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Abstract. Controlling the pose of a manipulator involves
finding the correct configuration of the robot’s elements
to move the end effector to a desired position and ori-
entation. In order to find the geometric relationships
between the elements of a robot manipulator, it is nec-
essary to define the kinematics of the robot. We present
a synthesis of the kinematical model of the pose for
this type of robot using the conformal geometric algebra
framework. In addition, two controllers are developed,
one for the position tracking problem and another for the
orientation tracking problem, both using an error feed-
back controller. The stability analysis is carried out for
both controllers, and their application to a 6-DOF serial
manipulator and the legs of a biped robot are presented.
By proposing the error feedback and Lyapunov functions
in terms of geometric algebra, we are opening a new
venue of research in control of manipulators and robot
legs that involves the use of geometric primitives, such
as lines, circles, planes, spheres.

Keywords. Serial manipulators, pose control, motors,
conformal geometric algebra.

1 Introduction

The combination of several areas of science re-
sulted in a new interdisciplinary science called

robotics and with it a new branch of problems to
tackle and solve. The control of serial manipulators
has a wide area of investigation to the development
of new techniques of modeling and control for the
pose of the robot; one of them is differential kine-
matics. In this work, a novel method for kinematic
modeling and control of the pose of robotic ma-
nipulators will be investigated using the conformal
geometric algebra (CGA) approach.

The kinematic model is obtained using motors
which are a conformal entity that represents a rigid
transformation and permit us to represent position
and orientation motions. Using the same frame-
work, error feedback controllers will be designed
for the position and orientation tracking problem
for an n-manipulator. The stability analysis using
Lyapunov functions will be derived. The objective
of this work is to develop the kinematic model and
control laws for the pose of serial manipulators us-
ing CGA. This methodology is applied to a 6-DOF
manipulator and a biped humanoid.

The CGA framework provides an easier and
more intuitive way to tackle the kinematics problem
due to its algebra properties. Furthermore, using
this framework to define an error signal, we will be
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able to propose new control laws using geometric
primitives like planes, spheres, or lines.

2 Geometric Algebra

A Geometric Algebra Gn is a linear space of di-
mension 2n, n = p + q + r, where p, q, and r are
the numbers of bases that square +1, −1, and 0,
respectively. As well as vector-addition and scalar
multiplication, Gn has a non-commutative product
which is associative and distributive over addition.
The latter called the geometric or Clifford product.

The Clifford product of two vectors a and b is
defined as the sum of the inner product and the
wedge product

ab = a · b+ a ∧ b, (1)

where the inner product of the two vectors is the
standard scalar or dot product, which produces
a scalar. The outer or wedge product is anti-
commutative (a ∧ b = −b ∧ a) and generates a new
quantity which is called a bivector.

Then, the outer product is generalizable to
higher dimensions. For example, (a∧b)∧c, a trivec-
tor, is interpreted as an oriented volume formed
by sweeping the area a ∧ b along vector c. The
outer product of k vectors is a k-blade, and such
a quantity is said to have grade k. A multivector
is defined as a linear combination of objects of dif-
ferent grades, and is a homogeneous k-vector if it
contains terms of only a single grade k. Now, given
two k vectors A and B, we define the conmutator
product [1] as

A×̄B =
1

2
(AB −BA) . (2)

We use ei to denote the i − th basis vector,
where 1 ≤ i ≤ n. In geometric algebra Gp,q,r, the
geometric product of two basis vectors is defined
as

eiej =


1 for i = j ∈ 1, · · · , p
−1 for i = j ∈ p+ 1, · · · , p+ q

0 for i = j ∈ p+ q + 1, · · · , p+ q + r.
ei ∧ ej for i 6= j

This leads to a basis for the entire algebra:

{1}, {ei}, {ei ∧ ej}, {ei ∧ ej ∧ ek}, . . . , {e1 ∧ . . . ∧ en}.
(3)

3 Conformal Geometric Algebra

Conformal Geometric Algebra G4,1,0 (CGA) can
be used to treat conformal geometry in a very
elegant way [3]. CGA allow us to represent the
Euclidean vector space R3 in R4,1. This space
has an orthonormal vector basis given by {ei} and
eij = ei ∧ ej are bivectorial bases and a bivector
basis e23, e31, and e12.

The unit Euclidean pseudo-scalar Ie := e1 ∧ e2 ∧
e3, a pseudo-scalar I = IeE, and the bivector or
Minkowski plane E := e4 ∧ e5 = e4e5 are used
for computing Euclidean and conformal duals of
multivectors.

A null can be defined as

e∞ = e4 + e5, e0 =
1

2
(e4 − e5), (4)

where e∞ is the point at infinity and e0 is the origin
point. This two null vector satisfies

e2∞ = e20 = 0, e∞ · e0 = 1.

For a more complete treatment, the reader is
referred to [3, 1, 7].

3.1 The Point

The vector xe ∈ R3 representing a point after a
conformal mapping is rewritten as

xc = xe +
1

2
x2ee∞ + e0. (5)

Given two conformal points xc and yc, we can
define

xc − yc = (yc ∧ xc) · e∞ (6)

and, consequently, the following equality

(xc ∧ yc + yc ∧ zc) · e∞ = (xc ∧ zc) · e∞ (7)

is fulfilled as well.
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3.2 Spheres and Planes

The equation of a sphere of radius ρ centered at
point pe ∈ R3 can be written as (xe − pe)

2 = ρ2.
Since xc · yc = − 1

2 (xe − ye)
2, where xe and ye are

the Euclidean components, and xc · pc = − 1
2ρ

2, we
can rewrite the formula above in terms of homoge-
neous coordinates. Since xc · e∞ = −1, we can
factor the expression above to

xc · (pc −
1

2
ρ2e∞) = 0. (8)

This equation corresponds to the so-called inner
product null space (IPNS) representation, which
finally yields the simplified equation for the sphere
as s = pc − 1

2ρ
2e∞. Note from this equation

that a point is just a sphere with a zero radius.
Alternatively, the dual of the sphere is represented
as a 4-vector s∗ = sI. The advantage of the dual
form is that the sphere can be directly computed
from four points as

s∗ = xc1 ∧ xc2 ∧ xc3 ∧ xc4 . (9)

If we replace one of these points for the point at
infinity, we get the equation of a 3D plane:

π∗ = xc1 ∧ xc2 ∧ xc3 ∧ e∞. (10)

We put π in the standard IPNS form as follows:

π = Iπ∗ = n+ de∞, (11)

where n is the normal vector and d represents the
Hesse distance for the 3D space.

3.3 Circles and Lines

A circle z can be regarded as the intersection of
two spheres s1 and s2 as z = (s1 ∧ s2) in IPNS.
The dual form of the circle can be expressed by
three points lying on the circle, namely,

z∗ = xc1 ∧ xc2 ∧ xc3 . (12)

Similar to the case of planes, lines can be de-
fined by circles passing through the point at infinity
as

L∗ = xc1 ∧ xc2 ∧ e∞. (13)

The standard IPNS form of the line can be ex-
pressed as

L = nIe − e∞mIe, (14)

where n and m stand for the line orientation and
moment, respectively. The line in the IPNS stan-
dard form is a bivector representing the six Plücker
coordinates.

All these entities are useful to represent the parts
of a robotic manipulator; for example, the line is
used to express the action axes of each DOF of
the robot.

4 Rigid Transformations

In this section we define the two rigid transforma-
tions used in this work, also we define the reversion
of a multivector, which is used to apply a rigid trans-
formation to any geometric entity of the algebra.

4.1 Reversion

The reversion of an r-grade multivector Ar =∑r
i=0 〈Ar〉i is defined as

Ãr =

r∑
i=0

(−1)
i(i−1)

2 〈Ar〉i . (15)

In fact, the reversion can be obtained by simply
reversing the order of basis vectors making up the
blades in a multivector and then rearranging them
in their original order using the anticommutativity of
the Clifford product [1].

4.2 Reflection

The combination of reflections of conformal geo-
metric entities enables us to form other transfor-
mations. The reflection of a point x with respect to
the plane π is equal to x minus twice the directed
distance between the point and plane (see Fig.
1(a)). That is, ref(x) = x − 2(π · x)π−1. We get
this expression by using the reflection ref(xc) =
−πxcπ−1 and the property of the Clifford product of
vectors 2(b · a) = ab+ ba.
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Fig. 1. (a) (top) Reflection of a point x with respect to the
plane π, (b) (bottom) reflection about parallel planes

For an IPNS geometric entity Q, the reflection
with respect to the plane π is given as

Q′ = πQπ−1. (16)

4.3 Translation

The translation of conformal geometric entities can
be done by carrying out two reflections in parallel
planes π1 and π2 (see Fig. 1(b)). That is,

Q′ = (π2π1)︸ ︷︷ ︸
Ta

Q(π−1
1 π−1

2 )︸ ︷︷ ︸
T̃a

(17)

Ta = (n+ de∞)n = 1 +
1

2
ae∞ = e

a
2
e∞ (18)

with a = 2dn.

4.4 Rotation

The rotation is the product of two reflections at
nonparallel planes that pass through the origin (see
Fig. 2):

Fig. 2. Reflection about nonparallel planes

Q′ = (π2π1)︸ ︷︷ ︸
Rθ

Q(π−1
1 π−1

2 ),︸ ︷︷ ︸
R̃θ

(19)

or by computing the conformal product of the nor-
mals of the planes:

Rθ = n2n1 = cos(
θ

2
)− sin(

θ

2
)l = e−

θ
2
l, (20)

with l = n2 ∧n1, and θ twice the angle between the
planes π2 and π1.

The screw motion, called motor, related to an
arbitrary axis L is M = TRT̃ and is applied in the
same way as a rotor; that is,

Q′ = (TRT̃ )︸ ︷︷ ︸
Mθ

Q(TR̃T̃ )︸ ︷︷ ︸
M̃θ

(21)

Mθ = TRT̃ = cos(
θ

2
)− sin(

θ

2
)L = e−

θ
2
L. (22)
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5 Kinematic Modeling of Manipulators

The direct kinematics for a serial robot is computed
as a successive multiplication of motors given by

Q′ =

(
n∏
i=1

MiQ

n∏
i=1

M̃i=n−i+1

)
, (23)

and it is valid for points (i.e. the position of the
end-effector), lines (i.e. the orientation of the end-
effector), planes, circles, and spheres, where the
joint variable is a rotation Mi = Ri = exp

−qLr
2 for a

revolutive joint, for a given angular position vector
q = [q1 . . . qn]

T .
Differentiation of (23) gives the differential kine-

matics of the system for points and lines:

ẋ′ = Jxq̇, (24)

L̇′ = JLq̇,

with q̇ = [q̇1 . . . q̇n], and

Jx =
[
x′ · L′1 . . . x′ · L′n

]
, (25)

JL = [α1 . . . αn] , (26)

where

L′j =

(
j−1∏
i=1

Mi

)
Lj

(
j−1∏
i=1

M̃j−i

)
, (27)

αj = L′×̄L′j ,

and Lj is the axis for the jth joint in the initial
position. Please refer to [8] for a more detailed
explanation about the differentiation process.

6 Kinematic Control

Now the output tracking problem for the position x′p
and orientation L′p of the end effector will be solved
using the geometric algebra approach separately.

Fig. 3(a) shows a general scheme of the case
study that we are solving, where the current orien-
tation and position vectors for the end effector of
a serial manipulator and for the target are shown.
The control objective is to make the end effector
and target positions, and orientations, equal by
means of reconfiguring the structure of robot kine-
matics through the actuators of the joints.

Fig. 3. (a) Current orientation and position vectors for the
end effector of a serial manipulator and for the target, (b)
robotic system composed by a 6-DOF manipulator

6.1 The Position Tracking Problem

A state-space model for the position of the end
effector can be obtained as

ẋ′p = Jxu1 (28)

y1 = x′p,

where y1 is the output of the system, the control
term is u1 = q̇, and the Jacobian Jx is defined as
in (25).

Now, let xref (t) be the reference for the position
of the end effector expressed in conformal alge-
bra. Omitting the parentheses of the reference, the
tracking error is given by

εp =
(
xref ∧ x′p

)
· e∞. (29)

Differentiation of (29) yields

ε̇p =
(
ẋref ∧ x′p

)
· e∞ +

(
xref ∧ ẋ′p

)
· e∞ (30)

=
(
xref ∧ (Jxu1) + ẋref ∧ x′p

)
· e∞.

Assuming that we know the derivative ẋref , then
the control law

u1 = −J+
x [ẋref ∧ (k1εp)] · e∞ (31)

is proposed to stabilize system (30), where k1 is a
constant.

The closed-loop system defined by (30) and (31)
results in

ε̇p =
(
−xref ∧ (k1εp − ẋref ) + ẋref ∧ x′p

)
· e∞. (32)

Then, using distributivity and x ∧ x = 0 yields

ε̇p =
(
−xref ∧

(
k1
(
x′p − xref

)
− ẋref

)
+ ẋref ∧ x′p

)
· e∞
(33)

=
(
−k1xref ∧ x′p + xref ∧ ẋref + ẋref ∧ x′p

)
· e∞.
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Now, applying (7) results in

ε̇p =
(
(−k1 + 1)xref ∧ x′p

)
· e∞ = (−k1 + 1) εp. (34)

Now, consider the positive definite candidate
Lyapunov function [2] given by

Vεp =
1

2
[(εp ∧ E)E]2 (35)

to prove stability of (32). Differentiation of (35)
yields

V̇εp = [(εp ∧ E)E] [ε̇p ∧ E]E (36)

= [(εp ∧ E)E] [(− (k1 − 1) εp ∧ E)E]

= −2 (k1 − 1)Vεp ,

which is a negative definite function for k1 > 1.
Therefore, the origin of the system (32) is a glob-
ally exponentially stable equilibrium point, that is,
lim
t→∞

x′p = xref , and the control objective is fulfilled.
It is clear that the system is linear and it is not
necessary to have a Lyapunov function to prove the
stability of the system, but with this first approach in
a future we will propose Lyapunov functions using
geometric entities.

6.2 Orientation Tracking Problem

Similar to the position tracking problem, a state-
space model for the orientation of the end effector
can be obtained as

L̇′p = JLu2 (37)

y2 = L′p,

where y2 is the output of the system, u2 = q̇, and
the Jacobian JL is defined as in (25).

Now, let Lref (t) be the reference line for the ori-
entation of the end effector expressed in conformal
algebra. The tracking error is defined as

εL = L′p − Lref , (38)

which represents the difference between the line of
the end effector L′p and the reference Lref .

Differentiation of (38), and using (38), yields

ε̇L = L̇′p − L̇ref = JLu2 − L̇ref . (39)

Assuming that the derivative L̇ref is known, the
control law

u2 = −J+
L

[
k2εL − L̇ref

]
(40)

is proposed to stabilize system (39), where k2 is a
constant.

The closed-loop system is obtained using (39)-
(40) as

ε̇L = −k2εL (41)

and using the following positive definite candidate
Lyapunov function

VεL =
1

2
ε2L (42)

to prove stability of (41).

Differentiation of (42) results in V̇εL = εLε̇L =
−k2ε2L, which is a negative definite function for
k2 > 1. Therefore, the origin of the system (39) is a
globally exponentially stable equilibrium point, that
is, lim

t→∞
εL = 0, and the control objective is fulfilled.

To avoid singularities in computing J+
x and J+

L ,
we use the robust damped least-square (DLS)
method proposed in [5], where the pseudo-inverse
of a matrix J is defined by

J+ = JT
(
JJT + αIm

)−1

, (43)

where Im is an identity matrix with the same di-
mension as JJT and α is a positive damping factor
given by

α =

{
α0 (1− (h/hs)) , if h < hs,
0 otherwise,

where hs denotes the threshold value, α0 is the
value of damping factor at singular points, and h
is defined as

h (θ) =
√
det (JJT ).

With this adaptive α, it is possible to avoid sin-
gularities, without affecting the solved θ̇, because
α is effective only when the configuration is near a
singularity.
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Fig. 4. Euclidean components for the position of the end
effector of the 6-DOF manipulator and their references

7 Simulations

Consider the system shown in Fig. 3(b), which is
composed of a serial manipulator of 6 DOFs. For a
given target, the end effector of the 6-DOF manip-
ulator must realize position tracking of the target.
First, the kinematic model of the manipulator will
be defined. Then the parameters of the proposed
controllers are determined. Finally, a simulation
of the performance of the closed-loop system is
presented.

7.1 6-DOF Manipulator

The position kinematic model for the 6-DOF ma-
nipulator is defined entirely by the following axes of
rotation and lengths of the links:

L1 = e12, L2 = e31 + e∞ (x1e · e31) , (44)

L3 = e13 + e∞ (x2e · e13) , L4 = e23 + e∞ (x3e · e23) ,

L5 = e13 + e∞ (x4e · e13) , L6 = e12 + e∞ (x4e · e12) ,

where xie, i = 1, ...6, are the vectors that define the
initial position of each joint of the manipulator.

The differential kinematics are defined by the
Jacobians defined as

Jx =
[
x′p · L′1,x′p · L′2, · · · ,x′p · L′5,x′p, ·L′6

]
, (45)

JL = [α1,α2,α3,α4,α5,α6] ,

where x′p and L′p are defined by Eq. (23) and αi,
i = 1...6 are given by Eq. (27).

7.1.1 Applied Controllers

The pose control term for the 6-DOF manipulator
is defined as

u1 = [q̇1, q̇2, q̇3, q̇4, q̇5, q̇6]
T

and is obtained via Eqs. (29) and (31). The control
gain for the position was selected as k1 = 1. The
position reference vector used was

xref = [0.75, 0.45 cos (2t) , 0.75 + 0.45 sin (2t)]T ,

ẋref = [0,−0.9 sin (2t) , 0.9 cos (2t)]T .
(46)

On the other hand, the control gain for the orien-
tation control term was selected as k2 = 2, and the
reference vector for the orientation used was

Lref = [0, 0,−1]T , L̇ref = [0, 0, 0]T .

7.1.2 Simulation Results

The simulation processes was developed in two
steps. First, the differential kinematic model and
the controllers for the robotic system were pro-
grammed in Matlab [4] using our own confor-
mal geometric libraries, and the response for the
closed-loop system was obtained. Then the data
on the joint variables obtained from Matlab were
used in a 3D model of the robotic system deve-
loped in CLUCalc [6], in order to obtain a better
visual appreciation of the closed-loop system’s be-
havior.

The following figures show the simulation re-
sponse of the position and orientation tracking for
the 6-DOF manipulator using the control laws pro-
posed. Fig. 4 shows the tracking response for
the position of the end effector in each Euclidean
component of the work space. One can note that
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Fig. 5. Euclidean components for the orientation of the
end effector of the manipulator and their references

the objective of control is fulfilled. Similarly, in
Fig. 5, one can observe the orientation tracking
performance for each component that defines the
orientation of the end effector. Also, in Fig. 6, the
values of the control signal are shown. Note that
there are some high-frequency components on the
control signals; these components are due to the
use of the pseudo-inverse matrix defined in (43).

Finally, a sequence of images from the simu-
lation realized in CLUCalc is shown in Fig. 7.
Here the position tracking realized by the 6-DOF
manipulator can be appreciated.

7.2 Biped Humanoid

In this section, we use the same methodology
of modeling presented above using the conformal
geometric algebra framework. We obtain a model
for the legs of a biped robot, dividing the problem
in two models of manipulators, where the end ef-
fector for each manipulator is located at the center
of mass (center of the hip). First, the kinematic

Fig. 6. Control values for position and orientation track-
ing of the end effector of the 6-DOF manipulator

Fig. 7. Sequence of images of the simulation for the
robotic system using CLUCalc

models of the legs will be defined. Then the param-
eters of the proposed controller are determined.
Finally, the performance of the simulation of the
closed-loop system is presented. The kinematic
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Fig. 8. Euclidean components of the center of mass and
their references

model for the legs of a biped robot (6 DOFs per
leg) is defined by the following axes of rotation and
lengths of each link:

L1 = e32 + e∞(x1 · e32), L4 = e13 + e∞(x4 · e13),
L2 = e12 + e∞(x2 · e12), L5 = e32 + e∞(x5 · e32),
L3 = e21 + e∞(x3 · e21), L6 = e12 + e∞(x6 · e12),

(47)
where xi, i = 1, ..., 6 are the vectors that define the
initial position of each joint of the right leg of a biped
robot.

7.2.1 Applied Controllers

The pose control term for a leg of the biped robot
is defined as u1 = [q1, . . . , q6]

T and is obtained
via Eqs. (29) and (31). The state-space model
is obtained by the differential kinematics and is
defined in Eqs. (46). The control gain was selected
as K1 = [1.9, 1.9, 1.9, 3.2, 3.2, 3.2]

T . The reference
position vectors used to move the center position
mass of the biped robot was

xref = [0.3238, 4.2− 0.3 sin(0.5πt), 1.1]T ,

where xref is the reference vector and the refer-
ence vector for the orientation was

Lref = [0, 0, 1]T .

Fig. 9. Euclidean components of the orientation of the
biped robot and their references

7.2.2 Simulation Results

Next, we present the same simulation using differ-
ential kinematic, MatLab, conformal geometric al-
gebra, and CLUCalc [6] for the 6-DOF manipulator
robot. We used the model of a 6-DOF manipulator
for the kinematic model of the legs of the biped
robot. The first goal is to raise and lower the center
of mass of the biped robot repeatedly.

The following figures show the simulation re-
sponse of the position and orientation tracking for
the legs of a biped robot using the control laws
proposed. Fig. 8 shows the tracking response of
the position of the end effector (center of mass)
in each Euclidean component of the work space.
One can note that the objective of control is fulfilled.
Similarly in Fig. 9, one can observe the orientation
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Fig. 10. Control values of position and orientation of the
biped robot

Fig. 11. Sequence of images of the simulation of a
vertical motion for the biped robot using CLUCalc (xref )

tracking performance for each component that de-
fines the orientation of the center of mass of the
biped robot. Also, in Fig. 10, the values of the
control signal are shown. Also, simulations for the
reference vectors xref1 = [0.32, 4, 1.1 − .4 sin(2t)]T

and xref2 = [0.32, 4 − 0.2 cos(2t), 1.1 − 0.2 sin(2t)]T

was developed and are showed in Figs. 12 and 13,
respectively.

Fig. 12. Sequence of images of the simulation of a lateral
motion for the biped robot using CLUCalc (xref1 )

Fig. 13. Sequence of images of the simulation of an ellip-
tical motion for the biped robot using CLUCalc (xref2 )

8 Conclusions

This paper presents the modeling and control of a 6-DOF
manipulator and legs of biped robot using conformal
geometric algebra (CGA). The orientation tracking and
position tracking problem is defined entirely in this math-
ematical framework, as well as the stability analysis in
both cases. The use of CGA to define the tracking
error opens a new area on the control of the manipu-
lator because we are able to define the error between
geometric primitives. CGA provides a descriptive lan-
guage to represent geometric primitives and their rigid
transformations, facilitating the procedure of kinematics
chain calculation in serial manipulators. These features
are provided exclusively by the use of CGA. This method
of control can be easily extended to advanced nonlinear
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control strategies such as sliding modes, adaptive con-
trol, and so on. Due to the use of the adaptive pseudo-
inverse of the Jacobian, the control law presents high-
frequency components. For this reason, in our future
work we will make a new stability analysis, to propose a
control law that is a smooth signal and rejects these high
frequencies. The simulation obtained using CLUCalc
provides a better visualization for the response of the
closed-loop system. Thus, we can conclude that CGA
is a good framework for kinematic modeling, control, and
visualization of robotic manipulators.
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