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Abstract. The paper focuses on solving the Resource-
Constrained Project Scheduling (RCPS) problem with
a method based on intelligent agents. Parallelism for
performing the tasks is allowed. Common and limited
resources are available to all agents. The agents are
non-cooperative and compete with each other for the
use of common resources, thereby forming instances of
RCPS problem. We analyze the global joint interaction of
scheduling via a congestion network and seek to arrive
at stable assignments of scheduling. For this class of
network, stable assignments of scheduling correspond
to a pure Nash equilibrium, and we show that in this case
there is a guarantee of obtaining a pure Nash equilibrium
in polynomial time complexity. The pure Nash equilib-
rium point for this congestion network will be a local
optimum in the neighborhood structure of the projects,
where no project can improve its completion time with-
out negatively affecting the completion time of the total
system. In our case, each state of the neighborhood
represents an instance of the RCPS problem, and for
solving such problem, we apply a novel greedy heuristic.
It has a polynomial time complexity and works similar to
the well-knowing heuristic NEH.

Keywords. Intelligent agents, congestion network,
pure Nash equilibrium, RCPS problem, multi-scheduling,
greedy heuristic NEH.

1 Introduction

In the seventies, computer scientists proposed
scheduling as a tool for improving the performance
of computer systems. Furthermore, scheduling
problems have been studied and classified with
respect to their computational complexity. During
the last few years, new and interesting scheduling
problems have been formulated in connection with
flexible manufacturing.

Scheduling is a decision-making process that
has as a goal the optimization of one or more ob-
jectives. The commonly used Critical Path Method
(CPM) assumes that unlimited resources are avail-
able, and that activities requiring a common re-
source can be carried out in parallel. An important
problem in practical scheduling scenarios is the
allocation of scarce resources for competing activ-
ities in order to minimize overall project duration.

As a single scheduling problem, we consider the
problem of carrying out just one project. However,
in a multi-project scenario, where there is a set
of agents performing a set of projects, and such
agents are non-cooperative since they compete
with each other in order to use common limited
resources, it is necessary to analyze the global
joint interaction and seek to arrive at stable task
scheduling assignments.

In this paper we consider scenarios where tasks
are performed through specialized equipment or
by specialized employees. We consider equip-
ment and specialized personnel as the common
resources to be used by agents in order to accom-
plish their projects. Let R = {E1, . . . ,Ek} be a set
of common resources to be used in a multiagent
system.

As it is common in scheduling problems, there
is a limited number of employees and equipment,
therefore these resources are required by differ-
ent agents at the same time; since the agents
are noncooperative, they compete for the limited
resources. Each resource Er ∈ R has a cost
associated to it. This cost can represent time,
price, or any other entity that an agent has to invest
or pay for using a particular resource.

A lot of researches have been studying the effect
of limited resources in project scheduling, and the
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Resource-Constrained Project Scheduling (RCPS)
is a typical problem of this kind. The RCPS prob-
lem has shown to have a great variety of applica-
tions.

The RCPS is a well-known challenging problem
in combinatorial optimization which can be consid-
ered as a generalization of the Job Shop Schedul-
ing problem. The RCPS problem consists in finding
a schedule of tasks in a multi-project system with a
minimal completion time satisfying the constraints
defined over the limited resources. The RCPS
problem is a strongly NP-hard problem [19].

2 Related Work

The Resource-Constrained Project Scheduling
problem has been designed as a model to ana-
lyze the effect of limited resources on the overall
project performance. An adequate review of early
RCPS heuristics can be consulted in [7]. Some
versions and extensions of that problem include
multi-project scheduling problems, problems with
resource duration interactions, time window con-
strains, cash flow restrictions, and cost-related ob-
jectives [8, 13, 14, 19, 18, 24].

Some versions of the RCPS problem has been
proved to be of great practical interest, for example,
[24] presents a multi-level technical data model
which has been useful for creating hierarchical pro-
duction planning as well as for modeling schedul-
ing in an industrial area. Similarly, [18] shows a
version of the RCPS problem considering resource
transfers, where the cost of idleness and transfer
of resources among projects are analyzed.

Since the RCPS is one of the most intractable
problems in Operations Research, it has recently
become a popular playground for the latest op-
timization techniques, including virtually all local
search paradigms [14]. It has also been used
for proving the advantages of some metaheuristcs
like the ant-colony algorithms versus typical local
searches [4, 5, 6, 7, 12, 14, 19, 23, 27]. The
last two decades have witnessed a tremendous im-
provement of heuristics, meta-heuristics, and exact
solution procedures for solving the RCPS problem
and some of its versions, see, e.g., [2, 5, 12, 15,
17, 19, 23, 27].

Pure Nash equilibrium as a tool for finding sta-
ble scheduling for selfish users and individual ma-
chines was considered in [22, 10]. Since the
publication of the above referenced works, several
scheduling proposals have been designed based
on Nash equilibrium. Research has also been
done on analyzing the hardness of finding a pure
Nash equilibrium for certain classes of scheduling
problems [25, 16, 17, 18, 21, 3, 27].

For example, in [1] Nash equilibrium is charac-
terized in terms of the existence of certain types
of cuts on the project network, and in [9] a solver
specifically designed to find an equilibrium in con-
cave games is introduced; it is based on the primal-
dual interior-point method for nonlinear program-
ming.

In this article we propose to model the RCPS
problem (in fact, some versions of scheduling prob-
lems) as a non-cooperative game in such a way
that a pure Nash equilibrium of the game corre-
sponds to the local optima, in this case, to the min-
imal values of the total completion time of schedul-
ing based on a neighborhood structure, where no
agent can improve its completion time without neg-
atively affecting the total completion time of the
multi-project system.

We also present a new greedy heuristic for solv-
ing instances of the RCPS problem; our heuristic
has a polynomial time complexity on the number
of tasks and resources, and it has shown to obtain
good solutions. Our heuristic works similar to the
well-knowing NEH heuristic, and it is performed
with the purpose of accelerating the search for
minimal completion times in the main procedure
which looks for a pure Nash equilibrium.

3 A Congestion Network for a
Multi-Scheduling System

Let A = {A1, . . . ,An} be a set of n intelligent
agents. Let P = {P1, . . . ,Pn} be a set of n
projects. Each project Pi ∈ P is performed by an
agent Ai ∈ A. Each project Pi ∈ P consists of
a series of consecutive and interdependent tasks
(t1, . . . , tmi

). By the notation tij we emphasize
that the task j is being performed by the agent Ai.
There is an order among the tasks of each project
based on their interdependency in such a way that
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a task cannot be started until all the tasks that it
depends on are completed.

A dependency graph or precedence graph
(DAG) Gi = (T ,E(Gi)) is built for representing the
order in which the tasks are executed in a project
Pi ∈ P. The nodes in Gi represent tasks, and we
join the last task of the project with a special node
labeled as Pi. Each edge (v,w) ∈ E(Gi) means
that the task w depends directly on the task v. The
precedence constraints for tasks are represented
in this DAG by means of edges, that is, an edge
represents a precedence relationship between the
corresponding tasks.

The duration of each task is known, and a task
may require a common resource throughout its
performance. Applying the commonly used critical
path method (CPM), we can find the critical path Ci

for each DAG Gi, i = 1, . . . ,n, assuming that there
are unlimited resources available for performing the
tasks.

In practical situations, it is possible that two dif-
ferent agents have to carry out similar projects,
Pi = Pj , i 6= j, i, j = 1, . . . ,n, although
agents doing similar projects may require different
quantities of products associated to their tasks.
Some scheduling problems are usually studied in
a single-objective deterministic way whereas they
are multi-objective by nature.

Nowadays, the importance of multi-objective op-
timization is widely recognized [16]. Furthermore,
taking into account the multi-objective character
of a system and various kinds of constraints, we
propose a decision maker with a more realistic
solution.

In order to analyze the global interaction in a
multi-objective project, a congestion network de-
noted by Nc is formed by joining all final states
of the individual DAGs Gi,i = 1, . . . ,n into a final
node labeled by F . So the initial state of each Gi,
i = 1, . . . ,n is now the initial state of Nc. Then,
Nc = ∨ni=1(Gi ∪ (Pi,F )) (see Figure 1).

In practice, each project Pi ∈ P, i = 1, . . . ,n
could be accomplished in different ways, that is,
there could exist different paths in Nc from its
initial state ti1 to its final state Pi. Let Si =
{si,1, . . . , si,ni

} be a set of different paths for per-
forming Pi on a congestion network Nc. Then,
each si,j ∈ Si, j = 1, . . . ,ni denotes a series

of interdependent tasks for performing the project
Pi, i = 1, . . . ,n.

In fact, Si represents a set of strategies which
an agent Ai, i = 1, . . . ,n could utilize for realizing
its corresponding project, and each strategy si,j ∈
Si is an ordered sequence of tasks that realizes a
project.

For instance, according to Example 1, s1,3 =
(t1, t2, t4, t5, t7, t8, t9, t11) is one of the possible
paths (strategies) for the agent A1 performing the
project P1. Each task in a particular strategy is
linked to resources necessary to fulfill it.

When each resource of the system has a cer-
tain finite capacity, idle times are to be considered
while scheduling the tasks. Tasks from different
projects may require the same resource and within
the same interval of time, so different sets of con-
flicting tasks are formed dynamically according to
the order of task fulfillment.

Furthermore, the order of the tasks in a strategy
si,j of an agent Ai, i = 1, . . . ,n is not the only
variable for determining the task completion time,
since the strategies of other agents also determine
different tasks in conflict with those in si,j .

Concerning a single project Pi ∈ P, its minimal
path Ci in Gi is now just one of the possible strate-
gies of the agent Ai in the congestion network Nc.

The collection C = (C1,C2, . . . ,Cn) of the orig-
inal n-minimal paths may not represent the opti-
mum point in multi-project scheduling, since the
concurrent use of resources increases the cost of
some (maybe all) original minimal paths, and in
such case, a different strategy si,j 6= Ci of the
agent Ai could be, in a global joint interaction, less
expensive than the cost of Ci.

Example 1. In an enterprise, there are two
employees represented by two agents A1andA2.
A1 is responsible for filling large containers with
water, while A2 is responsible for filling medium-
size bottles. Each agent determines a strategy to
accomplish his daily project. The corresponding
DAGs G1 and G2 are shown in Figure 1, and the
catalog of their tasks is presented in Table 1.

The different strategies for the agent A1, S1 =
{s1,1, s1,2, s1,3, s1,4, s1,5}, are
s1,1 = (t1, t2, t3, t6, t7, t8, t9, t11),
s1,2 = (t1, t2, t4, t6, t7, t8, t9, t11),
s1,3 = (t1, t2, t4, t5, t7, t8, t9, t11),
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Fig. 1. The congestion network of Example 1

s1,4 = (t1, t2, t3, t6, t5, t7, t8, t9, t11),
s1,5 = (t1, t2, t4, t6, t5, t7, t8, t9, t11).
And the possible strategies S2 = {s2,1, s2,2} for A2

are
s2,1 = (t1, t6, t8, t9, t12, t11),
s2,2 = (t1, t8, t9, t12, t11).

The space of states is S = S1XS2. Considering
a sequential processing, for each state e ∈ S
there are two possible sequences for scheduling
tasks: e.g., to execute s1,j and afterwards s2,l, or
to execute s2,l and then s1,j , j = 1, . . . , 5, l = 1, 2.

We assume that all agents choose only one of
their strategies si ∈ Si i = 1, . . . ,n, and then
a state (an action of the multi-agent system) is
formed as e = (s1, . . . , sn) ∈ S1 X . . . X Sn. Let
S = {e1, . . . , eo} be a set of different states that
can be formed in a multi-project system, each state
ej , j = 1, . . . , o being a configuration of the multi-
agent system.

Then S = S1 X . . . X Sn and its cardinality is
given by | S |=| S1 | ∗ . . . ∗ | Sn |= n1 ∗ . . . ∗ nn,
where ni, i = 1, . . . ,n is the number of different
strategies that an agent Ai has in order to complete
the project Pi assigned to him.

In a sequential processing, given a state e =
(s1, . . . , sn) ∈ S, there are n! possible ways to exe-
cute all the strategies of e since any permutation
of s1s2 . . . sn results in a different way of realiz-
ing n projects. If we do not consider parallelism
for performing the tasks, then the total number of
possible configurations for a multi-agent system is
(n1 ∗ n2 ∗ . . . ∗ nn) ∗ n!.

Table 1. Catalog of tasks for two different projects

Task Description Resource Units/Min
1 reception 1 person 300

containers
2 initial 1 person 300

revision containers
3 washing washing 5 containers

machine machine
4 big brush 1 person 4 containers

brush
5 sterilization sterilizer 5 containers

machine 20 bottles
6 second 1 person 5 containers

revision
7 rinse 1 hose 120

containers
8 filling filling 1 container

station machine 10 bottles
9 capping capping 2 containers

station machine 15 bottles
10 rejection 1 person 5 containers
11 delivery 1 person 5 containers
12 labeling 1 person 20 bottles

Given this exponential number of possible con-
figurations for a multi-agent system, we have to ap-
ply computational methods that allow us to reduce
the number of solutions, as well as to address the
search for optimal configurations in an appropriate
manner.

Starting from here, we denote as tik the k-th
task of the project Pi. Each task tij has a pro-
cessing time wij associated to it, and each project
Pi must be completed before its deadline dti. Let
sij be a start time for scheduling the task tij . For
i = 1, . . . ,n the total time that a project Pi requires
for completing all its tasks is its completion time
denoted as CTi, while TDi denotes the total tardi-
ness spent by Ai in order to fulfill the last task Pi.

Considering a multi-agent system, let Cmax be
the makespan (the total completion time of a multi-
project system) and TD be the total tardiness of
the system. The multi-objective optimization prob-
lem consists roughly in finding a schedule of n
projects that minimizes the makespan and the total
tardiness. Both objectives can be formulated as
minimizing the following functions:
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f1 = Cmax = Max{sini
+ wimi

|i ∈ [1 . . . n]},
f2 = TD =

∑n
i=1[max(0, simi + wimi − dti)].

The goal of our proposal consists in finding a
state e (one strategy for each agent in order to
perform its corresponding project) that minimizes
the makespan function and, for the same state e,
avoids achieving a maximized value of the tardi-
ness function.

We consider the case where two or more states
have the same minimal value of the makespan of a
set of projects, and in this case, we establish the
total tardiness time of each project as a second
parameter for decision making.

4 Finding a Pure Nash Equilibrium for
the RCPS Problem

We model each instance of the RCPS problem de-
termined by a state e ∈ S via a congestion network
with common resources and a maximum of n tasks
to be carried out in parallel. The maximum number
of tasks to be performed simultaneously in parallel
equals the total number of agents.

Given a state e = (s1, . . . , sn) ∈ S, si ∈ Si, i =
1, . . . ,n, if we consider parallelism among the
projects allowing a maximum number of tasks to
be performed at any time and if we suppose that
the resources are unlimited, then the order of exe-
cution of n strategies is not relevant and all permu-
tations of e have equal completion time. Thus, due
to parallelism, the cardinality of the state space is
|S| = n1 ∗ n2 ∗ . . . ∗ nn, with ni = |Si|, i = 1, . . . ,n.

A parallel scheduling scheme is easier to imple-
ment, it’s more intuitive and has good results with
classic scheduling rules [5]. Furthermore, Kolish
has shown that a parallel scheduling scheme builds
solutions in a set of non-delay schedules. However,
it may occur that an optimal solution will not be
included in the non-delay set, so a parallel schedul-
ing scheme might not generate an optimal solution
even if all possible schedules are generated [14].

Indeed, we must consider the delay time of an
agent that wants to use an occupied equipment
or to interact with a busy employee while we try
to minimize the makespan Cmax. Given a specific
state e, if a set of current tasks to be performed

requires the same resource R ∈ R, a set CSR of
conflicting tasks is formed by those tasks.

We associate with each task tij ∈ CSR a ‘delay
time’ denoted by Delay(Aij), which is the time that
an agent Ai has to wait until it can use a common
resource R ∈ R in order to perform its current task
tij .

The value of Delay(Aij) for a task tij ∈ CSR

depends on the number of agents in the queue
waiting for their usage of the resource R, and for
different orders of execution of the tasks in CSR,
different values of Delay(Aij) are obtained. Fur-
thermore, Delay(Aij) i = 1, . . . ,n, j = 1, . . . ,ni

depends on the strategies chosen by all the agents
in the state e and not only on the strategy chosen
by Ai.

We define a real-valued cost function T (tij) on
the set of tasks. T (tij) is the function which com-
putes time required to perform each task, including
its delay time. Of course, if tij is a current task
which is not in conflict with any other current task
of some other project, then T (tij) is wij - just the
processing time for performing tij .

It is common that T (tij) depends on the quantity
of items that are manipulated while performing the
task, but its main dependence is on its delay time
Delay(Aij). In any case, we assume that T (tij)
can be determined at any time during the schedul-
ing system operation according to the number of
items handled by the task tij and the number of
agents waiting to use the same resource required
by tij .

The time associated with an agent Ai, i =
1, . . . ,n in a state e = (s1, . . . , sn) ∈ S is deter-
mined as T (si, e) =

∑
tij∈si T (tij). Then, T (si, e)

denotes the completion time of Ai for performing
the project Pi and is given by the sum of the delay
time for performing each task and the duration of
each task. Let T (e) be the maximum completion
time of n-agents while performing their projects.
This value coincides with the makespan Cmax after
the strategies used by the agents are fixed. Then,
given a fixed state e, T (e) = Cmax = max{T (si, e) :
i = 1, . . . ,n} represents the makespan of the multi-
agent system.

Due to parallelism in performing the tasks, the to-
tal completion time T (e) associated with a state e is
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upper bounded as T (e) ≤
∑

si∈e T (si, e). T (e) rep-
resents an exact potential function for this conges-
tion game. The optimization goal of this scheduling
problem consists in finding a state e (strategies for
all agents) which minimizes the value of T (e).

A pure Nash equilibrium for this congestion
game is an assignment of strategies to n agents
such that no individual agent can reduce its com-
pletion time by changing its strategy. And in order
to find a pure Nash equilibrium in this scenario, we
must build a neighborhood structure for the set of
states of a multi-agent system.

We consider that each agent Ai ∈ A chooses
one of its strategies si ∈ Si,i = 1, . . . ,n forming a
state e = (s1, . . . , sn) ∈ S. An improvement step
of an agent Ai is a change of its strategy from si
to s′i, thus achieving a new state e′ and causing a
decrease of time T (s′i, e

′) with respect to T (si, e).
Therefore, we can see the neighborhood of a

state e consisting of such states that deviate from
e only in one of the agent’s strategies. The im-
provement of the time of an agent Ai is precisely
T (s′i, e

′)− T (si, e).
An improvement movement for finding equilib-

rium points is given by determining, starting from
a state e, a new state e′ such that T (e′) < T (e) and
e′ is a neighbor of e since they differ in only one
strategy. Then, the current state e will be updated
repeatedly by replacing it with a neighbor that gives
a better time until such a state is reached which
cannot be improved by any simple strategy, that
is, locally optimal with respect to the neighborhood
structure.

Therefore, the desired equilibriums in this multi-
agent system are in one-to-one correspondence
with the local optima of the potential function T (e)
under the ‘change-one-agent’s-strategy’ neighbor-
hood structure. Notice that as long as the solution
space is finite, such local optima must exist.

Notice as well that this network congestion is not
symmetric since all agents have different starting
nodes and different projects associated with them.
A great advantage on this multi-scheduling system
is that Nc is an acyclic graph and the sequences
of improvement steps do not run into cycles. This
ensures the possibility to reach a pure Nash equi-
librium after a finite number of steps [11].

Searching for an optimal interactive strategy is
a complex problem because the effectiveness of
its solution depends mostly on the strategies of
all agents involved and, mainly, on solution of in-
stances of the RCPS problem. Notice that each
state e ∈ S defines an instance of the RCPS prob-
lem where individual deadlines are not considered
and there is a fixed order among the tasks of a
single project.

It is known that the problem of finding an equi-
librium point in a congestion network is a PLS-
complete problem [11]. Indeed, it is known that
problems in PLS have a PTAS (a polynomial-time
approximation scheme) [22]. For determining if
such problem is in the PLS class, we apply a
greedy heuristic designed specially with the pur-
pose to achieve an equilibrium state for the RCPS
problem.

5 A Greedy Heuristic for the RCPS
Problem

Several approaches for finding exact solutions of
the RCPS problem have been developed, some of
the most effective are techniques based on branch
and bound procedures [23, 26]; although due to
the NP-hardness of the problem, these exact pro-
cedures have exponential time complexity. Also,
several heuristics and metaheuristics have been
developed [4, 5, 6, 12, 15]. Among the heuristic
approaches, the greedy heuristics based on pro-
gressive construction of the solution using a priority
rule and a serial or parallel scheduling scheme are
the most accepted methods [14].

Given a state e ∈ S, and in order to preserve a
polynomial time complexity for finding a pure Nash
equilibrium, it is necessary to apply polynomial
procedures for solving each instance of the RCPS
problem.

In this article, we present a novel greedy heuris-
tic for solving the RCPS problem. Our proposal is a
constructive method for attacking the permutation
problem which resides in sorting the conflicting
tasks.

Our heuristic, called Ordering, works similar to
the well-known heuristic NEH [14, 20], which is
one of the best polynomial time procedures applied

Computación y Sistemas, Vol. 19, No. 1, 2015, pp. 17–27
doi: 10.13053/CyS-19-1-1921

Guillermo De Ita Luna, Fernando Zacarias-Flores, and L. Carlos Altamirano-Robles22

ISSN 2007-9737



in a related problem, the flow-shop problem. In
our proposal, instead of inserting a total project
in the ordering of projects such as it occurs in the
NEH algorithm, we interactively insert the conflict-
ing tasks of different projects which request the
same resource within the same time interval.

We use one pointer-time pi for each project
Pi; pi points to the current task of the project
Pi which has to be scheduled. An n-tuple P =
(p1, p2 . . . , pn) is formed with n-pointers to the cur-
rent tasks still are to be scheduled.

The minimum time Tc = Min{pi : pi ∈ P} of a
set of time pointers is determined in each iteration
of the procedure Ordering. If a task tij pointed by
Tc plus its duration is not in conflict with the other
tasks in P , i.e., if Tc + wij ≤ pj for j = 1, . . . ,n, j 6=
i, or if a resource that tij requires is not needed for
the other tasks pointed by P , then tij is executed
updating its corresponding time pointer and the
iteration continues with the following task to be
performed.

Otherwise, the task tij is in conflict with the
current tasks of other projects. Then, at least two
tasks pointed by P need the same resource and
their respective times of execution overlap. In this
case, the set CS is formed. CS contains all the
conflicting current tasks which are aimed via the
tuple P . Let Noiter = |CS| be the number of tasks
to be ordered. Noiter − 1 is the total number of
iterations of the main while-loop in the procedure
Ordering.

In each iteration of the main while-loop,
Ordering estimates, for each conflicting task in
CS, to what extent its completion time increases
if the performance of the corresponding conflicting
task is displaced to the end of all remaining tasks
in CS. After this estimation, Ordering makes the
same evaluation but for the next task in the conflict-
ing set CS.

Once the new completion times are obtained,
Ordering chooses the task tij whose completion
time of its project TCi increases to a minimal extent
with respect to the new completion times of the
other projects involved in CS. When tij is fixed
to be performed at the end of the tasks in CS,
tij is deleted from CS and the iterative process
continues to order the remaining conflicting tasks.

Figure 2 shows the result of Ordering after the
first iteration, where the first tasks t11, t21, t31 are in
conflict. In this example, the initial completion times
for each project are TT1 = 100,TT2 = 80, and
TT3 = 75, while the processing time for the tasks
are w11 = 28,w21 = 15, and w31 = 32. In this case,
t31 was chosen to be performed after the other two
conflicting tasks because its corresponding incre-
mental completion time TC3 = 75 + 28 + 15 = 118
is minimal with respect to the other two possible
incremental completion times (TC1 = 100 + 15 +
32 = 147 and TC2 = 80 + 28 + 32 = 140).

Fig. 2. Gantt chart where each pattern means a different
resource

Notice that Ordering determines the order of
execution of conflicting tasks in an inverse order,
i.e., first it determines the task which is going to be
performed at the end of the conflicting set of tasks,
then Ordering finds the task in the penultimate
position, and so on, until all the conflicting tasks
are considered.

To search for the task with a minimal completion
time requires an analysis of a few neighbors, i.e.,
only the set of conflicting tasks whose maximum
cardinality is n; this is the basic design principle
to guarantee an efficient use of resources in a
distributed system [10].

Now we consider the case in which two or more
completion times have the same minimal value,
and for such case, we consider the delayed time
of each project as a second parameter for decision
making. So, we check the delay generated by
displacing each conflicting task and the task with
minimum delay is chosen to be performed before
the other tasks.

It is important to note that if the differential of
delays, which is the differential of time between the
last and the first task to be performed, is bigger
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than the differential of the incremental completion
time, which is computed using the differential of the
maximum and minimum completion times, both of
them computed for the conflicting tasks set, then
Ordering chooses the project that minimizes the
performance ‘delay time’ more than the completion
time.

Fig. 3. End of the processing of the first conflicting tasks

Figure 3 shows the order of execution for the first
tasks (black tasks) of each project until they don’t
have more conflicts. Notice how the completion
time of some projects is increased and how they
are dynamically updated in each iteration of our
procedure.

An optimal movement in each iteration of
Ordering is obtained if the selected task infers the
lowest increment of its respective completion time
and has the minimal increment over its increased
delay time.

Looking for a stable point (a pure Nash equilib-
rium) in this multi-project system, iterations of at
most N = n1 + . . . + nn are executed, and in each
iteration, the procedure Ordering is called if there
exists a set of conflicting tasks, to obtain an order
for performing the set of at most n conflicting tasks.

Given a conflicting set of k tasks, notice that
k ≤ n, Ordering executes at most O(k2) basic
operations. Then the time complexity of our pro-
cedure is O(N ∗ n2) which is polynomial over the
number of tasks of the projects.

6 Conclusion and Future Work

We illustrate a type of congestion network game
which models the scheduling of n projects via n
non-cooperative agents. In this system, we con-
sider parallelism among tasks of different projects

Algorithm 1 Procedure Ordering

Input: CS {a set of conflicting tasks}
Initiate Order = “ ” {the inverse order of the
conflicting tasks}
while (|CS| > 1) do

for each s ∈ CS do
Delay(s) =

∑
c∈CS−{s}Overlapping(ts, tc)

{Sum of the overlapping if ts is executed at
the end of the tasks in conflict}
CTimes(s) = TTs + Delay(s) {As much as
it will extend the completion time for this job}

end for
pi = min{CTimes(s) : s ∈ CS};mint =
index(pi,CTimes(s));
di = min{Delay(s) : s ∈ CS}; dint =
index(di,Delay(s));
if (pi == di) then
CS = CS − taskmint; order = order +
taskmint; {It is an optimal selection}

else
CTTj = max{CTimes(s) : s ∈ CS};
{maximum completion time}
DTj = max{Delay(s) : s ∈ CS};
{maximum delay}
∆CompTime = CTTj − CTimes(pi);
{differential of completion times}
∆Delays = DTj −Delay(di); {differential of
delays}
if (∆CompTime > ∆Delays) then

CS = CS − taskmint; order = order +
taskmint; {choose the task of the project
with the minimum increment in its comple-
tion time}

else
CS = CS − taskdint; order = order +
taskdint; {otherwise it is guided for the
minimum increment in delays}

end if
end if

end while

and the use of common limited resources. This
congestion network is suitable for modeling the
Resource-Constrained Project Scheduling Prob-
lem (RCPS).

The heuristic applied to solve instances of the
RCPS problem preserves a polynomial time com-
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plexity and works similar to the well-known NEH
heuristic. We show that for this kind of networks
there is a theoretical pure Nash equilibrium, that is,
when a multi-agent system reaches an equilibrium
point (pure Nash equilibrium).

In a pure Nash equilibrium e = (s1, . . . , sn),
each agent Ai has chosen an optimal strategy
si, i = 1, . . . ,n for performing the project tasks
assigned to him as the best response in the total
multi-agent system. Then, the Nash equilibrium
for this scheduling problem is the assignment of
strategies to agents such that no individual agent
can reduce its project completion time by changing
its strategy. Nash equilibriums are the only fixed
points of a dynamic multi-agent system defined by
improvement steps.

The greedy heuristic for solving instances of the
RCPS problem interactively inserts tasks in the set
of conflicting tasks such that in each step of the
procedure an optimal inverse order to perform the
current conflicting tasks is looked for.

The use of a congestion network for modeling
the RCPS problem through the competing intelli-
gent non-cooperative agents as well as the appli-
cation of a heuristic for solving instances of the
RCPS problem allow us to fix a polynomial time
upper bound to achieve stable configurations of the
system, i.e., determine minimal makespan values
of scheduling based on a neighborhood structure;
no project can improve its completion time affecting
negatively the total completion time of the multi-
project system. In fact, our method can be applied
for solving different versions of scheduling prob-
lems.
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