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Abstract. It has been recently shown that the fully
enriched µ-calculus, an expressive modal logic, is un-
decidable. In the current work, we prove that this result
does not longer hold when considering finite tree models.
This is achieved with the introduction of an extension
of the fully enriched µ-calculus for trees with numerical
constraints. Contrastively with graded modalities, which
restrict the occurrence of immediate successor nodes
only, the logic introduced in this paper can concisely
express numerical constraints on any tree region, as for
instance the ancestor or descendant nodes. In order to
show that the logic is in EXPTIME, we also provide a
corresponding satisfiability algorithm. By succinct reduc-
tions to the logic, we identify several decidable exten-
sions of regular tree languages with counting and inter-
leaving operators. It is also shown that XPath extensions
with counting constructs on regular path queries can be
concisely captured by the logic. Finally, we show that
several XML reasoning problems (XPath queries with
schemas), such as emptiness and containment, can be
optimally solved with the satisfiability algorithm.

Keywords. Automated reasoning, modal logics, arith-
metical constraints, formal languages, XPath.

1 Introduction

This work is devoted to the development and anal-
ysis of automated decision procedures for expres-
sive tree logics. More precisely, we are interested
in satisfiability algorithms for logics able to effi-
ciently express counting constraints. We use these
algorithms to model several reasoning problems
in formal languages, such as the equivalence and
containment of expressions.
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under the supervision of Vincent Quint and Nabil Layaı̈da.

Regular expressions are used to denote set of
finite sequences of symbols (strings or words) from
a finite alphabet. Consider for example a regular
expression (pq)? over the signature (alphabet) Σ =
{p, q}. This expression is interpreted as the follow-
ing set: {ε, pq, pqpq, pqpqpq, . . . , pqpqpqpqpqpq . . .}.

It is well known that some formal languages
easily described in English may require voluminous
regular expressions. For instance, as pointed out
in [15], the language L2a2b of all strings over Σ =
{a, b, c} containing at least two occurrences of a
and at least two occurrences of b requires a large
expression:

(a|b|c)?a(a|b|c)?a(a|b|c)?b(a|b|c)?b(a|b|c)? |
(a|b|c)?a(a|b|c)?b(a|b|c)?a(a|b|c)?b(a|b|c)? |
(a|b|c)?a(a|b|c)?b(a|b|c)?b(a|b|c)?a(a|b|c)? |
(a|b|c)?b(a|b|c)?b(a|b|c)?a(a|b|c)?a(a|b|c)? |
(a|b|c)?b(a|b|c)?a(a|b|c)?b(a|b|c)?a(a|b|c)? |
(a|b|c)?b(a|b|c)?a(a|b|c)?a(a|b|c)?b(a|b|c)?.

If we add intersection ∩ to the operators for form-
ing regular expressions, then the language L2a2b

can be expressed more concisely with the following
expression:

((a|b|c)?a(a|b|c)?a(a|b|c)?)∩
((a|b|c)?b(a|b|c)?b(a|b|c)?).

In logical terms, intersection offers a dramatic
reduction in expression size, which is crucial when
the complexity of the decision procedure depends
on the formula size. More precisely, it was shown
in [14] that simple regular languages (without in-
tersection) produce double-exponential larger ex-
pressions than regular formalisms equipped with
intersection.
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If we now consider a formalism equipped with
the ability to describe numerical constraints on the
frequency of occurrences, we get another expo-
nential reduction in size [18]. For instance, the
above expression can be formulated as follows:

((a|b|c)?a(a|b|c)?)2 ∩ ((a|b|c)?b(a|b|c)?)2.

Although counting constraints does not increase
the expressive power of regular languages, it has
a drastic impact on succinctness, thus making rea-
soning over these languages harder. Indeed, rea-
soning on this kind of counting extensions without
relying on their expansion (in order to avoid syn-
tactic blow-ups) is often tricky. Determining satis-
fiability, containment, and equivalence over these
classes of extended regular languages typically
requires involved algorithms with higher complexity
than ordinary regular languages. In [12], different
extensions of regular expressions with intersection,
counting constraints, and interleaving have been
considered over strings, and for describing content
models of sibling nodes in XML schema languages.
The complexity of the inclusion problem over these
different language extensions and their combina-
tions typically ranges from polynomial time to ex-
ponential space.

Most XML schema languages, such as DTDs,
XML Schema or RELAX NG, can be effectively
embedded into regular tree languages (types) [22],
which can be seen as regular expressions inter-
preted on sets of trees. In this work, we pro-
vide an optimal logic-based reasoning framework
for regular tree languages equipped with counting
operators.

The XPath language is the standard query lan-
guage for XML documents, and it is also an impor-
tant part of other XML technologies such as XSLT
and XQuery. XPath expressions look like directory
navigation paths over unranked tree structures.
From a given context node, XPath expressions
select subsets of tree nodes. One of the reasons
why XPath is popular for web programming resides
in its ability to express multi-directional naviga-
tion. Indeed, XPath expressions may use recursive
navigation to access descendant nodes, and also
backward navigation to reach previous siblings or
ancestor nodes.

XPath expressions can also express cardinality
constraints. In contrast with regular expressions
and types, cardinality constraints in XPath expres-
sions can be imposed in nodes other than the
children ones. From [25], we know that express-
ing cardinality restrictions on nodes accessible by
recursive multidirectional paths may introduce an
extra-exponential cost or may even lead to un-
decidable formalisms. The logic-based reasoning
framework introduced in the current work is also
able to efficiently capture decidable extensions of
XPath with counting constructs.

2 Related Work and Motivation

Here we review state of the art on the modern
use of mathematical logic in automated reasoning
on tree structures. In particular, we focus on rea-
soning frameworks able to express counting con-
straints. Moreover, we closely follow the application
of these reasoning frameworks in the analysis of
XML programming languages.

The encoding of Peano postulates about Arith-
metic (PA) into First Order Logic (FOL) resulted in
the first order theory of multiplication and addition,
which is well-known to be undecidable: there is
no algorithm able to decide whether an arithmetic
expression is valid or not. It is also will-known that
Presburger showed that the first order theory of
addition, that is, PA without multiplication, is decid-
able. This theory was called Presburger Arithmetic
(PresA). Since then, many other related decidable
theories have been identified. For instance, it
was shown in [19] that the existential theory of
addition and divisibility is also decidable. PresA
found application in practically all areas of Com-
puter Science. For instance, in Program Verifica-
tion, balanced tree structures, in contrast with their
unbalanced counterpart, require frameworks able
to capture counting constraints [20]. In the XML
setting, extensions of tree logics with Presburger
constraints were reported in [8] and [24].

The main motivation for study of second order
theories to model formal languages came with the
classical result of Büchi that established the exact
correspondence between regular languages (those
definable by tree automata) and Monadic Second
Order Logic (MSO). Seidl in [23] designed a logic
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combining MSO for finite trees with Presburger
Arithmetic, where the cardinality constraints are
imposed only on children nodes. This logic was in-
troduced to support reasoning on XML documents,
that is, unranked trees. Unfortunately, this logic
turned out to be undecidable.

Modal logics have been identified as fragments
of FOL and MSOL with nice computational proper-
ties, which places them as more attractive alterna-
tives. The µ-calculus is a propositional multimodal
logic extended with least µ and greatest fixpoints ν.
These fixpoints provide a great expressive power:
actually, µ-calculus turned out to encompass all
program-based logics, that is, all families of linear
temporal logics, Computational Tree Logic (CTL),
Propositional Dynamic Logic (PDL), and many De-
scription Logics (DL). The expressive power of
the µ-caluclus coincide with MSO [17], whereas
its complexity is much better, EXPTIME-complete
[6]. The fully enriched µ-calculus is an extension
consisting of nominals, inverse and graded modal-
ities. Nominals are used to denote individuals,
backward navigation is achieved through inverse
modalities, and graded modalities are specialized
constructs to denote numerical constraints on im-
mediate neighbor nodes. However, this expressive
logic is undecidable [6]. In the current work, we
show this result does not hold any more when
considering tree models, that is, we showed that
the fully enriched µ-calculus for trees is decidable,
moreover, we show it is in EXPTIME.

In the context of trees, graded modalities are lim-
ited to express constraints on children nodes only.
Constraints on further nodes have been recently
studied in [10, 5]. In these works CTL is extended
with numerical constraints on downward CTL ex-
pressions, for instance, on expressions denoting
descendant nodes. In this work we also propose
an extension of the fully enriched µ-calculus with
global numerical constraints. These constraints
can denote numerical restrictions in any tree re-
gion, for instance, in descendants or ancestors. In
this work we show that the fully enriched µ-calculus
for trees with global numerical constraints is also in
EXPTIME.

More general constraints in the context of tree
models have been recently proposed in [8, 24,
9, 3]. These constraints are written in terms of

Presburger arithmetical expressions, however, they
are limited to constrain children nodes only.

3 The µ-calculus with Global Numerical
Constraints

In this section we introduce an extension of the
fully enriched µ-calculus for finite unranked tree
models with global numerical constraints. That is,
this logic is equipped with operators for recursion,
inverse programs, global counting constraints, and
nominals.

Definition 3.1 (Syntax). The set of formulas in the
fully enriched µ calculus is defined by the following
grammar:

φ := p | x | ¬φ | φ ∨ φ | 〈m〉φ | µx.φ | φ > k.

Variables are assumed to be bounded and un-
der the scope of a modal (〈m〉φ) or a counting
(φ > k) formula. Formulas are interpreted as
subset tree nodes: propositions p are used to label
nodes; negation and disjunction are interpreted as
complement and union of sets, respectively; modal
formulas 〈m〉φ are true in nodes, such that φ holds
in at least one accessible node through adjacency
m, which may be either ↓, →, ↑ or ←, which in
turn are interpreted as the children, right sibling,
parent and left sibling relations, respectively; µx.φ
is interpreted as a least fixed-point; and counting
formulas φ > k hold in every node of the tree model
if and only if φ holds in at least k + 1 nodes in the
entire tree (see Definition 3.2).

We also use the following notation: > = p ∨ ¬p,
φ ∧ ψ = ¬(¬φ ∨ ¬ψ), [m]φ = ¬〈m〉¬φ, νx.φ =
¬µx.¬φ [x/¬x], (φ ≤ k) = ¬(φ > k), and φ#k for
# ∈ {≤,>}. Note that > is true in every node,
conjunction φ ∧ ψ holds whenever both φ and ψ
are true, [m]φ holds in nodes where φ is true in
each accessible node throughm, νx.φ is a greatest
fixed-point, and φ ≤ k holds in nodes where the
number of its φ children nodes is less or equal than
the constant k.

We can express existential statements with
counting formulas. For instance, if we want to
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select the nodes expressed by a formula ψ, only
if there is a node satisfying φ, then we write

(φ> 0) ∧ ψ.

Universality can also be expressed. The follow-
ing formula selects the ψ nodes when every node
satisfies φ:

[(¬φ)≤ 0] ∧ ψ.

Note that with counting formulas it is also pos-
sible to restrict the number of nodes occurring in
a particular region. First, consider, for instance,
the descendants region. This can be expressed
as follows:

µx.〈↑〉(p0 ∨ x).

This formula denotes the descendants of the p0
nodes. Recall that ↑ denotes the parent relation.
Hence, the formula holds in nodes from where,
by recursive navigations through parents, nodes
named p0 are accessible. Then, if we want to
restrict the number of descendants of the p0 nodes
in a tree, we write

[µx.〈↑〉(p0 ∨ x)]≤ 6.

Now, if we want to restrict the number of some
descendants, say, descendants named p1, then we
write

([µx.〈↑〉(p0 ∨ x)] ∧ p1)≤ 6.

Note that ([µx.〈↑〉(p0 ∨ x)] ∧ p1)≤ 6 holds due to
all p1 descendants of each p0 node. That is, if in
a model there are 2 nodes named p0 with 2 and
4 descendants named p1, respectively, then the
formula ([µx.〈↑〉(p0 ∨ x)] ∧ p1)≤ 6 holds due to all
6 descendants of both p0 nodes (see Fig. 1).

However, one may also want to restrict the num-
ber of descendants of a particular node. This can
be done by isolating the origin node from where
navigation starts (during counting). For this pur-
pose we first define the following formula:

(o≤ 1) ∧ (o> 0).

In this formula, proposition o occurs exactly once
in a model. If we want to identify where o occurs,
then we write:

(o= 1) ∧ o,

p2

p0

p1
φ

o

p2
φ

p1
φ

p0

p1
φ

p2

p1
φ

φ p1
φ

p1
φ

Fig. 1. Tree model example: descendant re-
gion of p0 nodes is denoted by the formula φ ≡
µx.〈↑〉(p0 ∨ x); formula (φ ∧ p1)≤ 6 holds because the
p0 nodes have exactly 6 descendants labeled with p1;
(µx.[(p0 ∧ o ∧ o = 1) ∨ 〈↑〉x] ∧ p1)≤ 2 is true because
there is a p0 node, the one marked with o, with 2 de-
scendants named p1

where o= 1 stands for (o≤ 1) ∧ (o> 0). Note that
formula (o= 1)∧o selects a node only if the formula
is true in exactly that node, then this formula can be
seen as a nominal [6].

Now since we can isolate a single node in a
model, we can thus restrict the counting from a
particular node, consider, for instance, the follow-
ing formula:

[µx.〈↑〉([(o= 1) ∧ o ∧ p0] ∨ x)]≤ 2.

This formula is true in models where there is a
single p0 node with no more than 2 descendants. If
in addition, we want to name the descendants, say,
p1, then we write

[µx.〈↑〉([(o= 1) ∧ o ∧ p0] ∨ x) ∧ p1]≤ 2.

A graphical representation of the examples
above is depicted in Fig. 1.

In order to provide a formal semantics, we need
some preliminaries. A tree structure T is a tuple
(P ,N ,R,L), where P is a set of propositions; N is
a finite set of nodes; R : N ×M × N is a relation
between nodes and modalities M = {↓,→, ↑,←}
forming a tree, written n ∈ R(n,m); and L : N × P
is a labeling relation, written p ∈ L(n).

Given a tree structure, a valuation V of variables
is defined as a mapping from the set of variables X
to the nodes V : X 7→ N .
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Definition 3.2 (Semantics). Given a tree structure
T and a valuation V , formulas in the fully enriched
µ-calculus are interpreted as follows:

[[p]]TV = {n | p ∈ L(n)} ,

[[x]]TV = V (x),

[[¬φ]]TV = N \ [[φ]]TV ,

[[φ ∨ ψ]]TV = [[φ]]TV ∪ [[ψ]]TV ,

[[〈m〉φ]]TV =
{
n | R(n,m) ∩ [[φ]]TV 6= ∅

}
,

[[µx.φ]]TV =
⋂{
N ′ ⊆ N

∣∣∣ [[φ]]T
V [N′/x] ⊆ N

′
}

,

[[φ > k]]TV =

{
N if |[[φ]]TV | > k,
∅ otherwise.

Recall that the fully enriched µ-calculus in the
context of trees can express numerical constraints
on children nodes only. It is clear that the logic
introduced in the current work can also express
these kind of constraints, consider, for instance, the
following formula:

p1 ∧ o ∧ o = 1 ∧ [p2 ∧ µx.〈↑〉o ∨ 〈←〉x] > k.

This formula holds in a p1 node with at least k
children named p2. Moreover, it has been recently
shown that global numerical constraints are expo-
nentially more succinct than the graded modali-
ties [4].

4 Regular Path Queries with Counting

The navigation core of the XPath query language
(for XML documents) has been formalized as reg-
ular path queries, and it is known to correspond
to FOL2 [25, 21]. In this Section, we introduce
an extension of regular path queries with counting
constructs.

We now describe the extension of regular paths
with counting constructs.

Definition 4.1 (Syntax). The syntax of regular path
queries with counting on children paths ρ is given
as follows:

α := ↓|→|↑|←|↓?|↑?,
% :=> | α | p | α : p | %/% | %[β],

β :=% > k | β ∨ β | ¬β,

ρ :=% | /ρ | ρ ∪ ρ | ρ ∩ ρ | ρ \ ρ,

where p is a proposition, and k is a positive integer
in binary.

We also consider the following syntactic sugar:
% ≤ k is written instead of ¬(% > k); % instead
of % > 0; β1 ∧ β2 instead of ¬ (¬β1 ∨ ¬β2); and
%[β1][β2] instead of %[β1 ∧ β2].

Regular path expressions are interpreted as
node-selection queries on tree structures. In par-
ticular, the axis relations α are interpreted as fol-
lows: children ↓, following sibling →, parent ↑,
previous sibling←, descendants ↓?, and ancestors
↑?. Step paths α : p selects the p nodes reachable
by α. Symbol / is used to compose paths. A
qualified path %[β] selects the nodes denoted by %
that satisfies the boolean condition β. A qualified
path [% > k] is true when % selects at least k
nodes. A Boolean combination of qualifiers β is
interpreted in the obvious manner. The path /ρ
selects the nodes denoted by ρ that are reachable
from the root. Union, intersection, and difference
of paths are interpreted as expected. Consider, for
instance, the following composition of paths:

↑?: p1/ ↓?: p2.

This query, evaluated from some context (a node
subset), navigates to the p1 ancestors of the con-
text, and from there, it selects the p2 descendants.
Now consider the following qualified path:

↑?: p1[↓?: p2].

In constrast with the previous example, this
query selects the p1 ancestors with at least 1 de-
scendant named p2.

Before giving a formal description of the seman-
tics of queries, we introduce the following notation:
in a Kripke structure, n1

α→ n2 means than n1 is
related by means of α with n2, where α can be any
axis relation (↓,→, ↑,←, ↓?, ↑?).

Definition 4.2 (Semantics). The semantics of reg-
ular path queries is defined by a function [[·]]· from
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the queries with respect to a tree T , to pairs of
nodes in T .

[[>]]T = N ×N ,

[[p]]T = {(n,n) | p ∈ L(n)},

[[α]]T = {(n1,n2) | n1
α→ n2},

[[α : p]]T = {(n1,n2) ∈ [[α]]T | p ∈ L(n2)},
[[%1/%2]]T = [[%1]]T ◦ [[%2]]T ,

[[%[β]]]T = {(n1,n2) ∈ [[%]]T | n2 ∈ [[[β]]]
T },

[[[%]]]
T

= {n1 | (n1,n2) ∈ [[%]]T },

[[[% > k]]]
T

= {n1 | |{n2 | (n1,n2) ∈ [[%]]T }| > k},

[[[¬β]]]
T

= N \ [[[β]]]
T

,

[[[β1 ∨ β2]]]
T

= [[[β1]]]
T ∪ [[[β2]]]

T
,

[[/%]]T = {(r,n) ∈ [[%]]T | r is the root},
[[ρ1 ∪ ρ2]]T = [[ρ1]]T ∪ [[ρ2]]T ,

[[ρ1 ∩ ρ2]]T = [[ρ1]]T ∩ [[ρ2]]T ,

[[ρ1 \ ρ2]]T = [[ρ1]]T \ [[ρ2]]T .

Notice that the function [[[·]]]· is introduced to dis-
tinguish the interpretation of paths inside qualifiers.

Definition 4.3 (Reasoning problems). We now de-
fine the emptiness, containment, and equivalence
problems of regular path queries as follows.

— We say a query ρ is empty if and only if for
every tree T , its interpretation is empty, that
is, [[ρ]]T = ∅;

— It is said that a query ρ1 is contained in a query
ρ2 if and only if for every tree T , each pair
of nodes in the interpretation of ρ1 is in the
interpretation of ρ2, that is, [[ρ1]]T ⊆ [[ρ2]]T ; and

— Two queries ρ1 and ρ2 are equivalent if and
only if for every tree T , ρ1 is contained in ρ2
and the other way around, that is, [[ρ1]]T ⊆
[[ρ2]]T and [[ρ2]]T ⊆ [[ρ1]]T .

Regular path queries (without counting) can be
written in terms of the µ-calculus [2, 1]. For in-
stance, the query ↓?: p, evaluated in the root r,
selects the p descendants of r. This can be written
as follows:

[µx.〈↑〉(r ∨ x)] ∧ p.

If we want to evaluate the query in another con-
text (node subset), represented by a C formula,
then we simply replace the occurrence of r by C.
For instance, let us say the context is represented
by all the nodes named p0, then the p ancestors of
p0 nodes can be written as follows:

[µx.〈↑〉(p0 ∨ x)] ∧ p.

We now show that counting constructs can also
be captured by the fully enriched µ-calculus.

Definition 4.4 (Logical embedding of queries).
Given a context formula C, the translation F from
regular path queries into the logic is defined as
follows:

F (↓,C) =〈↑〉C,

F (→,C) =〈←〉C,

F (↑,C) =〈↓〉C,

F (←,C) =〈→〉C,

F (↓?,C) =µx.〈↑〉(C ∨ x),

F (↑?,C) =µx.〈↓〉(C ∨ x),

F (α : p,C) =F (α,C) ∧ p,
F (%1/%2,C) =F (%2,F (%1,C)),

F (%[β],C) =F (%,C) ∧ o ∧ F (β, [o=1]∧o),
F (% > k,C) =F (%,C)> k,

F (¬β,C) =F ′(β,C),

F (β1 ∨ β2,C) =F (β1,C) ∨ F (β2,C),

F (/%,C) =F (%,C∧¬(〈↑〉>∧〈←〉>)),

F (ρ1 ∩ ρ2,C) =F (ρ1,C) ∧ F (ρ2,C),

F (ρ1 ∪ ρ2,C) =F (ρ1,C) ∨ F (ρ2,C),

F (ρ1 \ ρ2,C) =F (ρ1,C)∧F ′(ρ2,C),

where

F ′(ρ) =


F ′(%,C ∧ ¬[〈↑〉> ∧ 〈←〉>])

if ρ has the form /%,

¬F (ρ) otherwise.

F ′(%) =


¬F (%′,C) ∨ [o ∧ ¬F (β, [o=1] ∧ o)]

if % has the form %′[β],

¬F (%) otherwise.

Intuitively, F ′ represents the negation of F , how-
ever, in the case where there is a counting opera-
tor, the fresh proposition o, which serves to fix an
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origin node, is not negated. Note that the constraint
o = 1 ∧ o is not affected by negation because it
always occurs in the scope of a counting operator.

Consider the following query evaluated in a con-
text C:

↓: p1[↓?: p2 > k].

The query selects the p1 children of C with at
least k+ 1 descendants named p2. The first part of
the query ↓: p1 is translated as follows:

p1 ∧ 〈↑〉C,

that is, the p1 nodes with C as parent.
The translation of the counting expression ↓?:

p2 > k is

o ∧ [p2 ∧ µx.〈↑〉([o=1 ∧ o] ∨ x)]> k.

This formula holds if and only if there are more
than k descendant nodes, named p2, of a single
node named o. Then, the translation of the entire
query is the following:

F (↓: p1[↓?: p2 > k]) = (p1 ∧ 〈↑〉C) ∧ o∧
[p2 ∧ µx.〈↑〉 ([o=1 ∧ o] ∨ x)] > k.

The proposition o is used to fix a context for the
counting subformula. o holds in a single p1 node,
then the p2 descendants of that particular p1 node
are the only ones counted.

With the translation function F , we can now use
the logic as a reasoning framework to solve empti-
ness, containment, and equivalence of regular path
queries with counting constructs on children paths;
moreover, since translation F does not introduce
duplications, it is easy to see that the formula re-
sulting from the translation has a linear size with
respect to the input query.

Theorem 4.1 (Query reasoning). For any regular
path queries ρ, ρ1, ρ2, tree T , and valuation V , the
following holds:

— [[ρ]]T = ∅ if and only if [[F (ρ,>)]]TV = ∅;

— [[ρ1]]T ⊆ [[ρ2]]T if and only if
[[F (ρ1,>) ∧ F ′(ρ2,>)]]TV = ∅; and

— F (ρ,>) has linear size with respect to ρ and
F ′(ρ1,>) ∧ F (ρ2,>) has linear size with re-
spect to ρ1 and ρ2.

Proof. For the first item, we proceed by structural
induction on ρ.

In order to prove the case when ρ has the form %,
we will prove the following: % evaluated in a context
C is satisfiable by a tree T if and only if F (%,C) is
satisfiable by T .

Consider ρ is the basic query ↓?: p, then F (↓?:
p,C) = p ∧ µx.〈↑〉(C ∨ x), which clearly selects
exactly the same nodes as ρ evaluated in C. The
proof for the cases with the other axes (↓, ↑,→,←
, ↑?) is similar.

Now let the input query be a composition of
paths, that is, ρ has the form %1/%2. Intu-
itively, %1/%2 selects the nodes denoted by ρ2
evaluated from the nodes satisfying %1, that is,
%1 is the context. That is precisely what it
means by F (%2,F (%1,C)). By induction F (%1,C)
corresponds to %1, and then also by induction
F (%2,F (%1,C)) corresponds to %1/%2 evaluated in
C.

Before proving the case when the input query
has the form %1[%2 > k], we need first to prove that
%2 > k is satisfiable by T if and only if F (%2, o =
1 ∧ o) > k is satisfiable by T . This is achieved
by induction on the structure of %2. Consider %2
has the form ↓: p. Then F (↓: p,>) = p ∧ 〈↑
〉>. This formula selects all the p children of the
model. However, according to the semantics of
CPath queries (Definition 4.2), we need to count
the p children of a single node. This is achieved
by fixing the context with a new fresh proposition
o occurring only once in the model o = 1. Hence
[p ∧ 〈↑〉 ([o = 1] ∧ o)] > k is satisfiable by T if and
only if ↓: p > k is satisfiable by T . We proceed
analogously for the other axes. For the other cases
of %2, that is, when %2 is a composition of paths
(%′2/%′′2 ) and a qualified path (%′2[β′]), the proof goes
straightforward by induction.

Now that we know that %2 > k is satisfiable by T
if and only if F (%2) > k is satisfiable by T , and that
by induction, %1 evaluated in C is satisfiable by T
if and only if F (%1,C) is satisfiable T , we can thus
infer that F (%1,C)∧o∧F (%2, [o = 1]∧o) is satisfiable
by T if and only if %1[%2 > k] is satisfiable in context
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C by T . Note that o is used to select a single %1
node.

When % has the form %1[β], the cases, when β
is a disjunction or a negation, are immediate by
induction. In the case of negation, it is important
to notice that the negation of F (%′, [o = 1] ∧ o) > k
does not affect the context, that is, the negation
never goes inside the formula [o = 1] ∧ o.

Consider now the case when the input query has
the form ρ1 \ ρ2. The only interesting case is when
ρ2 has the form %1[%2 > k]. It is easy to see, by
induction, that F (ρ1,C) is satisfiable by T if and
only if ρ1 is satisfiable by T . Also by induction
we know that ¬F (%1,C) ∨ (o ∧ ¬F (%2, [o = 1] ∧ o))
is satisfiable by T if and only if %1[%2 > k] is not
satisfiable by T . We can hence conclude that
F (ρ1,C) ∧ [¬F (%1,C) ∨ (o ∧ ¬F (%2[o = 1] ∧ o))] is
satisfiable by T if and only if ρ1 \(%1[%2 > k]) is also
satisfiable.

The cases, when the input query has the forms
ρ1 ∪ ρ2, ρ1 ∩ ρ2, and /ρ1, are straightforward by
induction.

For the second item, we proceed analogously as
for the first item in the case when the input query
has the form ρ1 \ ρ2.

The third item is proven immediately by structural
induction on the input query and by noticing that
function F does not introduce duplications.

5 Regular Tree Languages with
Counting

Analogously as regular expressions denote sets
of strings, regular tree expressions denote sets
of trees. In the context of XML, regular tree lan-
guages are used as schema document languages,
such as DTDs, XML schema and RELAX NG. Re-
garding numerical restrictions on children nodes,
XML schema provides explicit notations: MinOccur
and MaxOccur. Although these kind of numeri-
cal restrictions does not provide more expressive
power, they have been recently shown to be expo-
nentially more succinct [12], that is, reasoning on
regular tree expressions with counting constructs
is exponentially easier. Other interesting extension
of regular languages is the interleaving operator,
which, as the name suggests, denotes all possible

interleaves of the corresponding subexpressions,
for instance, pq& rs denotes the following expres-
sions: pqrs, prqs, prsq, rpqs, rpsq, or rspq. The
interleaving operator clearly does not introduce ex-
tra expressive power to regular tree languages,
however, it is also clear that this operator does
introduce an improvement regarding succinctness.
Actually, interleaving is exponentially more succinct
[12].

In this section, we introduce explicit constructs
for numerical restrictions and interleaving on regu-
lar tree expressions. We then show this extension
of regular tree languages can be succinctly ex-
pressed in terms of the fully enriched µ-calculus for
trees extended with global numerical constraints,
which can thus be used as an optimal reasoning
framework.

Definition 5.1 (Syntax). Regular tree expressions
with counting and interleaving constructs are de-
fined by the following grammar:

T := ε | x | p[T #k] | T1 · T2 | T1 + T2
| p[T ′1&T ′2& . . .&T ′n] | let x.T in T ,

where ε denotes the empty tree, p are proposi-
tions, + is used for disjunction (alternation), con-
catenation is expressed as usual by ·, # stands
for either > or ≤, k is a natural number, and T ′i
are disjunction-free tree expressions, which are
defined as follows:

T ′ := x | p[T #k] | T ′1 · T ′2 | p[T ′1&T ′2& . . .&T ′n].

For example, the counting expression p[q>5] de-
notes the trees rooted at p with at least 5 chil-
dren named q, whereas the interleaving expres-
sion p[q&r] stands for the trees rooted at p whose
children can be q and r, or r and q, in that order.
We can also define the following common syntactic
sugar: p[ε] = p, T ? = ε+T , T ? = let x.T in T ·(x+
ε), and T + = T · T ?.

For a formal denotational semantics of regular
tree expressions we refer the reader to the follow-
ing works: [16, 1, 2, 4].

As first noted in [13], regular tree expressions
can be succinctly captured by the µ-calculus for
trees. We now show that the counting and in-
terleaving operators can be linearly translated in
terms of the fully enriched µ-calculus for trees.
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Definition 5.2 (Logical embedding of regular tree
expressions). Given a linear translation F of reg-
ular tree expressions in µ-calculus formulae, the
translation is extended for counting and interleav-
ing operators as follows:

F
(
p[T #k]

)
=p ∧ o∧

[F (T ) ∧ 〈↑〉(o = 1 ∧ o) ∧ ¬〈→〉>]#k,

F (p[T1& . . .&Tn]) =p ∧ o ∧ (〈↑〉o = k)
n∧
i=1

(F (Ti) ∧ oi ∧ 〈↑〉o) = 1.

where k is the number of children induced by Ti
and o is a fresh proposition used to distinguish
identical labels.

For instance, the following expression p[q&r] is
translated to p ∧ o ∧ o = 1 ∧ (φ ∧ o1 ∧ 〈↑〉o) =
1∧(ψ∧o2∧o) = 1∧(〈↑〉o = 2), where φ is q∧¬〈↓〉>
and ψ is r ∧ ¬〈↓〉>. Formula (φ ∧ o1 ∧ 〈↑〉o) = 1
then restricts the occurrence of q to exactly once,
it also says that q is the children of o and hence of
p. Nominal oi is introduced to distinguish potential
multiple occurrence of p. The same restrictions are
set for q in the formula involving ψ. The number
of children is restricted to 2 (induced by p and q)
with formula 〈↑〉o = 2. Hence, p and q occur
exactly once, at any order (interleaved), and no
other proposition occurs because there are only 2
children.

Reasoning problems for regular tree expressions
are defined analogously as the reasoning problems
for queries introduced in Section 4. Moreover,
reasoning problems of regular path queries in the
presence of regular tree expressions are partic-
ularly useful in many static analysis problems in
XML. Since the translation function F of regular
tree expressions does not introduce duplication,
we can then conclude that the fully enriched µ-
calculus can also be used as an XML reason-
ing framework for the extension of queries and
schemas with counting and interleaving constructs,
respectively.

Theorem 5.1 (XML reasoning). Emptiness, con-
tainment, and equivalence of regular path queries
with counting constructs (on children paths) in the

presence of regular tree expressions with counting
and interleaving operators can be linearly reduced
to satisfiability problems for the fully enriched µ-
calculus for trees with global numerical constraints.

Proof. This is an immediate consequence of The-
orem 4.1, and by the fact that regular tree expres-
sions with counting and interleaving can be linearly
characterized by the logic. We now show this last
fact by structural induction on the input tree expres-
sion. Regular tree expressions without counting
and interleaving can be linearly expressed by µ-
calculus formulas (without global counting). This
has been previously proven in [2]. We now show
that counting operators in regular tree expressions
can be expressed by global counting. By induction
we know F (T ) is satisfiable by a tree T if and only
if e is satisfiable. Then the formula [F (T ) ∧ 〈↑
〉(o = 1 ∧ o)]#k is satisfiable by T if and only if
there is a node with children matching F (T ) and
satisfying the numerical constraint #k. Therefore
p ∧ o ∧ [F (T ) ∧ 〈↑〉(o = 1 ∧ o)]#k is satisfiable by
T if and only if p[T #k] is satisfiable by T . The case
for interleaving is analogous.

6 Satisfiability

In this section, we introduce a satisfiability algo-
rithm for the µ-calculus with global numerical con-
straints for trees. First, we give a syntactical ver-
sion of tree models, called Fischer-Ladner trees.
Then we show how the algorithm can construct
such Fischer-Ladner trees.

Since there is a well-known bijection between
binary and n-ary unranked trees [1, 2] (depicted
in Fig. 2), without loss of generality, we then de-
fine the algorithm for binary trees only, where the
modality ↓ is now interpreted as the first child re-
lation, → is now the right sibling relation, whereas
their inverses ↑ and← are interpreted as expected.

For the algorithm, we consider formulas in the
negation normal form (NNF) only. In the negation
normal form nnf(φ) of a formula φ, negation oc-
curs only immediately above propositions, > and
modal subformulas 〈m〉>. This is obtained by the
following rules together with the usual DeMorgan’s:
¬〈m〉φ = 〈m〉¬φ ∨ ¬〈m〉>, ¬(φ> k) = φ≤ k,
¬(φ≤ k) = φ> k, ¬µx.φ = µx.¬φ [x/¬x]. Note
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Fig. 2. Example of the bijection between n-ary and
binary trees

that, for technical convenience, we consider an ex-
tension of formulas. This extension consists of less
than counting formulas φ≤ k and the true formula
> with the obvious semantics.

We require some notation before defining the
Fischer-Ladner closure, from which we build the
syntactic trees. Since integers associated to count-
ing constraints are assumed to be in binary form,
we thus define counter formulas as a boolean com-
bination of propositions denoting an integer num-
ber. For example, for a sequence of propositions
p1, p2, . . ., the integer 1 is written p1∧

∧
i>1 ¬pi, and

the integer 5 (101 in binary) is written p3 ∧ ¬p2 ∧
p1∧

∧
i>4 ¬pi. The amount of propositions required

to define the counters of formula φ is bounded by
K(φ), which is the sum of numerical constraints
occurring in counting subformulas of φ. When clear
from the context, we simply write K.

For a counting subformula φ#k of a given for-
mula a counter φk

′
set to k′ is a sequence of

fresh propositions occurring positively in the binary
coding of the integer k′; and a flag φ#k is a fresh
proposition. For instance, for the integer 5 coded
as c2∧¬c1∧c0, we write φ5 to denote c2, c0, where ci
are the corresponding propositions for the counting
formula φ#k.

The Fischer-Ladner closure of a given formula
is the set of its subformulas, together with their
negation normal form, such that the fixed points are
expanded once. Additionally, a counter and a flag
for each counting subformula are also considered
in the closure. All these information is obtained with
the help of the relation RFL, which is defined as
follows.

Definition 6.1. We define the following binary re-
lation RFL over formulas for i = 1, 2:

RFL(φ, nnf(φ)), RFL(φ1 ∧ φ2,φi),

RFL(φ1 ∨ φ2,φi), RFL(〈m〉φ,φ),

RFL(µx.φ,φ
[
µx.φ/x

]
), RFL(φ#k,φ),

RFL(φ#k,φK), RFL(φ#k,φ#k),

RFL(φ#k,ψ),

where ψ is

µx1.(µx2.φ ∨ 〈↓〉x2 ∨ 〈→〉x2) ∨ 〈↑〉x1 ∨ 〈←〉x1.

Notice that if φ is true in a model, then ψ is true
in every node of the model. We use ψ to provide
the necessary information for φ to navigate through
the entire model.

We are now ready to define the Fischer-Ladner
closure.

Definition 6.2 (Fischer-Ladner Closure). The
Fischer-Ladner closure of a given formula φ is de-
fined as CLFL(φ) = CLFL(φ)k, such that k is the
smallest integer satisfying CLFL(φ)k+1 = CLFL(φ)k,
where CLFL(φ)0 = {φ}, CLFL(φ)i+1 = CLFL(φ)i ∪
{ψ′ | RFL(ψ,ψ′),ψ ∈ CLFL(φ)i}.

The lean set of a given formula contains propo-
sitions, modal, and counting subformulas, together
with counters and flags.

Definition 6.3 (Lean). Given a formula φ and a
proposition p′ not occurring in φ, we define the lean
as follows for all m ∈M :

lean(φ) ={p, 〈m〉ψ,ψ#k,ψK ,ψ#k ∈ CLFL(φ)}
∪ {〈m〉>, p′}.

The lean set contains all the required informa-
tion to define tree nodes: propositions serve as
labels, modal subformulas define the topology of
the tree, and counters and flags serve to verify
counting subformulas. p′ is a proposition denoting
the propositions not occurring in the input formula.

Consider the following formulas for m ∈ {↓,→
, ↑,←}: φ = [(p1> 1) ∧ p2]> 4, ψ = (p1> 1) ∧ p2,
φ0 = µx.ψ ∨

∨
∀m〈m〉x, and ψ0 = µx.p1 ∨

∨
m〈m〉x.

Computación y Sistemas, Vol. 19, No. 2, 2015, pp. 407–422
doi: 10.13053/CyS-19-2-1999

Everardo Bárcenas416

ISSN 2007-9737



The lean of φ is thus defined as follows for m ∈ {↓
,→, ↑,←}:

lean(φ) ={p1, p2,φ, p1> 1,ψ7, p71,ψ>4, p>1
1 ,

〈m〉φ0, 〈m〉ψ0, p′, 〈m〉>},

K = 7. Now recall that φ7 denote 3 propositions
that serve to express the binary coding of the inte-
gers from 0 to 7.

We are now ready to define the syntactic notion
of tree nodes.

Definition 6.4 (φ-Nodes). Given a formula φ, a φ-
node nφ is defined as a subset of lean(φ), such
that:

— at least one proposition of φ occurs;

— if 〈m〉ψ occurs, then 〈m〉> also does;

— both 〈←〉> and 〈↑〉> can not occur;

— counting formulas are always present;

— exactly one counter for each counting formula
is present, i.e., if φ#k ∈ nφ, then φk

′ ∈ nφ;

— counters must be consistent with counting for-
mulas and flags, i.e., ψk0 ,ψ≤ k ∈ n if and only
if k0 ≤ k, and ψk0 ,ψ>k ∈ n if and only if k0 > k.

The set of φ-nodes is written Nφ. If the context
is clear, we often call a φ-node simply a node, and
we write n instead of nφ.

We now define trees as triples (n,X1,X2), where
n is the root of the tree and X1 and X2 are the
respective left and right subtrees. Given a formula,
a Fischer-Ladner tree, or simply a tree, is induc-
tively defined as follows: the empty set ∅ is a tree;
(nφ,X1,X2) is also a tree, provided that X1 and X2

are also trees.

Consider φ,ψ,φ0,ψ0 from the example above.
We define the following syntactic tree model for φ:

T =(n0, (n1, (n3, ∅, ∅), (n4, ∅, ∅)), (n2, (n5, ∅, ∅),
(n6, ∅, ∅)),

n0

n1

n3

p1

p2

n4

p1

p2

n2

n5

p2

p2

Step 2

Step 3

n6

p2

Step 1

Fig. 3. Fischer-Ladner tree model for φ =
[(p1> 1) ∧ p2]> 4

where

n0 ={p2,φ, p1> 1, p21, p>1
1 ,ψ5,ψ>4,

〈↓〉ψ0, 〈→〉ψ0, 〈↓〉φ0, 〈→〉φ0, 〈↓〉>, 〈→〉>},
n1 ={p2,φ, p1> 1, p21, p>1

1 ψ1, 〈↓〉ψ0, 〈→〉ψ0,

〈↑〉ψ0, 〈↓〉φ0, 〈→〉φ0, 〈↑〉φ0, 〈↓〉>, 〈→〉>, 〈↑〉>},
n2 ={p2,φ, p1> 1, p21, p>1

1 ,ψ3, 〈↓〉ψ0, 〈→〉ψ0, 〈←〉ψ0,

〈↓〉φ0, 〈→〉φ0, 〈←〉φ0, 〈↓〉>, 〈→〉>, 〈←〉>},
n3 ={p1,φ, p1> 1, p11, 〈↑〉φ0, 〈↑〉ψ0, 〈↑〉>},
n4 ={p1,φ, p1> 1, p11, 〈←〉φ0, 〈←〉ψ0, 〈←〉>},
n5 ={p2,φ, p1> 1,ψ1, 〈↑〉φ0, 〈↑〉ψ0, 〈↑〉>},
n6 ={p2,φ, p1> 1,ψ1, 〈←〉φ0, 〈←〉ψ0, 〈←〉>}.

Fig. 3 depicts a graphical representation of T .
The satisfiability algorithm, described in Algo-

rithm 1, builds candidate trees in a bottom-up man-
ner: iteratively, starting from leaf nodes, we check
at each step if the input formula is satisfied by
candidate trees, in case the formula is not satis-
fied, we consistently add parents to previously built
trees. The algorithm returns 1 if a satisfying tree is
found. In case a satisfying tree could not be found,
and no more candidate trees can be built, then the
algorithm returns 0.

Consider the formula φ defined in the example
above. Then the Fischer-Ladner tree, as also de-
fined above, is built by the algorithm in 3 steps. In
the first step, all the leaves are considered, that is,
nodes without children, such that the counters are
properly initialized (Definition 6.6). It is then easy
to see that n3,n4,n5,n6 are all leaves. Since p1 is
occurring in both, n3 and n4, then the counter p11 is
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Algorithm 1 Satisfiability Algorithm
Y ← Nφ

X ← Leaves(Y )
X0 ← ∅
while X 6= X0 do

if X  φ then
return 1

end if
X0 ← X
(X ,Y )← Update(X ,Y )

end while
return 0

also in the same nodes. Since both p2 and p1> 1
are in n5 and n6, then ψ = p2 ∧ p1> 1 is true in
both nodes, and consequently ψ1 is also in n5 and
n6. However, none of the leaves satisfies φ, then,
in the second step, n1 is added as parent to both
n3 and n4. n2 is also added as parent to n5 and n6.
Since ψ is true in n1 and n2, then the counter for ψ
is incremented in both nodes resulting that in n1 we
have ψ1, and in n2 we have ψ3. However, none of
the trees built in step 2 satisfies φ. In step 3, n0 is
then added as parent of n1 and n2. Since ψ holds in
n0, then we update the counter to ψ5, and φ is then
finally satisfied. The resulting tree of this process
is depicted in Fig. 3. Each step corresponds to one
level of the tree.

We now provide a precise description of the
algorithm components. If a tree T is a model for
a formula φ, it is said that T satisfies (entails) φ.

Definition 6.5. The entailment of a formula by a
node is defined by

n ` >
,

φ ∈ n
n ` φ

,
φ 6∈ n
n ` ¬φ

,

n ` φ
n ` φ ∨ ψ

,
n ` ψ

n ` φ ∨ ψ
,

n ` φ
[
µx.φ/x

]
n ` µx.φ

,

n ` φ n ` ψ
n ` φ ∧ ψ

.

The entailment relation is now extended for trees
and formulas. A formula φ is satisfied by a tree X,
written X  φ if and only if there is a node n in
X, such that n ` φ; formulas of the forms 〈↑〉ψ and
〈←〉ψ do not occur in the root of X; and all the flags

are in the root. A set of trees X entails a formula
φ, written X  φ if and only if there is a tree X in X
s.t. X  φ. The relation 6 is defined as expected.

The set of leaves contains nodes without chil-
dren. In the leaves, counters are also properly
initialized.

Definition 6.6 (Leaves). Given a set of nodes X,
the set of leaves is defined as follows:

Leaves(X) = {(n, ∅, ∅) | n ∈ X, 〈↓〉φ, 〈→〉φ 6∈ n,[
(φ1 ∈ n,n ` φ) or (φ0 ∈ n,n 6` φ)

]
.
}

A node n containing a modal formula 〈m〉ψ can
be linked to another node n′ through a modality m
if and only if there is a witness of ψ in n′, that is,
n′ ` ψ. This notion is defined by the relation ∆m.

Definition 6.7. Given two nodes n1, n2 and for-
mula φ, we say that the nodes are modally consis-
tent with respect to the formula ∆m(n1,n2) for m ∈
{↓,→} if and only if for all formulas 〈m〉ψ1, 〈m〉ψ2 ∈
lean(φ), we have that

— 〈m〉ψ1 ∈ n1 if and only if n2 ` ψ1, and

— 〈m〉ψ2 ∈ n2 if and only if n1 ` ψ2.

When adding parents, it is also necessary to
ensure that counting formulas are satisfied. Recall
that, according to the definition of φ-nodes, count-
ing formulas and flags are consistent with counters.
It is then only required to update the counters and
to copy the flags that are already in the subtrees.
We have two cases. The first one is when we
add a parent to both, a left and a right subtrees.
The second case is when a parent is added to one
subtree only. Consider the first case.

Definition 6.8. It is said that three nodes n0,n1,n2
are consistent with respect to their counters, de-
noted by #(n0,n1,n2) if and only if

— ψk0 ∈ n0 and n0 ` ψ if and only if ψk1 ∈ n1,
ψk2 ∈ n2 and k0 = k1 + k2 + 1 if k0 ≤ K,
otherwise k0 = K;

— ψk0 ∈ n0 and n0 6` ψ if and only if ψk1 ∈ n1,
ψk2 ∈ n2 and k0 = k1 +k2 if k0 ≤ K, otherwise
k0 = K; and
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— if ψ>k ∈ ni for any i ∈ {1, 2}, then ψ>k ∈ n0.

The second case (#(n0,ni)) is defined in an
analogous manner.

Recall that the Update function is used to con-
sistently add parents to previously built trees. Now,
with the notions of modal and counter consistency
(Definitions 6.7 and 6.8) already defined, we are
now ready to give a precise description of the
Update function.

Definition 6.9. Given a set of trees X and a set of
nodes Y , the function Update(X ,Y ) is defined as
the tuple (X ′,Y ′), such that

— X ′ = {(n,X↓,X→) | n ∈ Y ,Xi ∈
X , ∆i(n,ni), #(n,n1,n2)}, where i =↓,→ and
ni is the root of Xi; or

— X ′ = {(n,X↓,X→) | n ∈ Y ,Xi ∈
X , ∆i(n,ni), #(n,ni)} in case Xj = ∅ with
i 6= j; and

— Y ′ = Y \ {n}.

It is easy to see that the algorithm has a finite
number of steps if we notice that the number of
nodes is finite and that the Update function is
monotone.

In order to show that the algorithm is correct, we
then prove it to be sound and complete.

Theorem 6.1 (Soundness). If the algorithm returns
1 for the input formula φ, then there is a tree model
satisfying φ.

Proof. By assumption, there is a triple X such that
X  φ. We will now construct a tree model T from
X.

— The set of propositions P which are the ones
in lean(φ).

— The nodes of T are Nφ.

— We now define the edges of T . For every triple
(n,X1,X2) of X, we define R(n, ↓) = n1 and
R(n,→) = n2, provided that n1 and n2 are the
respective roots of X1 and X2.

— We label the nodes in an obvious manner: if
p ∈ n, then p ∈ L(n).

It is now shown by structural induction on φ that T
satisfies φ. All cases are straightforward. For the
case of fixed-point subformulas, recall that there
is an equivalent finite unfolding, that is, µx.ψ ≡
φ
[
µx.φ/x

]
.

For completeness it is assumed that there is a
satisfying tree T for the formula φ, and then it
is shown that the algorithm returns 1. The proof
comes in two steps: we first construct an equiva-
lent lean labeled version of T , and then we show
that the algorithm can actually construct such a
lean labeled tree.

Definition 6.10. Given a satisfying tree T of a
formula φ, we define its lean versionXT as follows:
XT has the same nodes and shape than T ; each
node n in XT is labeled with the formulas ψ in
lean(φ) such that n in T satisfies ψ, and the labels
corresponding to the counters are pinned up in a
similar manner as the algorithm does, that is, in an
increasing bottom-up order (with bound K) in the
tree.

Lemma 6.1. If a tree T satisfies a formula φ, then
φ is entailed by XT .

Proof. We proceed by induction on the derivation
of n ` φ. Most cases are immediate by induction
and the construction of XT .

For the fixpoint case µx.ψ, we test ψ
[
µx.ψ/x

]
.

We then proceed by structural induction again.
This is also straightforward since variables, and
hence unfolded fixed-points, can only occur in the
scope of a modality or a counting formula.

One crucial point in the completeness proof is
to show that Nφ contains enough nodes to sat-
isfy φ. It is well-known that the standard Fischer-
Ladner construction of models provides the re-
quired amount of nodes for simple µ-calculus for-
mulas without counting [6]. Since counting sub-
formulas impose bounds on the number of certain
nodes, it may be required to duplicate φ-nodes.
Counters are then introduced in the Fischer-Ladner
construction in order to distinguish potentially iden-
tical nodes. We now show that counters are intro-
duced in a consistent manner.
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Lemma 6.2. Given a satisfying tree T of a formula
φ, there is a tree entailing φ, such that for every
path from its root to a leave, there are no identical
φ-nodes.

Proof. If every path in XT does not contain identi-
cal nodes, then we are done.

Consider now the case when we have two iden-
tical nodes n1 and n2 in a path of XT . Without loss
of generality, we assume that n1 is above n2. We
then proceed to build a tree X from XT , such that
n2 is grafted upon n1. That is, the path between n1
and n2 is removed, not including n1 but including
n2. n1 is then linked to the subtrees of n2. X can
then be seen as the pruned version of XT .

We now show that X also entails φ by induction
on the derivation of X ` φ. Most cases are imme-
diate by the construction of X and by induction.

Consider now the case of counting subformulas.
Since these subformulas are true in every node,
then the only important thing is to be sure that the
counted nodes are not part of the pruned path.
This is not possible since the counters in n2 are
the same as the ones in n1, that is, the counters
are not increased between n1 and n2.

Now that we know how the tree is composed
(Lemma 6.1), and that we have enough copies of
nodes to construct it (Lemma 6.2), completeness
follows.

Theorem 6.2 (Completeness). If a formula φ is
satisfiable, then the algorithm returns 1.

As in [2, 7], the time complexity of the satisfia-
bility algorithm is single exponential on the num-
ber of nodes (automaton states) introduced by the
Fischer-Ladner construction.

Theorem 6.3 (Complexity). µTLIN satisfiability is
in EXPTIME-complete.

Proof. Notice first that the size of the lean is at
most polynomial with respect to the formula size.
We then show that the complexity of the algorithm
is at most exponential with respect to the lean size.

Now note that the size of Nφ is exponentially
bounded by the lean size. Then, in the loop there
is at most an exponential number of steps.

Computing the set Leaves takes exponential
time since Nφ is traversed once.

Now note that testing the relation ` costs linear
time with respect to the size of the node. Then the
entailments  and 6 take at most exponential time.

The Update function costs at most exponential
time by the following facts: traversals on X and Y
take exponential time; and the costs of the relations
∆ and # are linear. Since each step in the loop
takes at most exponential time, we conclude that
the overall complexity is single exponential. The
lower bound comes from the fact that the logic can
encode all finite tree automata and is closed under
negation, then satisfiability is hard for EXPTIME,
and hence complete.

Recall that regular path queries (XPath) and reg-
ular tree expressions (XML schemas), extended
with counting constructs, can be encoded in terms
of logical formulas with linear size with respect to
the original queries and types (Theorems 4.1 and
5.1). We can then conclude that the logic can be
used as an optimal query reasoning framework for
XML trees.

Corollary 6.1. The emptiness, containment, and
equivalence of regular queries with counting and
regular tree expressions with interleaving and
counting are decidable in EXPTIME.

7 Conclusions

In this paper we introduced an extension of the fully
enriched µ-calculus for trees with global numerical
constraints. These constraints express numerical
restrictions on the number of nodes in any tree re-
gion. We also showed that an extension of regular
path queries (XPath) with counting constructs can
be efficiently expressed in terms of logic formulas.
The same applies for an extension of regular tree
languages (XML schemas) with counting and in-
terleaving operators. In addition, we provided a
satisfiability algorithm for the logic with EXPTIME
complexity. These results, together with the fact
that the logic is closed under negation, implies an
optimal reasoning framework for counting exten-
sions of XML queries and schemas.
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Regarding further research perspectives, the im-
plementation of the satisfiability algorithm with the
aim of Binary Decision Diagrams promises immedi-
ate relevance in the static analysis of XML applica-
tions. We believe that extensions of XPath queries
with data value tests [11] can also be studied in the
context of expressive modal logics. Furthermore,
we believe that our logic can also be used in the
verification of balanced tree structures, such as
AVL, red-black, and splay trees [20].
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1. Bárcenas, E. (2011). Raisonnement automatisè sur
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