
Designing Minimal Sorting Networks Using a Bio-inspired Technique

Blanca C. López-Ramírez and Nareli Cruz-Cortés

Centro de Investigación en Computación,
Instituto Politécnico Nacional, Mexico City,

Mexico

bcelopez@gmail.com, nareli@cic.ipn.mx

Abstract. Sorting Networks (SN) are efficient tools to
sort an input data sequence. They are composed by a
set of comparison-exchange operations called compara-
tors. The comparators are a priori fixed for a determined
input size. The comparators are independent of the input
configuration. SN with a minimal number of comparators
results in an optimal manner to sort data; it is a classical
NP-hard problem studied for more than 50 years. In this
paper we adapted a biological inspired heuristic called
Artificial Immune System to evolve candidate sets of SN.
Besides, a local strategy is proposed to consider the
information regarding comparators and sequences to be
ordered at a determined building stage. New optimal
Sorting Networks designs for input sizes from 9 to 15
are presented.

1 Introduction

Sorting Networks (SN) are tools utilized to sort
fixed-size input data. An SN is composed by a set
of comparators. Each comparator executes an ac-
tion compare-interchange between two elements
(a, b). The element a must be not greater than
b. Otherwise, the values must be interchanged to
(b, a). For a given input list of size n, its set of
comparators is applied to the list, then the output
should be a monotonically non-decreasing ordered
list. SN are called oblivious meaning that their
comparisons are independent of the input data or
previous comparisons [13, 14]. Unlike other well
known sorting algorithms (bubble sort, quicksort,
heapsort, etc.), the sequence and number of com-
parisons are exactly the same no matter the input
configuration (permutations).

Typically, SN are graphically depicted by n hori-
zontal lines (called buses) representing the n input
data (see Figure 1) and by some vertical lines
representing comparisons between the value at its

top extreme and the value at its bottom. If the value
at the top is greater than the value at the bottom,
these values must be swapped. The input data
are placed at the left, then they go through the
horizontal lines executing the comparisons found.
The output is obtained at the right. The data must
be ascendant sorted from top to bottom.

Consider, for example, an SN for n = 4 inputs
illustrated in Figure 1. Each input data is placed on
a horizontal line (bus), and the lines are labeled
as x0,x1,x2,x3. The vertical lines are the com-
parators c0, c1, c2, c3, c4, each receiving two values.
The comparators c0 and c1 are executed first, then
c2 and c3, and finally, c4 as follows: c0 evaluates
4 > 2, thus the values of x0 and x1 are swapped;
c1 evaluates 1 < 3, then the values of x2 and x3

remain without change. This process continues
until all the five comparators are applied and the
final list y0, y1, y2, y3 is obtained, which satisfies
y0 ≤ y1 ≤ y2 ≤ y3.

Co

C1

C2

C3

C4

X 0

X 1

X 2

X 3

y0

1

2

3

y

y

y

Fig. 1. Example of a Sorting Network with n = 4 inputs

To design optimal SN is a hard classical problem
extensively studied for decades by researchers.
Optimality can be considered according to differ-
ent criteria such as parallelism or the number of
comparisons performed; in this work we will refer
to optimal SN as those with minimal number of

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 731–739
doi: 10.13053/CyS-18-4-1959

ISSN 2007-9737

comparators. In the specialized literature, only
SN for small input sizes (less than 16) have been
found. Perhaps, the most intensively studied SN
are those for input size n = 16.

To determine if a certain SN is valid or not, it
is necessary to verify its ability to sort any input
configuration (permutation), which is an NP-hard
process.

The Artificial Immune System is a population-
based meta-heuristic utilized to solve complex
problems [8, 3, 7, 4]. Some algorithms have been
developed based on mechanisms observed in the
biological immune system. Specifically, the Clonal
Selection Algorithm was proposed to solve numer-
ical and combinatorial optimization problems.

Notice that the problem at hand is highly sen-
sitive to small changes, that is, any change of
comparators or their position strongly affects the
SN performance by turning it into an invalid one.
So, for our goals, the Clonal Selection algorithm
seems to be adequate basically because its main
variation operator is mutation; this results less dis-
ruptive than other operators such as crossover.
Besides, the mutation designed in this work can
be controlled to allow small variations in possible
solutions.

The Clonal Selection Algorithm is adapted to
find efficient SN, that is, SN with low number of
comparators. We found new designs for SN with
sizes from 9 to 15 with minimal comparators.

The rest of the paper is organized as follows.
In Section 2 some concepts concerning Sorting
Networks and previous related work are presented.
In Section 3 the Clonal Selection Algorithm of the
Artificial Immune System is explained. Section 4
presents our proposal. In Section 5 the results
and the new SN designs are presented. Finally, in
Section 6 some conclusions and future work lines
are given.

2 Sorting Networks

To better understand the SN illustrated in Figure
1, it can be interpreted as an algorithm presented
below:

Generally speaking, the SN efficiency can be
measured according to two criteria: 1) the number
of comparators needed to order n input data, and

Require: {X0, X1, X2, X3}
1: if (X0 > X1) then
2: swap (X0,X1)
3: end if
4: if (X2 > X3) then
5: swap (X2,X3)
6: end if
7: if (X0 > X2) then
8: swap (X0,X2);
9: end if

10: if (X1 > X3) then
11: swap (X1,X3);
12: end if
13: if (X1 > X2) then
14: swap (X1,X2);
15: end if
16: Y0 = X0;
17: Y1 = X1;
18: Y2 = X2

19: Y3 = X3;
20: return {Y0, Y1, Y2, Y3};

Algorithm 1: Sorting Network Algorithm for n =
4 corresponding to Figure 1

2) the parallel execution time spent by the SN.
Of course, this last criterion makes sense only if
the SN can be executed on a parallel architecture
where independent comparators are executed si-
multaneously. A set of independent comparators is
called a layer. Therefore, SN with less number of
layers are considered to be faster.

If an optimal SN for the input size n can be
designed (i. e., with a minimal number of com-
parators), it means that it is the best manner to
sort n data. Designing SN with a minimal number
of comparators and/or high parallelism is a clas-
sical and interesting open problem in Computer
Science. Actually, nowadays only the optimal SN
for input sizes 4 ≤ n ≤ 14 are known.

In order to verify the SN validity, i. e., if it actually
sorts any input configuration, it is necessary to
evaluate all the n! possible permutations. However,
the so called Theorem Zero-One [13] is utilized
to verify the SN validity reducing the number of
evaluations. This theorem affirms that, if an SN
sorts all 2n sequences of zeros and ones into a

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 731–739
doi: 10.13053/CyS-18-4-1959

732 Blanca Cecilia López Ramírez and Nareli Cruz Cortés

ISSN 2007-9737

non-decreasing order, then it will sort any arbitrary
sequence of n numbers.

In our example with n = 4, to prove the SN
validity by means of the Theorem Zero-One, we
have to test if all the 24=16 binary sequences with
length n are correctly sorted by the SN, i. e., if
all the zeros appear at the top followed by all the
ones. That is, we have to test each of the following
sequences {0000, 0001, 0010, ..., 1111}. In Figure 2,
for example, the sequence {1010} is tested by the
SN; the output at the right side is correctly sorted.
So, if all the 24 sequences can be correctly sorted,
then the SN is valid.

1

1

0

0

0

0

1

1
Fig. 2. Example of the SN for n = 4 to sort the binary
sequence 1010

The first known optimal SN were published in
1945 by P. N. Armstrong, R. J. Nelson, and D.
G. O’Connor for input sizes n = 4, 5, 6, 7, 8, with
5, 9, 12, 18, and 19 comparators, respectively
[14]. In 1964, R. W. Floyd designed a new SN
for n = 9. Later, in 1968, A. Waksman designed
an optimal SN with n = 10. G. Shapiro and
M. W. Green designed an SN for n = 12 with
39 comparators. Since 1960 some researchers
have intensively studied the SN with n = 16. In
1969, Green found an optimal solution with only 60
comparators.

In early 90’s, D. Hillis [10] used an evolutionary
strategy based on a co-evolutive schema, finding
an optimal SN with n = 16 by using a subset of
comparators from Green’s SN as an initialization
process. In 1995, Hugues Jullie [11] proposed a
method called Evolving Non-Determinism to find
some solutions for SN with input sizes 9 ≤ n ≤ 16.

Some recent works can be found in specialized
literature mainly focused on reducing the execution
time and algorithms’ complexity. However, there
have not been found better solutions than the pre-
vious ones in terms of the number of comparators

that conform SN. For example, in 1997, J. Koza
applied Genetic Programming able to find optimal
solutions only for an SN with the size n = 7.
In 2005, Choi and Moon [2] applied a Genetic
Algorithm with local search capable to find some
SN with n = 16 using 20 comparators based on
Greens’s optimal SN.

This paper proposes a scheme to design min-
imal SN without using predefined comparators.
This approach is based on the Clonal Selection
Algorithm of the Artificial Immune System. Some
modifications are proposed to make it suitable for
the SN optimization problem. The results show the
capability of our technique to generate SN different
from those obtained by previous works.

3 The Clonal Selection Algorithm

From the information processing point of view, the
biological immune system has a number of inter-
esting features such as intruder detection, memory,
fault tolerance, pattern recognition, among others.
The immune system functioning is very complex
and not completely understood by the scientific
community; however, there exist some models and
theories trying to explain some specific process, for
example, the Clonal Selection Theory proposed by
Burnet in 1959 [1]. In most general terms, this
theory establishes that only antibodies with high
affinity regarding the external antigens will prolif-
erate by cloning themselves. Then, these clones
undergo some random changes named somatic
hypermutation to improve their affinity and increase
their capability to attach to and eliminate the anti-
gens.

The biological immune system has inspired a
set of meta-heuristics to solve difficult problems in
Computer Science and Engineering. Specifically,
the Clonal Selection Algorithm was proposed in [8]
and used to solve mainly Computer Security and
Optimization problems [6, 9, 5, 12]. A general idea
of this algorithm is that a set of antibodies includes
potential solutions, and the antigen is the objec-
tive optimization problem at hand. A numerical
value (calledaffinity) is assigned to each antibody,
which represents how well the antibody solves the
problem. The antibody’s cloning probability is as-
signed proportional to its affinity value. That is,

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 731–739
doi: 10.13053/CyS-18-4-1959

Designing Minimal Sorting Networks Using a Bio-inspired Technique 733

ISSN 2007-9737

Low affinity
Antibody

High affinity
Antibody

Antigen

Fig. 3. According to the Clonal Selection Theory, only
antibodies with high affinity are allowed to be cloned;
then some mutations are applied to them

for antibodies with high affinity values, high cloning
probabilities are assigned, and vice versa. In other
words, best antibodies receive a higher quantity of
clones, meanwhile worst ones create only a small
quantity of clones.

Besides, the antibodies’ hypermutation probabil-
ities are inversely proportional to their affinity val-
ues. So, antibodies with high affinity undergo small
changes through hypermutation, and vice versa.
After these cloning and hypermutation processes
are performed, a large quantity of cells appear, but
only the best cells are allowed to survive in order to
initiate a new iteration of the algorithm. This idea is
illustrated in Figure 3.

4 Proposal

In general, our idea is to use an Artificial Immune
System by means of the Clonal Selection Algorithm
as a global strategy to minimize the number of
comparators of the SN (which is defined as the
affinity value). Besides, a local strategy is designed
to select the comparators that will conform the SN.
It is a process that assigns a fitness value to can-
didate comparators to be selected at a determined
building stage.

The algorithm handles a set S of valid SN. Each
element s, with s ∈ S, is an SN represented as a list

of comparators. The set S is evolved by the Clonal
Selection Algorithm to minimize the length of each
s which is equivalent to minimizing the number of
comparators that conform the SN.

The Clonal Selection Algorithm for a given input
size n is presented as Algorithm 2. It generates a
set S of valid SN (Line 1). The quantity of com-
parators of an element s is assigned as its affinity
value. Next, the elements s are cloned (Line 3),
and the resulting clones are mutated (Line 4). The
best solutions are selected to update S (Line 6).
This process is repeated a predetermined number
of times.

More details about the representation, initial pop-
ulation, cloning, and mutation are explained in what
follows.

Require: n = input size of the SN.
1: Generate a random initial set {S}

of valid SN (of size |S|);
2: Assign affinity value to each element s with

s ∈ S;
3: Clone each s proportionally to their affinity

value
to conform the set of clones {K};

4: Apply mutation to k, with k ∈ K, with
probability inversely
proportional to its affinity value;

5: Compute the affinity value
for each modified k;

6: Select the best |S| solutions from {S ∪K}
to update S;

7: Repeat from Step 3 a determined
number of times;

8: return The element of {S} with the best
affinity value.

Algorithm 2: Proposed Clonal Selection Algo-
rithm to generate minimal SN

4.1 Representation

A potential SN is represented as a list of valid
comparators. Each comparator is written as a pair
(x, y) where x and y are indexes to the top and
bottom buses, respectively, with 0 ≤ x, y ≤ n − 1
and x < y. This representation allows solutions

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 731–739
doi: 10.13053/CyS-18-4-1959

734 Blanca Cecilia López Ramírez and Nareli Cruz Cortés

ISSN 2007-9737

with variable length which depends on the number
of comparators conforming the SN.

For example, the SN shown in Figure 1 would be
represented as

(0,1)(2,3)(0,2)(1,3)(1,2).

4.2 Initial Set S of SN

The initial set {S} of SN (Algorithm 2, Step 1) is
built randomly, but it is restricted to contain only
valid SN. That is, each s ∈ S should sort1 any
binary representation of the numbers from 0 to
2n − 1 (see Theorem Zero-One in Section 2). For
that sake the Algorithm 3 is proposed. The inputs
of this algorithm are the following sets:

— The set {B} conformed by the integer num-
bers from 0 to 2n − 1 represented as binary
chains of length n, and

— The set {C} of all possible comparators. Each
comparator c ∈ C is written as a pair (x, y)
where x and y are the comparator indexes to
the top and bottom buses, with 0 ≤ x, y ≤ n−
1, and x < y. The complete list is

C ={(0, 1), (0, 2), ..., (0,n− 1), (1, 2), (1, 3),
(1)

..., (1,n− 1), ..., (n− 2,n− 1)}.

This algorithm returns the set {S} of size |S| with a
random initial population. Notice that the elements
of S can be of different length.

4.3 Affinity Function

Affinity is defined as the number of comparators
that conform s (s ∈ S). We try to minimize this
function.

1Recall that a sorted binary chain in B means that all the
zeros are at the top and the ones at the bottom.

Require: n, {B}, {C}
1: for i=0 to |S| do
2: j = 0;
3: Copy {B} to {B′}
4: Randomly select an element c with c ∈ C;
5: Add c into Si,j ;
6: Apply c to each element in B′ ;
7: Remove the sorted binary chains of B′;
8: j++;
9: Repeat from Step 4 until B′ is empty;

10: end for
11: return {S}

Algorithm 3: Generation of the random initial
set {S} (from Step 1, Algorithm 2)

4.4 Cloning

Cloning (Line 3, Algorithm 2) consists in producing
copies of current solutions s. Solutions with better
affinity values will produce more copies of them-
selves, and vice versa. The number of clones is
computed as follows:

— Sort the elements s (s ∈ S) according to their
affinity value from the best to the worst,

— The number of clones # for the i-th element si
is computed as

#si =

|S|∑
i=1

|S|
i
, (2)

where |S| is the number of elements of the
set S.

4.5 Mutation

The hypermutation (or just mutation) is a process
applied to clones to induce random changes to
their configuration. This process is applied by
choosing a point m of s, wiping out all the compara-
tors after it, then the missing part is built again. The
mutation rate should be high for clones with worse
affinity values, and vice versa. A big change is
introduced if the point m is closer to the beginning
of s (at the left), and small changes, if m is closer
to the end. The mutation process is performed by

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 731–739
doi: 10.13053/CyS-18-4-1959

Designing Minimal Sorting Networks Using a Bio-inspired Technique 735

ISSN 2007-9737

Algorithm 4. Two different fitness functions are pro-
posed to select a comparator at each stage. The
first function (named F1) considers the quantity
of binary chains in B that remain unsorted after
the comparator is applied. The second function
(named F2) considers the total quantity of bits in
B that are wrong after the comparator is applied.
Each of these fitness functions is randomly se-
lected with a probability pF1 (Lines 7 to 22). The
inputs of this algorithm are the following items:

— The clone k to be mutated;

— L which is the length of the original clone k,
that is, the number of comparators that form k;

— The probability pF1 to choose the fitness func-
tion F1;

— The set {B} conformed by the integer num-
bers from 0 to 2n − 1 represented as binary
chains of length n;

— The set {C} of all the possible comparators.

0

3
2
1

4
5
6
7
8

Fig. 4. New SN design for n = 9 with 25 comparators
and 9 layers

0

3

2

1

4

5

6

7

8

9

Fig. 5. New SN design for n = 10 with 30 comparators
and 8 layers

0

3
2
1

4
5
6
7
8
9

10

Fig. 6. New SN design for n = 11 with 35 comparators
and 11 layers

0

3
2
1

4
5
6
7
8
9

10
11

Fig. 7. New SN design for n = 12 with 39 comparators
and 9 layers

0

3
2
1

4
5
6
7
8
9

10
11

12

Fig. 8. New SN design for n = 13 with 45 comparators
and 11 layers

5 Experimental Results

The proposed algorithm was used to design effi-
cient SN for input sizes from n = 9 to n = 15.
Table 1 shows comparison against the algorithms
presented in Valsalam [15], and Choi and Moon
[2]. The columns labeled with L show the number
of comparators in the SN. The symbol P denotes
the number of layers which represent the SN par-
allelism. Besides, the columns with Ini indicate
the number of initial comparators that the algorithm
takes from Green’s SN [13].

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 731–739
doi: 10.13053/CyS-18-4-1959

736 Blanca Cecilia López Ramírez and Nareli Cruz Cortés

ISSN 2007-9737

Require: k = A clone to be mutated
L = Length of k
pF1= Probability to select F1 as fitness function {C}, {B}

1: Copy {B} to {B′}
2: Select a mutation point m with 0 ≤ m ≤ L
3: j ← m
4: Wipe out all the elements in k from m to L
5: Apply the comparators of k to B′

6: Remove the sorted elements from B′

7: if pF1 then
8: for i=0 to |C| do
9: Copy B′ to Temp

10: Apply the comparator ci to the chains in Temp
11: Remove the sorted chains from Temp
12: Assign the fitness of ci as the number of chains in Temp
13: end for
14: else
15: for i=0 to |C| do
16: Copy B′ to Temp
17: Apply the comparator ci to the chains in Temp
18: Remove the sorted chains from Temp
19: Compute the Hamming distance between the elements of Temp and their corresponding

already sorted sequences
20: Assign the fitness of ci as that Hamming distance
21: end for
22: end if
23: Select the comparator c∗ with the minimal fitness value
24: Aggregate the comparator c∗ in kj
25: j++;
26: Apply the comparator c∗ to all the elements in B′

27: Remove the sorted binary chains of B′

28: Repeat from Line 7 until B′ is empty
29: k′ ← k
30: return {k′}

Algorithm 4: Hypermutation process applied to a clone k (from Line 4, Algorithm 2)

All the SN found by the proposal are new de-
signs. They are presented in Figures 4, 5, 6, 7, 8,
9, and 10, for n = 9 to n = 15, respectively.

For the case of n = 10 in D. Knuth’s book [13],
two different SN are presented: the first with 29
comparators and 9 layers, and the second with 31
comparators and 7 layers. Our algorithm found an
SN with 30 comparators and 8 layers which is a
compromise solution between these two.

6 Conclusions

The proposed Clonal Selection algorithm works as
a global strategy to look for SN with minimal num-
ber of comparators. However, it was necessary
to incorporate a local strategy in order to improve
the results. Such strategy was designed by means
of the mutation operator. It considers a fitness
function related to a specific comparator at a deter-
mined building stage. Local information is related
to the quantity of sequences that a determined

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 731–739
doi: 10.13053/CyS-18-4-1959

Designing Minimal Sorting Networks Using a Bio-inspired Technique 737

ISSN 2007-9737

Table 1. Comparison of Choi and Moon [2], Valsalam [15], and the proposed technique for SN with input sizes from
n = 9 to n = 15

Best Choi Valsalam SIA
n Known Moon

L P L Ini P L Ini P L Ini P
9 25 7 - - - 25 - 9 25 - 9

10 29 9 29 - - 29 - 10 30 - 8
11 35 8 - - - 35 - 11 35 - 11
12 39 9 39 18 - 39 - 11 39 - 9
13 45 10 - - - 45 - 16 45 22 11
14 51 9 - - - 51 - 16 51 24 13
15 56 9 - - - 56 - 15 56 29 15

0

3
2
1

4
5
6
7
8
9

10
11

12
13

Fig. 9. New SN design for n = 14 with 51 comparators
and 13 layers

0

3
2
1

4
5
6
7
8
9

10
11

12
13
14

Fig. 10. New SN design for n = 15 with comparators
and layers

comparator can sort at that moment and how dis-
ordered these sequences are. The experimental
results showed that this strategy is able to find new
optimal SN in terms of the number of comparators
and parallelism.

As future work we plan to experiment for SN

with larger input sizes, and to treat the problem
as a biobjective one, in which parallelism is also
considered in an objective function.

References

1. Burnet, F. (1976). A modification of jerne’s theory
of antibody production using the concept of clonal
selection. A Cancer Journal for Clinicians, Vol. 26,
pp. 119–121.

2. Choi, S.-S. & Moon, B. R. (2005). A graph-based
lamarckian-baldwinian hybrid for the sorting network
problem. IEEE Trans. Evolutionary Computation,
Vol. 9, No. 1, pp. 105–114.

3. Coelho, G. P. & Von Zuben, F. J. (2006). Omni-
ainet: an immune-inspired approach for omni opti-
mization. Proceedings of the 5th international con-
ference on Artificial Immune Systems, ICARIS’06,
Springer-Verlag, Berlin, Heidelberg, pp. 294–308.

4. Cruz Cortés, N. & Coello Coello, C. A. (2003).
Multiobjective optimization using ideas from the
clonal selection principle. GECCO, pp. 158–170.

5. Cutello, V. & Nicosia, G. (2002). An immunological
approach to combinatorial optimization problems.
Proceedings of the 8th Ibero-American Conference
on AI: Advances in Artificial Intelligence, IBERAMIA
2002, Springer-Verlag, pp. 361–370.

6. Dasgupta, D. (1999). Artificial Immune Systems
and Their Applications. Springer, Verlag, Berlin.

7. de Castro, L. N. & Timmis, J. (2002). Artificial
immune systems - a new computational intelligence
paradigm. Springer.

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 731–739
doi: 10.13053/CyS-18-4-1959

738 Blanca Cecilia López Ramírez and Nareli Cruz Cortés

ISSN 2007-9737

8. de Castro, L. N. & Zuben, F. J. V. (2002). Learning
and optimization using the clonal selection principle.
IEEE Trans. on Evolutionary Computation, Vol. 6,
No. 3, pp. 239–251.

9. Harmer, P. K., Williams, P. D., Gunsch, G. H., &
Lamont, G. B. (2002). An artificial immune sys-
tem architecture for computer security applications.
IEEE Transactions on Evolutionary Computation,
Vol. 6, pp. 252–280.

10. Hillis, W. D. (1990). Co-evolving parasites improve
simulated evolution as an optimization procedure.
Phys. D, Vol. 42, No. 1-3, pp. 228–234.

11. Juillé, H. (1995). Evolution of non-deterministic in-
cremental algorithms as a new approach for search
in state spaces. Third European Conference on
Artificial Life, pp. 27–32.

12. Kim, J., Bentley, P. J., Aickelin, U., Greensmith,
J., Tedesco, G., & Twycross, J. (2008). Immune
system approaches to intrusion detection - a review.
CoRR, Vol. abs/0804.1266.

13. Knuth, D. E. (1998). The Art of Computer Program-
ming, Volume 3: (2Nd Ed.) Sorting and Searching.
Addison Wesley Longman Publishing Co., Inc., Red-
wood City, CA, USA.

14. O’Connor, D. G. & Nelson, R. J. (1962). Sorting
system with n-line sorting switch. United States
Patent number 3,029,413, Vol. 6.

15. Valsalam, V. K. & Miikkulainen, R. (2011). Utiliz-
ing symmetry and evolutionary search to minimize
sorting networks. Technical Report AITR-11-09,
Department of Computer Sciences, The University
of Texas at Austin, Austin, TX.

Blanca C. López-Ramírez obtained her PhD in
August, 2014. She is professor at the Departament
of Systems and Computing of Instituto Tecnologico
de Roque, Celaya, Gto., Mexico. Her research
interests are bio-inspired algorithms and their ap-
plications.

Nareli Cruz-Cortés obtained her PhD in 2004 from
Cinvestav-IPN, Mexico. She is research professor
at Centro de Investigación en Computación, Insi-
tuto Politécnico Nacional, Mexico City, Mexico. She
is National Researher of Mexico (SNI) level 1. Her
research interests are cybersecurity algorithms,
bio-inspired algorithms and their applications.

Article received on 12/04/2014; accepted on 03/06/2014.

Computación y Sistemas, Vol. 18, No. 4, 2014, pp. 731–739
doi: 10.13053/CyS-18-4-1959

Designing Minimal Sorting Networks Using a Bio-inspired Technique 739

ISSN 2007-9737

