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Abstract. In this paper we present a methodology for 

blind source separation (BSS) based on a coherence 
function to solve the problem of linear instantaneous 
mixtures of signals. The proposed methodology 
consists of minimizing the coherence function using a 
heuristic algorithm based on the simulating annealing 
method. Also, we derived an analytical expression of 
the coherence for the BSS model, in which it is found 
that independent and identically distributed (iid) 
Gaussian components can be recovered. Our results 
show satisfactory performance in comparison with 
traditional methods. 

Keywords. Blind source separation, second-order 
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1 Introduction 

The Blind Source Separation (BSS) problem 
consists in recovering latent sources from 
observed mixtures using the statistical information 
within the data, when information on the sources 
and mixing process is not known. The BSS 
problem appears in many multi-sensor systems, 
ranging from biomedical signal processing [20, 
27, 28, 17, 11, 28] to finance [19, 9]. The wide set 
of possible applications makes the BSS problem 
to acquire great interest. 

Among many other interesting applications, an 
example of the BSS problem considered in this 
paper is the fetal electrocardiogram (fECG) 
extraction which is used for diagnostic purposes. 
This noninvasive technique uses electrodes that 
pick up maternal ECG (mECG) and, at a lower 
amplitude, the fECG. The electrodes are also 
sensitive to other signals, like the skin potentials, 

electromyograms, and the 50 Hz interference, 
which provide a complex signal associated to a 
mixture of many sources. Due to this, it may be 
difficult to analyze and obtain a reliable 
diagnostic. The mixture of the signals is assumed 
to be instantaneous because it is presumed that 
the whole body is a heterogeneous conductor in 
such a way that the recording of the fECG and 
mECG waveform does not change when the 
position of the recording electrodes is changed on 
the surface of the mother’s abdomen, only the 
amplitude of the electrical signal may change [31]. 
The BSS provides the means to enhance and 
separate the low amplitude signal coming from 
the fetal heart from other noises or undesirable 
signals in a noninvasive way which is useful in 
early diagnosis of cardiopathologies. 

There are two main approaches to solve the 
BSS problem. In the Independent Component 
Analysis (ICA) approach [18, 3], separation is 
based on the statistical distribution of sources. It 
assumes that sources are possibly independent 
and identically distributed (iid) but non-Gaussian, 
and higher order statistics are used as separation 
criteria to make the recovered components as 
independent as possible. Another separation 
scheme is based on Second-Order Statistics 
(SOS). It assumes that sources are possibly 
Gaussian but colored. These kinds of sources 
may show some time structure that can be 
characterized by a time-delayed covariance 
matrix which allows identification procedures 
based on eigen-decomposition [30]. Some other 
methods use the average eigen-structure by 
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taking linear combination of several time-delayed 
covariance matrices [1, 8].  

In this paper, we propose the use of a 
coherence function in order to achieve the 
recovery of the sources in the instant mixtures 
problem. Coherence has been considered 
previously in the BSS problem of convolutive 
mixtures [15] and in the nonlinear blind source 
separation problem [26]. In [15], coherence is 
used as a cost function together with a gradient 
optimization algorithm to solve the problem of 
convolutive mixtures. In [26], the coherence 
function is used to compensate the recovered 
components distortion. Particle swarm 
optimization was used for optimization of the cost 
function which in that case is a weighted sum of 
mutual information and coherence.  Hence, we 
present an extension of the previous works based 
on the coherence function in BSS. In this regard, 
to the best of our knowledge, no work on 
separation of instant mixtures using the 
coherence function has been presented up to 
now. 

On the other hand, the BSS problem has no 
solution for Gaussian and temporally iid sources 
[32, 2, 12]. As an additional contribution we 
derived a second algorithm in which source 
separation of iid Gaussian sources is achieved 
assuming sources have been mixed by an 
orthogonal matrix. 

This paper is organized as follows. In Section 
2, the problem statements are given along with an 
analysis of coherence in the BSS model. In 
Section 3, a cost function based on coherence is 
derived and implemented in the proposed 
algorithm. In Section 4, a performance 
comparison of the proposed algorithm is 
presented, and a real example of separation of 
fetal electrocardiogram (fECG) extraction in 
shown. In Section 5, a discussion of the obtained 
results is presented, together with some 
concluding remarks. 

2 Problem Statement 

The BSS model of linear and instantaneous 
mixtures can be expressed in the following way: 

 𝐱(𝑡) = 𝐀𝐬(𝑡), (1) 

where  𝐱(𝑡) ∈ ℝ𝑛 is the observation vector or 

sensor signals,  𝑛 is the number of sensors,  
𝐬(𝑡) ∈ ℝ𝑚 is the vector of unknown sources, and 

𝑚 is the number of sources. In this paper for 
simplicity we will assume that the number of 
sensors and sources is the same (𝑛 =  𝑚),  𝐀 ∈
ℝ𝑛×𝑚 is a matrix that models the mixing process 
whose entries are the attenuation that the sources 
signal suffered from the transmission media, and 
𝑡 is the time index. The BSS problem consists in 
identification of the mixing matrix 𝐀 or its inverse 

𝐖 = 𝐀−1  to estimate the unknown original 

sources 𝐬(𝑡), using only the information within the 
finite observed data x(t). The unknown model 
parameters can be estimated if we assume that 
the sources are statistically mutually independent 
or decorrelated. However, neither the scaling of 
the sources nor their original order can be 
identified, that is, the separating matrix can be 
given by 𝐖 = 𝐃𝐏𝐀−1 where 𝐏  is a permutation 

matrix, and 𝐃  is a diagonal matrix. 

2.1 Assumptions 

In the analysis presented in this paper we 
consider the following assumptions unless 
otherwise stated: 

1. 𝐀 ∈ ℝ𝑛×𝑚 has full column rank  𝑚. 

2. 𝐬(𝑡)  is a zero-mean stationary process 
with nonsingular covariance matrix 𝐑𝐬 =
E{𝐬(t)𝐬(t)T} = 𝑑𝑖𝑎𝑔(𝜎𝑠1

2, … , 𝜎𝑠𝑚
2 ), where 

𝜎𝑠1
2 denotes the variance of the i-th 

source. 

The first assumption is related to the mixing 
model. The columns of the 𝑛 × 𝑚  mixing matrix 𝐀  
contain the sensor projection weights associated 
with each source signal. A singular matrix 𝐀  
implies that its determinant is defined and is zero, 
which applies only for square matrices. If the 
determinant is zero, it means that the columns of 
𝐀 are dependent, which in its turn means that the 
sources are completely correlated. The physical 
meaning of this is that two or more sensors 
captured exactly the same signal or a linear 
combination of it. This is probably because the 
sensors are too close or placed technically at the 
same spot. The second assumption is related to 
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the nature of signals, and it means that they are 
statistically mutually uncorrelated. 

2.2 Coherence in the Instantaneous BSS 
Model 

The magnitude-squared coherence (MSC) is a 
normalized frequency domain function 
constrained between 0 and 1 for all frequencies. 
The MSC gives a measure of the linear 
association between two wide-sense stationary 
(WSS) zero-mean processes. It has the important 
property that the coherence between two zero-
mean uncorrelated processes is zero [4, 5]. The 
coherence is given by 

 
|𝛾𝑥1𝑥2

|
2

=
|𝑃𝑥1𝑥2

(𝑓)|
2

𝑃𝑥1𝑥1
(𝑓)𝑃𝑥2𝑥2

(𝑓)
 , (2) 

where  𝑃𝑥1𝑥2
(𝑓)  is the cross power spectral 

density between the processes, 𝑥1(𝑡) and 𝑥2(𝑡).  
𝑃𝑥1𝑥1

(𝑓) and 𝑃𝑥2𝑥2
(𝑓) are their respective power 

spectral densities. Assume the BSS model of 
linear and instant mixtures for two signals (3): 

 𝑥1(𝑡) = 𝑎𝑠1(𝑡) + 𝑐𝑠2(𝑡) ,

𝑥2(𝑡) = 𝑏𝑠1(𝑡) + 𝑑𝑠2(𝑡) .
 (3) 

Assume s1(t) and s2(t) are uncorrelated with 
zero-mean. Then, 

 𝑃𝑥1𝑥1
(𝑓) = 𝑎2𝑃𝑠1𝑠1

(𝑓) + 𝑐2𝑃𝑠2𝑠2
(𝑓) (4) 

and 

 𝑃𝑥2𝑥2
(𝑓) = 𝑏2𝑃𝑠1𝑠1

(𝑓) + 𝑑2𝑃𝑠2𝑠2
(𝑓) . (5) 

The cross power spectral density between 
𝑥1(𝑡) and 𝑥2 (𝑡) is 

 𝑃𝑥1𝑥2
(𝑓) = 𝑎𝑏𝑃𝑠1𝑠1

(𝑓) + 𝑐𝑑𝑃𝑠2𝑠2
(𝑓) . (6) 

Substituting (4), (5) and (6) in (2) yields (7); the 
coherence between the observations in the 
instantaneous BSS model: 

 |𝛾𝑥1𝑥2
(𝑓)|

2

=
(𝑎𝑏)2𝑃𝑠1𝑠1

2 (𝑓) + (𝑐𝑑)2𝑃𝑠2𝑠2

2 (𝑓)

[𝑎2𝑃𝑠1𝑠1
(𝑓) + 𝑐2𝑃𝑠2𝑠2

(𝑓) ][𝑏2𝑃𝑠1𝑠1
(𝑓) + 𝑑2𝑃𝑠2𝑠2

(𝑓) ]
. 

 

(7) 

If the mixing matrix is a diagonal matrix (i.e., 
𝑏 =  𝑐 =  0), the observation vector will consist of 
the unmixed source signals. Substituting these 
parameters’ values in (7) we can find out that 

|𝛾𝑥1𝑥2
|
2

= 0. The coherence is zero for 

uncorrelated processes. We may note that, in the 
observation vector, the matrix 𝐀 will differ from a 
diagonal matrix. However, by applying a whitening 
transformation 𝐕 and an orthogonal rotation 

transformation 𝐑 to the observed data, the 
resulting matrix (global matrix) is diagonal. 

2.3 Coherence of Mixed Gaussian Sources 
with iid Time Structure 

The power spectral density of two zero-mean 
Gaussian stationary sources with iid time 
structure and unit variance will have the same 

shape, that is, 𝑃𝑠1𝑠1(𝑓 )  =  𝑃𝑠2𝑠2(𝑓 ). If the 

observed data is a mixture of them, Eq.  (7) can 
be reduced to the following expression: 

 
|𝛾𝑥1𝑥2

|
2

=
(𝑎𝑏)2 + (𝑐𝑑)2

[𝑎2 + 𝑐2 ][𝑏2 + 𝑑2 ]
 . (8) 

In this case, as shown by Carter (1993), the 
MSC becomes frequency independent, and in 
consequence, the estimate of the coherence is no 
longer dependent on the time structure of the 
sources. In this way, it is observed that the 
coherence estimate in (8) will be dependent on 
the variance ratio between sources provided by 
the mixing matrix. From (8) it is found that the 
variance difference between sources mixture 
adds information that can be used to achieve 
separation, thus the problem becomes a variance 
maximization problem. An example is shown in 
Figure 4 for two orthogonally mixed Gaussian iid 
sources. Every curve is generated from the 
coherence estimate using a specific number of 
averaged segments, as indicated in the key. 
Assuming that the Gaussian iid sources have 
been mixed by an orthogonal matrix, the 
coherence estimate will be minimum, when the 
recovered components are independent. As the 
variance ratio between the sources increases, the 
separation performance of the Gaussian iid 
signals increases, see Figure 5. 

In the case where the observation vector 𝐱 is 
whitened, for any rotation 𝜃 the coherence 
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estimate in (8) will remain constant. The whitening 
transform would destroy the variance information 
and must be avoided in this case. The limitation of 
the identifiability condition [30] of SOS methods is 
verified as well; if the sources’ power spectral 
densities are not linearly independent, they 
cannot be estimated. 

3 Proposed Method 

3.1 Pre-Processing 

In BSS it is a common procedure to apply some 
pre-processing to the observed data in order to 
simplify the problem. The first step is to remove 
the mean from the observation. The second step 
is to perform a pre-whitening transformation which 
is based on eigen-value decomposition [19]: 

 𝐲(𝑡)  =  𝐕𝐱(𝑡) , (9) 

where  𝐕 =  𝐃−1/2𝐄𝑇 , 𝐄 =  (𝑒1. . . 𝑒𝑚) is the 
orthogonal matrix of the eigenvector of the 

covariance matrix Cx  =  E{xxT }, and D =
 diag(d1. . . dm) is a diagonal matrix formed by the 
eigenvalues of Cx. The whitened components will 
have the statistical properties of being 
uncorrelated, and their variances will be equal to 
unity [19]. This pre-processing reduces the source 
separation problem of finding an orthogonal 
(rotation) factor R, where RV =  W. 

3.2 MSC Criterion for BSS 

The orthogonal rotation matrix R is composed of a 
product of successive Givens rotations 𝑅(𝜃𝑖,𝑗)  ∈

 ℝ𝑚×𝑚, defined for 𝑖 <  𝑗 by 

 

𝑅(𝜃𝑖,𝑗  ) =

[
 
 
 
 
 
 
1 0 ⋯ ⋯ ⋯ ⋯ 0
0 ⋱ ⋮ ⋮ ⋮
⋮ ⋯ 𝑐 ⋯ 𝑠 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮
⋮ ⋯ −𝑠 ⋯ 𝑐 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 ⋯ ⋯ ⋯ ⋯ ⋯ 1]

 
 
 
 
 
 

 , (10) 

where 𝑐 =  𝑐𝑜𝑠(𝜃𝑖,𝑗) and 𝑠 =  𝑠𝑖𝑛(𝜃𝑖,𝑗) appear at 

the intersection of the i-th and j-th rows and 
columns. This represents a clockwise rotation of 

𝜃𝑖,𝑗 radians in the (𝑖, 𝑗) plane. For every pair (𝑖, 𝑗), 

under the restriction 1 <  𝑖 <  𝑗 <  𝑚, there exists 
a rotation angle. Thus, the number of rotation 
angles is 𝑀 =  𝑚(𝑚 −  1) ∕ 2. The new estimated 
components a given by 

 �̂�(𝜃) = 𝐑(𝜃)𝐕𝐱(𝑡), (11) 

 �̂�(𝜃1, 𝜃2, … , 𝜃𝑀) = 𝑅(𝜃1)𝑅(𝜃2)…𝑅(𝜃𝑀)𝐕𝐱(𝑡), (12) 

where 𝜃 =  [𝜃1, 𝜃2, . . . , 𝜃𝑀], and 

 𝐑(𝜃) =  𝑅(𝜃1)𝑅(𝜃2). . . 𝑅(𝜃𝑀). (13) 

The method consists in applying Givens 
rotations until the cost function had been 
minimized. 

A cost function for more than two sources can 
be derived if we use the sum of the MSC between 
all 𝑚(𝑚 −  1) ∕ 2 pairs of vectors (𝑙, 𝑘) of �̂�, as 
shown in [15]. We can express Γ𝐬  as the matrix of 
sum of coherence functions between all pairs of 
vectors of �̂� : 

Γ𝐬 =

[
 
 
 
 ∑|𝛾�̂�1�̂�1

(𝑓)|
2

∑|𝛾�̂�1�̂�2
(𝑓)|

2
⋯ ∑|𝛾�̂�1�̂�𝑚

(𝑓)|
2

∑|𝛾�̂�2�̂�1
(𝑓)|

2
∑|𝛾�̂�2�̂�2

(𝑓)|
2

⋮ ⋮

⋮ ⋮ ⋱ ⋮

∑|𝛾�̂�𝑚�̂�1
(𝑓)|

2
⋯ ⋯ ∑|𝛾�̂�𝑚�̂�𝑚

(𝑓)|
2
]
 
 
 
 

. 

(14) 

Since ∑|𝛾�̂�𝑘�̂�𝑙
(𝑓)|

2
= ∑|𝛾�̂�𝑙�̂�𝑘

(𝑓)|
2
, and 

∑|𝛾�̂�𝑙�̂�𝑘
(𝑓)|

2
= 1 for all 𝑓 when 𝑙 =  𝑘, Γ𝐬 is a 

symmetric matrix. When the vectors of  �̂�   are 

mutually uncorrelated, Γ𝐬  is a diagonal matrix. 
Then, is desirable to minimize the upper triangle 
terms of  Γ𝐬. In this way, only the upper triangle 
terms of (14) are considered in the cost 
function (15). 

 𝐉 = ∑ ∑ |𝛾�̂�𝑙�̂�𝑘
(𝑓)|

2
𝑙,𝑘  , (15) 

where 1 <  𝑙 <  𝑘 <  𝑀. 

Metaheuristics are widely implemented in 
multivariable problems [12, 24]. We implemented 
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the Simulated Annealing1 (SA) [22] method to find 
𝜃, the minimizer of 𝐉 in the range [0 < 𝜃 < 𝜋/2]. A 
fast temperature dropping schedule is used to 
improve the separation performance. The basic 
steps to achieve separation of independent 
components are shown in Algorithm 1. 

Algorithm 1: MSC-BSS algorithm 

1. Remove the mean from the observations.  

2.  Perform a pre-whitening transformation 
by Eq. (9).  

3. Get an initial solution 𝜃 with energy 𝐉: 

Pick a random initial solution 𝜃. 

Generate a rotation matrix by Eq. 
(13),  𝑅(𝜃).  

Generate the estimated sources by  
Eq. (12). 

Calculate the cost function 𝐉.  

4. Select an initial “high temperature”, 𝑇. 

5.  while the maximum number of iterations  
or minimum temperature is not reached  
do  

begin 

Pick a random “nearby”  
solution 𝜃𝑝.  

Generate a rotation matrix by 

  
1 Matlab’s Optimization toolbox parameters 

(simulannealbnd): TemperatureFcn: @temperaturefast; 
MaxIter: 𝑚*300;  

InitialTemperature: 0.1; ReannealInterval: 400. 

Eq. (13),  𝑅(𝜃𝑝).  

Generate the estimated sources 
by Eq. (12).  

Calculate the cost function 𝐉𝑝.  

Let ∆𝐉 = 𝐉𝑝 − 𝐉 

If  ∆𝐉 ≤ 𝟎 

𝜃 ← 𝜃𝑝 

else 

𝜃 ← 𝜃𝑝  with an 

acceptance probability2  

else 

Reject solution, 
(𝜃 ← 𝜃)  

end 

Reduce temperature 𝑇 by ∆𝑇 

 end while  

6. 𝜃 is the best solution found by the SA in 

the range [0, 𝜋/2].  

7.  Estimate the original sources by 
Eq. (12). 

4 Experiments and Results 

The MSC-BSS method was implemented in the 
ICALAB toolbox [7] and compared to other SOS 
methods (SOBI [1]). The signal-to-interference-

  
2 @acceptancesa:  Matlab’s simulated annealing 

acceptance function. 

Table 1. Montecarlo results for colored Gaussian sources; 𝜇 and 𝜎 are the SIR mean and standard deviation for 50 

tests, respectively; 𝑛𝑑 is the number of averaged segments used in the estimation of coherence 

Algorithm Colored Gaussian sources  SIRdB 

 (s1, s3) (s1, s2, s3) 

 nd μ σ μ σ 

SOBI  48.90 2e-9 41.01 0.01 

MSC-BSS 8 71.91 5.53 36.13 11.78 

MSC-BSS 16 71.84 4.58 39.60 10.95 

MSC-BSS 32 71.28 3.73 39.04 10.12 
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ratio (SIR) [6] index was used. The coherence 
function is calculated via the Welch method with 
50% of overlap between segments. A Hamming 
window is applied to every segment before 
averaging. 

4.1 Separation of Colored Gaussian Sources 

We consider the separation of colored Gaussian 
sources for mixtures of two and three sources. 
Three sources, s1, s2, and s3, were used for the 
experiments. They were obtained by low-pass 
filtering white Gaussian noise through a fourth 
order Butterworth filter with cut frequency of 0.4, 
0.7 and 0.9, respectively. The mixing matrix 𝐀 was 
generated randomly. Algorithm 1 was 
implemented with different number of averaged 
segments 𝑛𝑑  =  8, 16, 32 in the estimation of the 
coherence. 

Table 1 shows the comparison results for 50 
tests. From the results we see that the MSC 
method performance degrades as the number of 

sources to retrieve increases. Also, a reduction of 
the SIR’s standard deviation with an increasing 
number of averaged segments is observed.  

4.2 Separation of Colored Non-Stationary 
Sources 

In this section an example of mixed lung and 
cardiac sounds is considered. The purpose of this 
test is to verify the algorithm performance when 
non-stationary signals are used, although it may 
not reflect a real sources environment. The 
observations were generated with a heart sound 
and a respiratory sound taken from [10, 23], 
respectively. Each signal consisted of 60k 
samples sampled at a frequency of 8000Hz. 
Figure 1 shows the time series and power 
spectral density of the sources. 

In Table 2 we show the results of a Montecarlo 
simulation of 100 tests. In each test, the mixing 
matrix 𝐀 was generated randomly (uniform 

distribution). The matrix 𝐖 was estimated using 

 
Fig. 1. (a) Heart sound 𝑠1(𝑡), (b) 𝑃𝑠1𝑠1

 heart sound power spectral density,  (c) lung sound 𝑠2(𝑡),  

(d) 𝑃𝑠2𝑠2
 lung sound power spectral density 
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Algorithm 1, and the separation performance was 
obtained using the SIR performance index. The 
performance of the MSC-BSS algorithm is 
satisfactory regardless the sources are non-
stationary. 

4.3 An Example of Real fECG Extraction 

In this section we show the separation or 
enhancement of real fECG data by means of the 
proposed Algorithm 1. The data was obtained 
from the Abdominal and Direct Fetal 
Electrocardiogram Database which contains 
multichannel fetal electrocardiogram (FECG) 
recordings [21]. Each recording comprises four 
differential signals acquired from maternal 
abdomen and the reference direct fetal 
electrocardiogram registered from the fetal head. 
Additional information from [16]: signals recorded 
in labor, between 38 and 41 weeks of gestation; 
four signals acquired from maternal abdomen; 
direct electrocardiogram recorded simultaneously 
from fetal head; positioning of electrodes was 
constant during all recordings; Ag-AgCl 
electrodes (3M Red Dot 2271) and abrasive 
material to improve skin conductance (3M Red 
Dot Trace Prep 2236); Bandwidth: 1Hz - 150Hz 
(synchronous sampling of all signals); additional 
digital filtering for removal of power-line 
interference (50Hz) and baseline drift; sampling 
rate: 1 kHz; resolution: 16 bits. 

Figure 2 shows 5000 samples of the four 
channels recorded data. Each sensor provides a 
complex signal in which the fECG and mECG are 
contained along with other undesirable signals. 
Figure 3 shows the output of the proposed 
Algorithm 1. The direct fetal electrocardiogram is 
shown for purposes of comparison with the 
extracted fECG signal. The estimated source 3 
clearly shows the enhanced and denoised mECG. 
The estimated sources 1 and 2 show some 
background noise or undesired signals. The 
estimated source 4 shows the enhanced fECG 
but is still mixed with the mECG, due to this a 
further post-processing is conducted as shown in 
[31]. However, the BSS represents a very 
important first step in the enhancement of ECG 
signals. 

4.4 A Case of Separation of Mixed Gaussian 
Processes with iid Time Structure 

In this section we deal with the separation of 
Gaussian iid sources. The assumptions are the 
following: 

1. 𝐀 is of full column rank 𝑚 and orthogonal. 

2. The source signals 𝐬(𝑡) are statistically 
mutually independent iid Gaussian sources. 

As found in (8), for mixed Gaussian sources 
with iid time structure, the coherence estimate 
depends only on the power of the observed 
mixtures (variance maximization). Hence, the 
variance ratio between the sources can be used 
to find a transformation where the coherence is 
minimal. In Figure 2, an example is shown for two 
orthogonally mixed iid Gaussian WSS processes 

with a variance ratio of  𝜎𝑖 𝜎𝑗⁄ = 4, 𝐴 = [
2 0
0 1

]. 

Figure 2 is obtained by applying a rotation 
transformation 𝐑 to the observed mixtures from 

[−𝜋/4, 𝜋/4]. The minimum of the function 𝐉 occurs 
when 𝐑 =  𝐈. It is worth noting that the minimum 

of 𝐉 is not affected by the bias in the coherence 
estimate. Nonetheless, the bias is reduced with 
the increasing number of averaged segments, as 
we see, the minimum reaching zero. Algorithm 2 
is similar to Algorithm 1 except that the pre-
whitening step is omitted. 

Table 2. Montecarlo test results using non-stationary 

sources; 𝜇 and 𝜎 are the respective SIR mean and 

standard deviation, 𝑛𝑑 is the number of segments 

used in the estimation of coherence 

Algorithm Non-stationary sources 𝑺𝑰𝑹𝒅𝑩  

 𝑛𝑑 𝜇 𝜎 

SOBI  6.96 5.18 

MSC-
BSS 

8 37.63 0.0131 

MSC-
BSS 

16 38.31 0.0174 

MSC-
BSS 

32 38.54 0.0180 
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Fig. 2. Four channels mother ECG abdominal recording 

 

Fig. 3. Estimated sources with the proposed Algorithm 1  
and a direct fetal electrocardiogram recorded from the fetus head 
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Algorithm 2: MSC-BSSiid algorithm 

1. Remove the mean from the observations.  

2. Get an initial solution 𝜃 with energy 𝐉: 

Pick a random initial solution 𝜃. 

Generate a rotation matrix by Eq. 
(13),  𝑅(𝜃).  

Generate the estimated sources by 
�̂� = 𝐑𝐱(𝑡). 

Calculate the cost function 𝐉.  

3. Select an initial “high temperature”, 𝑇. 

4.  while the maximum number of iterations  
or minimum temperature is not reached  
do  

begin 

Pick a  random “ nearby”  
solution 𝜃𝑝.  

Generate a rotation matrix by 
Eq. (13),  𝑅(𝜃𝑝).  

Generate the estimated sources 
by �̂� = 𝐑𝐱(𝑡) 

Calculate the cost function 𝐉𝑝.  

Let ∆𝐉 = 𝐉𝑝 − 𝐉 

If  ∆𝐉 ≤ 𝟎 

𝜃 ← 𝜃𝑝 

else 

𝜃 ← 𝜃𝑝  with an 

acceptance probability3 

else 

Reject solution, 
(𝜃 ← 𝜃 )  

end 

Reduce temperature 𝑇 by ∆𝑇 

end while  

5. 𝜃 is the best solution found by the SA in 
the range [0, 𝜋/2].  

6. Estimate the original sources by  
�̂� = 𝐑𝐱(𝑡). 

  
3 @acceptancesa:  Matlab’s simulated annealing 

acceptance function. 

We consider a comparison of the extraction of 
the Gaussian iid sources with an increasing 
variance ratio. Two iid Gaussian WSS processes 
with zero mean were used for the test, 𝑠1(𝑡) and 

𝑠2(𝑡), where 𝑃𝑠1𝑠1  =  𝜎1
2 and 𝑃𝑠2𝑠2  =  𝜎2

2  =  1. 𝜎1
2 

was chosen accordingly to change the variance 
ratio from 1 to 16; 50 tests were performed per 
variance ratio. The observation vector was 

 

Fig. 4.  The cost function 𝑱 for two orthogonally mixed 

Gaussian iid sources. Every curve is generated from the 
coherence estimate using a specific number of 
averaged segments as indicated in the key. The 
variance ratio between the sources is  𝜎𝑖 𝜎𝑗⁄ = 4 

 

Fig. 5. SIR vs variance ratio sources. Results of 

separation performance for Gaussian sources with iid 
time structure; 216 samples were used in the test, 𝑖 =  1,
𝑗 =  2 
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generated by the generative model  �̂� =  𝐑(θ)𝐬(t) 
where 𝐑(𝜃) is a rotation matrix, Eq. (13), and 𝜃 is 
the rotation angle which was chosen randomly. 
The MSC-BSS and SOBI algorithm were used to 
estimate the matrix 𝐖 from the observations; the 
whitening step was not performed in this test. 

The separation performance of the Gaussian 
sources with iid time structure improves with an 
increasing ratio between the variances of the 
original signals. For a 2:1 ratio good separation is 
achieved. This can be seen in Figure 5, where a 
plot of the average SIR estimate for several 
variance ratio between the sources is shown. 
Unexpectedly, the SOBI algorithm performance 
improved gradually as the ratio of the variances 
between the signals increased. However, its 
performance is not comparable with the one 
obtained by the MSC-BSS algorithm. 

5 Conclusions 

In this paper we present a methodology for the 
BSS based on the coherence function to solve the 
problem of instantaneous linear mixtures. The 
proposed methodology seeks to minimize the cost 
function based on coherence by a heuristic 
method, simulated annealing. The results showed 
a satisfactory performance in comparison with a 
state of art method. In addition, we also present a 
special case where, modifying our methodology, 
iid Gaussian sources can be separated by 
variance maximization. This represents an 
advantage over other methods because those 
cannot treat this special case. 
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