a subset of them, allows one to
generate search plans in a reasonable amount of
time for big environments. In the statistics made
over our experiments, when the first extension is
applied, the expected value of the time has in-
creased only by 13%, while the computational run-
ning time to compute the global search path was
reduced almost 60 times. For the extension of
repairing the original search plan, the reduction of
the computational running time depends on how
large the modification of the environment is. In
our experiments, the processing time to repair a
plan was always smaller than the time needed to
generate the original plan. We have implemented
all our algorithms and presented simulation results
in realistic environments.
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(a) Original search path (b) Modified search path

Fig. 10. (a) Original search path and (b) modified search path

We believe that the potential applications of our
current approach are many, ranging from finding
a specific piece of art in a museum to detecting
injured people inside a building. In future we want
to test our approach in a real robot equipped with
a computer vision algorithm to detect the object.
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