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Abstract. This paper presents a two phase mixed 
integer program for the commercial territory design 
problem of a micro financing institution. After the 
locations of the territory centers are determined, the 
customer allocation is done with respect to such 
planning criteria as total workload, amount of loans, and 
profit allocation. In order to solve this model for large 
instances, we propose a hybrid heuristic that includes 
fixing variables, perturbation analysis, and dynamic 
relocation of territory centers. We perform a 
comprehensive statistical analysis that provides novel 
insights about the interplay of the heuristics in a large 
scale mixed integer program. The efficiency of the hybrid 
heuristic is tested and its effectiveness to find near 
optimal solutions with a reasonably small computational 
effort is discussed. 
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1 Introduction 

Micro finance institutions (MFIs) attempt to reduce 
poverty and income inequality by making credit 
and other financial instruments accessible to 
underprivileged, poor populations, thus the number 
of people that start small businesses within this 
socio-economical group can increase. MFIs are 
popular in underdeveloped countries, but the 
challenge of these enterprises is to remain 
profitable despite the high risk associated with their 
investments. Penetrating the market by 
establishing a certain number of branches of the 
MFI to serve a given customer base is a critical 
business decision. This includes the selection of 

the location and type of the territory centers from 
potential branches and allocation of the customer 
base to these territory centers with respect to 
particular planning criteria. We utilize the two-
phase location-allocation optimization approach 
that was proposed in [1] in order to construct a 
multi-criteria territory design for a single MFI. This 
model considers both the mean and variance of a 
planning criterion. In order to solve the resulting 
large scale mixed integer program, we utilize a 
number of heuristics within a branch and bound 
framework. This manuscript focuses on the 
comprehensive statistical analysis that provides 
insights about the interplay of the heuristics. We 
discuss the effect of the proposed heuristics on the 
solution quality and computational time in order to 
provide insights about their use in the solution of 
mixed integer programs with large scale instances. 

1.1 The Literature on Micro Finance 
Institutions 

The MFI literature is vast in decision-making 
models that focus on measuring efficiency. For 
example, Data Envelopment Analysis (DEA) has 
been used extensively with different criteria to 
measure the efficiency of MFI. The review in [2] 
provides a discussion about these approaches, 
while [3] proposes an approach based on Goal 
Programming that simultaneously considers the 
effects of multiple criteria involved in the 
performance of MFI. To the best of our knowledge, 
there are no models dealing with territory design 
for MFIs. In fact, territory design problems are 
relatively scarce in the banking literature. For 
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instance, facility location problems for banking are 
reviewed in [4]. A budget-constrained location 
model that simultaneously opens and closes 
facilities is developed in [5] to satisfy customer 
demand. These authors use greedy-interchange, 
tabu search, and Lagrangean relaxation heuristics 
for solving the model. A local search heuristic to 
solve the mixed integer program of locating bank 
branches is proposed in [6]. 

1.2 Territory Design Optimization 

Optimization models for territory design have been 
proposed in applications related to geography, 
political science, sales, and public resource 
management. According to [7], territory design 
criteria can be based on activity-related, 
organizational, or geographical considerations. 
The territory design model of [8] minimizes the 
traveling distance subject to geographical 
constraints in a sparse environment. Activity-
related criteria motivated by economic indicators 
(i.e. number of customers, demand, workload, 
sales, and profit) are studied in [9, 13]. Multi-criteria 
optimization models have also been considered for 
territory design. The authors of [14] propose a 
location-allocation model that balances the number 
of customers, product demand, and workload while 
considering connectivity constraints.  

The use of activity measures for territory design 
is restricted to the use of their mean values. The 
variability of activity measures has not been 
considered in the existing literature. The research 
in [1] addresses this gap by utilizing the formulation 
in [15], which is similar to the quadratic mixed 
integer mean-variance portfolio selection model of 
[16]. This allows the decision maker to consider the 
variance of the activity measure, profit allocation, 
which is a novelty in territory design models. The 
integer and binary decision variables within 
territory design problems make mixed integer 
programs (MIP) a natural choice for modeling. 
When the size of the problem increases, finding 
optimal integer solutions is difficult because of the 
NP-hard characteristics and particular constraints. 
For instance, enumeration of the exponential 
number of connectivity constraints becomes 
practically impossible, see [17]. It is also prohibitive 
in terms of time to solve the resulting MIP for large 
size instances. Therefore, heuristics have been 

utilized to deal with such models. Heuristics may 
not provide perfectly optimal solutions, but they 
result in sub-optimal decisions within reasonable 
computational times, thus they are effective for 
solving real-world problems with large size 
instances. In [18], the proposed solution for 
territory design MIP problems ranges from 
location-allocation and set partitioning methods to 
divisional algorithms, local search methods, and 
meta-heuristics.  

The proposed heuristics for territory design 
problems include fixing the locations of the centers, 
limiting the search to immediate neighborhood, 
fixing some binary values of variables, perturbation 
analysis. The authors of [14] propose a reactive 
greedy randomized adaptive search procedure, 
and [10] presents a procedure using quadratic 
models to solve problems with double balancing 
and connectivity constraints. A similar framework 
is used in [12], but their focus is on the allocation 
phase for larger number of instances. In addition to 
the heuristics that are proposed by [19], heuristics 
for dynamic re-calculation for profit variance 
among territory centers and dynamic relocation of 
branches are introduced and tested. The rest of the 
manuscript is structured as follows. Section 2 
describes the territory design problem, the model 
formulation, and the data. Section 3 introduces the 
solution framework and the utilized heuristics. In 
Section 4, the experimental design is described, 
whereas the empirical evaluation of the proposed 
heuristics is given in Section 5. Section 6 presents 
conclusions and future work. 

2 Problem Description, Modeling 
Framework, and Data Description 

2.1 Problem Description 

The MFI of concern, as illustrated in Figure 1, 
offers three major loan products: personal loans, 
family loans, and group loans. The MFI branches 
are fully contained within other established 
businesses. That is, each branch is located inside 
or adjacent to businesses that attract a large 
volume of customers and have convenient 
locations. In our setting, five types of branches are 
considered, including branches fully contained in 
grocery stores, convenience/meat markets, drug 
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stores, gas stations, and fast-food restaurants. 
This configuration enables the firm to reduce the 
branches’ building and operating costs. 

The group of customers that are served by a 
branch is referred to as a territory. Furthermore, the 
optimal territory center is the branch that minimizes 
the total distance of the customers assigned to that 
particular branch. The problem requires 
constructing an overall optimal territory design for 
p branches that also satisfies the constraints for the 
activity measures of interest.  

The MFI has a large base of customers; hence, 
individual customers are aggregated in basic units 
(BU) to reduce the problem size and model 
complexity. In the MFI under analysis, each BU is 
defined so it has at most 15 customers. Each BU 
has a capacity for the types of branches that it can 
get service from, whereas each branch is capable 
of servicing one or more basic units. 

2.2 Modeling Framework 

We have a territory design problem that can be 
modeled in one stage as a large facility location 

problem with the requirement of allocation with 
respect to different activity measures. To facilitate 
the solution framework, we propose a two phase 
location-allocation model. The location model 
provides the decision on the location and type of 
the territory centers, whereas the second phase 
allocates the customers to these territory centers 
with respect to such activity criteria as the total 
workload, total dollar amount of loans, and total 
profit contribution while allowing the initial locations 
to be updated. Below, we introduce the sets, 
parameters, decision variables, and activity 
measures used in the proposed model. 

Sets for Model Phases I and II: 

A = set of activity measures for BU; indexed by m 
B = set of type of branches {grocery, meat store, 
drug, gas station, fast-food}; indexed by b 
V = set of all available BU’s 
P = set of disjoint territories; a subset of V 
E = set of previous customer assignments to 
branches (i.e. alignment information)  
F = sub-set of pairs of BU’s that cannot be 
assigned to the same territory 

 

Fig. 1. Territory planning for the micro financing institution 
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D = set of connected BU pairs (i,j) with Euclidean 
distances Dij between BUi and BUj 

N j = set of all BU’s that are adjacent to jth BU 

C = set of unconnected BU’s assigned to each 
territory center 

NC = union set of all BU’s that are adjacent to any 
member of C 

Parameters for Phases I and II: 

v = number of BU’s seeking for loan, 

p = # of branches selected as territory centers, 

v = number of BU’s seeking for loan, 

p = # of branches selected as territory centers, 

m = # of activity measures among branches, 

b = number of branch types, 

l = number of loan types, 

W j 
m= value of activity measure m for BUj, 

W j 
m= value of activity measure m for BUj, 

μ�� = capacity of activity measure m for branch i,  

Tm = territorial tolerance for activity measure m, 

��� = variance of the profit for BUj,  

γ� = target profit variance for branch i, 

Dij = Euclidian distance between BUi and BUj, 

Mij = binary parameter for existing assignments if 
BUj is assigned to branch i, 

δ� = maximum travelling distance for customers 
assigned to branch i, 


�� = binary parameter: {1} if branch i is of type b, 

Lb = minimal # of branches selected of type b, 

Ub = maximal # of branches selected of type b. 

Activity Measures: 

m=1. Total workload (in hours per day) required for 
end-customers. 

m=2. Total dollar amount of loans for end-
customers. 

m=3. Total profit contribution due to accrued 
interests for end-customers.  

Decision Variables for Phases I and II: 

Xij: ∀ i,j ∈ V, Xij, where {(i,j)} ⊂ D; binary variable 
indicating if BUj is assigned to branch i, 

��: ∀ i ∈ V binary variable indicating if ith branch is 
defined as territory center, 

Si  ∀ i ∈ V   excess profit variance for branch i when 
compared with target	γ�. 

2.3 Phase 1. MIP Model for Initial Territory 
Centers Location 

Phase 1 of the model determines the initial location 
of the territory centers. Our location MIP model is 
presented as follows 

���	�����	���
�	∈�

	
�	∈�

 (PI.1) 

subject to 

���� = 1	 ∶ ∀	�	 ∈ �
�	∈�

, (PI.2) 

��� 	≤ �� 	 ∶ ∀	�, �	 ∈ �, (PI.3) 

���� 	��� ≥ �� 	μ�� 	�1 − !�",
�	∈�

	 (PI.4) 

∀	� ∈ �, #��, �":	��� = 1% 	⊂ �, ∀	�	 ∈
'	 ∑ ���	∈� = ). 

(PI.5) 

Objective Function: we implement a p-median 
location model with the objective function (PI.1) 
minimizing the sum of the Euclidean distances 
between each BUj and its center BUi. Hence, 
minimizing dispersion is equivalent to maximizing 
compactness. The set V (set of all available BU’s) 
can be partitioned into the set of p disjoint 
territories, P. The objective function finds the initial 
location and type of p branches to be selected as 
territory centers.  

Unique assignment constraint: constraint (PI.2) 
assigns each BUj to only one branch.  

Capacity constraints: constraint (PI.3) assigns 
BUj to branch i if and only if branch i is selected as 
a territory center. Constraint (PI.4) provides a lower 
bound for branch i assignments in terms of 
activity measures.  

Partitioning constraint: constraint (PI.5) assures 
the construction of exactly p territory centers (i.e. 
branches).  

2.4 Phase 2. MIP Model for Allocation of Basic 
Units to Territory Centers 

The allocation problem in Phase 2 identifies (1) 
near-optimal branches for territory centers and (2) 
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optimal set of end-customers assigned to each 
branch while considering capacity, side, and 
contiguity constrains: 

Min��X�.	D�.	–��M�.	X�.
.∈1�	∈2.	∈1�	∈2

+	�S�	,
�	∈2

	 

#�i, j":	X�. = 1% 	⊂ D,M�. ∈ E	 

(PII.1) 

subject to 

�X�. = 1, ∀	j	 ∈ V,			#�i, j":	X�. = 1% 	⊂ D,
�	∈2

 (PII.2) 

Y�μ�9�1 − T9" ≤ ∑ X�.	W.9 	≤.	∈1
Y�μ�9�1 + T9" , ∀		i ∈ P,m ∈ M, 

(PII.3) 

X�.	D�. ≤ Y�	δ�, i ∈ P, #�i, j":	X�. = 1% 	⊂ D, (PII.4) 

L? ≤�Y�G�? ≤ U?, ∀	b ∈ B
�	∈2

, (PII.5) 

X�. + X�D ≤ 1, (PII.6) 

∀	�	 ∈ �, ∀	�, ℎ	 ∈ F ⊂ �,	 
#��, �":	��� = 1% ⊂ �, 

∑ ��G −	∑ ����∈H = 1 − |J|G	∈	KL , 

(PII.7) 

∀	�	 ∈ �, J ⊂ #��, �": ��� = 1%,	 
MN =OM� .

�	∈H
 

(PII.8) 

Objective Function (PII.1): the first term refers 
to the total Euclidean territory distance. The 
second term represents the alignment on 
preference allocation. The excess value of profit 
variance is the third term.  

Unique-assignment-constraint: constraint 
(PII.2) assigns each BUj to one branch i only. This 
constraint is included in both Phases I and II 
because territory centers (i.e. branches) and BU’s 
allocation may change in Phase II as well.  

Activity-measure-side constraints: constraints 
(PII.3) are defined to ensure that each territory is 

within a maximal deviation from the capacity value 
μ��, defined for each activity measure m and 
each  branch i.  

Traveling-distance constraint (PII.4): maximum 
distance Q� is allowed for end-customers assigned 
for branch i.  

Branch-type constraint: constraint (PII.5) sets 
the minimum and maximum number of branches 
selected on incumbent solution for each type of 
branch b.  

Alignment constraints: geographical issues like 
rivers or mountains are modeled explicitly as hard 
constraints in (PII.6). We explicitly enumerate into 
a subset F all pairs of BU’s that cannot be assigned 
on the same territory.  

Contiguity constraints: constraints (PII.7) 
guarantee connectivity of territories and were 
initially proposed in [20] to constrain connectivity in 
routing problems. It evaluates if a subset C 
contains a partition of BU’s that are assigned to a 
territory center i but are disconnected from the rest 
of BU’s assigned to the same territory. The 
cardinality of the subset C ranges from 1 up to H/2, 
where H is the number of BU’s assigned to the 
territory. The subset Nc represents the union set of 
all BU’s that are adjacent to any member of C. If 
BUj is assigned to territory i, at least one of the 
neighbors of BUj (i.e. R	 ∈ 	MH) needs to be 
assigned to the same territory as BUj. In other 
words, at least one of the BU’s q that is adjacent to 
any member of C must be assigned to the same 
territory i as it is with all the members of C. The 
main issue with connectivity is the exponential 
number of contiguity constraints, which makes it 
impossible to write them explicitly.  

Profit variance excess constraint: constraint 
(PII.8) is defined to compute the excess profit 
variance when compared with the target profit 
variance for each branch.  

2.5 Data Description 

The MFI provided the data so the values Dij, ��� 
and Wj

m can be retrieved for all basic units and 
branches under consideration as well as for all 
activity measures. The MFI also provided the 
target and threshold values for δ�, γ�, Lb, Ub, μ�9, Tm 

for every branch i, branch type b, and activity 
measure m as well as the set of the existing Basic 
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Unit-Territory Center assignments, set E, and 
geographical considerations. The confidentiality 
agreement with the MFI prevents us from explicitly 
providing data other than those in Table 1.  

Table 2 provides an understanding of the size 
of the problem. Our optimization model has more 
than 5,512,000 constraints (approx.) and 
5,020,000 decision variables. In addition, the 
number of the contiguity constraints is exponential; 
thus, it is impossible to state these constraints 
explicitly. The computational time is prohibitively 
large for a practical business user application of 
this model. For instance, we could not find a 
feasible solution for our problem with the described 
data in as many as 48 hours. The large scale of the 
problem is our main justification for the need of 
heuristics.  

For a similar problem in a different context, [12] 
suggests a similar MIP program with 5,000 basic 
units and without considering the variability of the 
profit allocation, the computational time is 
prohibitively large and justified the need for 
heuristics. The following section introduces the 
solution framework and the proposed heuristics 
in detail. 

3 Solution Framework: Hybrid 
Heuristic 

We utilize a solution procedure based on an 
iterative cut generation strategy within a branch 
and bound framework [21] to solve this large-scale 
mixed integer program. The computational time is 
prohibitively large for practical business application 
of this model. This manuscript presents a hybrid 
heuristic to solve large scale mixed integer 
programs. In addition to the heuristics that are 
proposed in [12, 19], we utilize novel heuristics for 

dynamic re-calculation of profit variability among 
territory centers and dynamic relocation of 
branches. Thus, heuristics (H1)-(H5) are utilized all 
together as a hybrid heuristic in order to reduce the 
search space and complexity (see Table 2 for the 
parameter definitions). 

Prior to the location phase, a pre-processing 
heuristic for initial territory design using FACTOR 
parameter is utilized. After the solution of 
Problem 1, there is another pre-processing 
heuristic using the parameter KERNEL. Then, the 
rest of the heuristics, perturbation, and dynamic re-
calculation of profit variance among territory 
centers and dynamic relocation of branches are 
utilized to solve Problem 2. Table 3 lists the steps 
of the proposed solution framework. 

Overall, initial territory center design is crucial 
since it can decrease the number of iterations to 
reach to an optimal solution. That is the main 
reason of utilizing Heuristic 1 and solving 
Problem 1. The second phase allocates the 
customers with respect to the activity measures 

Table 1. Data description 

Parameter Number 

Basic Units (y) 10000 

Branches (p) 500 

Activity Measure (m) 3 

Type of branch (b) 5 

Types of loan (l) 3 

Table 2. Parameters for the hybrid heuristic 

Hybrid heuristic 
parameters 

Values 

FACTOR = parameter for 
initial territory center design 

5, 7 

KERNEL = the percentage of 
initial allocation assignments 

0 – 0.30 

PERT = objective function 
weight for perturbation 

500 – 10k 

KVARS = variance weight 
factor among branches 

1k – 10k 

CORE = proportion of 
branches that can be used 

for re-centering 

0.6 – 0.9 

Table 3. Steps of proposed solution framework  

Solution steps Heuristic 

(H1) initial territory design FACTOR 

(P1) location phase  

(H2) assignment of a 
subset of customers to the 
nearest territory center 

KERNEL 

(P2, H3, H4, H5) allocation 
phase 

PERT, KVARS, 
CORE 
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while allowing dynamic updating of the territory 
centers. A cut-generation strategy is used to 
recursively evaluate the contiguity required by 
each territory. Consequently, the capacity and side 
constraints are updated depending on the branch 
type selected for territory centers. The following 
sub-sections discuss the proposed heuristics and 
their characteristics in detail. 

3.1 H1: Pre-Processing Heuristic for Initial 
Territory Centers (FACTOR) 

This pre-processing heuristic (H1) is used to 
simplify the network and design initial territory 
centers before solving Problem 1. The basic idea 
of the pre-processing heuristic for initial territory 
centers is to choose a subset of the connected 
branches for each customer group. 
Mathematically, the following criteria are used:  

���� 	��� ≅ F'J!TU × μ�� ,
�	∈�

#��, �":	��� = 1% 	⊂ U	 ⊂ �, �	
∈ �,			∀	� ∈ ' = W1,2,3Z. 

R is a subset of relevant arcs from D that are 
constructed using this pre-processing heuristic to 
reduce complexity. FACTOR serves as a capacity 
value of the respective activity measure for a 
particular branch. FACTOR is commonly set to 5 
during our implementation. 

3.2 H2: Pre-Processing Heuristic for Initial 
Allocation Assignments (KERNEL) 

Heuristic H2 is utilized after the location phase and 
before solving Problem 2. The solution of Problem 
1 provides the set of initial territory centers.  

Then, heuristic H2 assigns a partition of 
geographic basic units to the nearest territory 
center belonging to the set of initial territory 
centers. This heuristic, which is based on setting a 
percentage of decision variables to one, can be 
formally presented as follows: 

Let Xij = 1 where {(i,j)} ⊂ R ⊂ D such that 

���� 	��� ≅ [\UM\] ×	μ�� 	,
�	∈�

∀	�	 ∈ �,			∀	� ∈ ' = W1,2,3Z. 

The use of heuristics for initial territory centers 
and for initial allocation assignments may result in 
a loss of optimality [19]. That motivates us to utilize 
a heuristic that allows dynamic re-centering of the 
territories, which is presented as heuristic H5. 

3.3 H3: Perturbation (PERT) 

The perturbation heuristic has been shown to be 
effective for mixed integer programs, for instance, 
within the context of fleet assignment problems 
[21]. The basic idea of this heuristic is to provide 
feedback to the objective function about customers 
already connected to a particular branch for which 
no changes are expected. This prevents 
assignment changes unless the improvement in 
the objective function is large. 

Let the dynamic parameter Zt represent the 
number of basic units that are disconnected at 
each iteration t. In fact, it is expected that the 
parameter Zt would get smaller in the following 
iterations as a result of satisfying the added 
contiguity constraints (PII.7) Let U ⊂ R represent 
the subset of basic units (BUs) that are already 
connected to the territory center i. Therefore, the 
parameter �̂�_  indicates if BUj remains assigned to 

territory center i at iteration t. Thus, the parameters 
Zt and PERT are added to the modified objective 
function (PII.1b) as the weights for the parameter 

�̂�_  as follows: 

T`�Fa�b�_"
= 	c������� 	��� 	–��c�� 	���

�∈��	∈d�	∈��	∈d

− 	�\U!	�� �̂�_ 	���
e_�∈��	∈d

, 

where	#�i, j":	X�. = 1% 	⊂ R	 ⊂ D,	 
M�.E, U	 ⊂ 	R, 

(PII.Ib) 

U��_ = dynamic set of current customers j assigned 

to branch i at iteration t,   
Zt = number of BU’s that are disconnected at each 
iteration t. 

The modified objective function (PII.1b) is now 
defined at every iteration (T`�Fa�b�_"). As a 

measure of compactness, the penalty term within 
the objective function for BUj is inversely 
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proportional to Dij. That is, the smaller the distance 
of the jth BU to the ith territory center is, the larger 
the penalty term within the objective function 
becomes. This change avoids any assignment 
changes for the decision variable ��� . Smaller 

values of Zt should lead to faster convergence to 
the optimal solution. Larger values of the 
perturbation parameter enforce the MIP objective 
function to keep the assignment of ��� 	as it is by 

assigning a larger penalty. Perturbing costs can 
adversely affect the number of interior-point 
iterations required. In some cases, this increase in 
the number of interior iterations is expected to be 
offset by finding an optimal basis quickly. A value 
of zero for the perturbation parameter implies that 
the effect of the perturbation heuristic is negligible 
which may result in slower convergence. These 
three heuristics have been implemented for mixed 
integer programs in different contexts [12, 19]. 

3.4 H4: Dynamic Updating of Profit Variability 
Among Territory Centers (KVARS) 

The variance weight factor KVARS is implemented 
within the objective function (PII.1) in order to 
assign a weight on the profit variability among 
branches. This heuristic modifies the objective 

function by replacing ∑ k� 	�	∈d  with ∑ lm	
n�opl�	∈d . This 

is expected to be beneficial when the solution 
framework cannot reach the target profit variance 
in a small number of iterations.  

We can implement a static or dynamic weight 
for variance through all iterations on the algorithm. 
This manuscript employs a static variance weight 
factor for which small (i.e. 500) values lead to 
larger weights for variance within the objective 
function and to lower profit variability among 
branches. However, a small static variance weight 
factor may produce a trade-off with the 
perturbation parameter and may result in slower or 
no convergence. Another strategy is to set a 
dynamic linear negative function for the variance 
weight factor that starts with an initial large value 
on the variance weight factor and decreases the 
value dynamically.  Three parameters need to be 
determined for this dynamic strategy: (1) an initial 
variance weight factor value (kivars=5000), (2) a 
final value (kfvars=1000), and (3) a number of 
iterations to get the final value (kuvars=10). Our 

preliminary experiments provide evidence showing 
that this dynamic strategy can be very valuable 
while facing hard-tightened problems. 

3.5 H5: Dynamic Relocation of Branches 
CORE 

An optimal branch is by definition the block that has 
the smallest total distance to the set of customers 
assigned to the territory. Some constraints in 
Problems 1 and 2 are relaxed to determine the 
initial territory centers. This may lead to suboptimal 
territory centers. Thus, a dynamic relocation of 
branches is performed to ensure that the algorithm 
results with the optimal location for branches. This 
parameter (CORE) is used in order to define the 
subset of potential branches that can be used as 
candidates for territory re-centering. 

In this heuristic	�� is recalculated in each iteration. 
When a branch i is re-located for any territory, then 
customers j distance12 matrix is re-calculated 
accordingly for all relevant decision variables.  

Consequently, constraints (PII.2), (PII.3), and 
(PII.4) should be redefined when a new branch is 
set as the territory center in any iteration. A large 
proportion of the branches are used for re-
centering results in a larger local search for optimal 
branches as territory centers. Furthermore, it can 
be verified that fast convergence to the optimal 
solution is compromised as branch location is re-
centered on territories. In fact, during the first 
iterations of the algorithm there is a lot of 
computational effort to find the optimal branch 
locations. After some iterations, re-location of 
centers is stabilized and then more effort and 
progress are reported on minimizing the profit 
variance among braches and minimizing 
compactness for territories. Similarly, for contiguity 
constraints, little progress is obtained on cut 
strategy contiguity constraints during branch re-
location stage. This trade-off on dynamic re-
location for territory centers prompts us not to start 
the re-location procedure during the first iterations. 
Therefore, we define a parameter inireloc that 
indicates the iteration number at which the 
algorithm starts applying the re-location strategy 
for the territory centers. 



Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 783–804
doi: 10.13053/CyS-19-4-2055

Hybrid Heuristic for Dynamic Location-Allocation on Micro-Credit Territory Design 791

ISSN 2007-9737

4 Performance of the Hybrid Heuristic 
and Further Design of Experiments 

This section evaluates the implementation of the 
hybrid heuristic to solve the utilized mixed integer 

program. The computer used for this 
implementation was a Dell Intel ™ Core i7-3520; 
CPU 4 @ 2.90 Ghz; RAM 8GB; Windows-7 64 bits. 
The hybrid heuristic was implemented on X-

Table 4. Optimality gaps for runs with different combinations of parameter values 

KERNEL CORE PERT Optimality  Gap % 

0.00 0.00 1 0.5224% 

0.00 0.00 1 0.5897% 

0.00 0.00 1 0.4745% 

0.00 0.00 1 0.4562% 

0.00 0.00 17 0.9247% 

0.00 0.00 17 0.5224% 

0.00 0.00 17 0.5897% 

0.00 0.00 17 0.4745% 

0.00 0.00 17 0.4562% 

0.10 0.60 30 1.0417% 

0.20 0.60 30 0.6624% 

0.30 0.60 30 0.5799% 

0.10 0.90 30 0.9610% 

0.20 0.90 30 0.8712% 

0.30 0.90 30 0.4748% 

0.00 0.90 50 1.2958% 

0.10 0.90 50 1.8331% 

0.20 0.90 50 1.3563% 

0.30 0.90 50 1.0480% 

0.00 0.90 100 2.2358% 

0.10 0.90 100 2.2674% 

0.20 0.90 100 3.1534% 

0.30 0.90 100 2.9326% 

0.00 0.90 110 2.3304% 

0.30 0.90 110 2.7110% 

0.00 0.90 130 3.1693% 

0.00 0.99 1 0.3183% 

0.00 0.99 1 0.0507% 

0.00 1.50 1 0.0079% 

0.00 0.99 1 0.4690% 

0.00 1.25 1 0.1095% 

0.00 0.99 1 0.2731% 
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PRESS© MIP Solver from FICO™ (Fair Isaac, 
formerly Dash Optimization).  

Firstly, we present evidence for the 
effectiveness of the hybrid heuristic. This is 
followed by an explanation of the design and 
purpose of the further experiments. 

4.1 Performance of the Hybrid Heuristic 

The large size and the complex constraint nature 
of the problem prevent us from having a feasible 
solution without any of the heuristics in as many as 
48 hours. Therefore, the optimal solution is 
estimated by using a run with the minimal use of 
heuristics. For a FACTOR value of 5 and a 
perturbation heuristic parameter value of 12, a 

feasible solution for total Euclidean distance is 
retrieved within reasonable computational time. 

This solution, 34.1029, is also the best solution 
that has been found as a result of extensive 
simulations. Therefore, we use it to estimate the 
optimal solution, and the percentage optimality 
gaps are computed using combinations of heuristic 
parameters.  

Table 4 presents the optimality gaps for the 
cases where the FACTOR value is 5 and the 
variance weight factor is 10000. The reported 
optimality gaps are in the range of 0.47% and 
3.17%, which is reasonable compared with the 
initial case where finding a feasible solution 
is difficult. 

Table 5. Sample sizes for .different levels of KERNEL and CORE 

  KERNEL  

  0 0.1 0.2 0.3 TOTAL 

CORE 
0.6 94 17 27 28 166 

0.9 40 26 15 18 99 

 TOTAL 134 43 42 46 265 

Table 6. Sample sizes for different levels of KVARS and PERT 

 KVARS  

PERT 500 1000 
2000- 

3000 
5000 

5100- 

7500 
10K Total 

30-40 2 18 10 11 8 12 61 

50-70 4 15 4 12 4 10 49 

75-90 1 7 11 5 8 8 40 

100 1 9 5 8 7 10 40 

110-140 3 15 2 12 6 13 51 

150 1 6 2 7 1 7 24 

Total 12 70 34 55 34 60 265 

Table 7. Levels for experimental design factors PERT and KVARS 

Parameter Minimum Median Maximum 

PERT 30 90 150 

KVARS 500 5000 10000 
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Fig. 2. MIPSOL for changing values of PERT and KVARS with CORE=0.6 and 0.9 

 

Fig. 3. Relationship among MIPSOL and KERNEL, PERT, KVARS 
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The next subsection describes the design of the 
experiment that aims to provide 
sensitivity analysis.  

4.2 Design of Experiments 

Our preliminary experience has shown that the 
proposed large scale mixed integer program is 
challenging to solve. We proposed a hybrid 
heuristic and now investigate the sensitivity of the 
solution to the heuristic parameters. The main 
purpose of the further experiments is to understand 
how to choose the hybrid heuristic parameters 
KERNEL, PERT, KVARS, and CORE. Particularly, 
the objective is to analyze the trade-offs between 
the quality of the solution and the computational 
time with respect to the choice of these 
parameters. The quality of the solution is 
measured by 

i) the total Euclidean distance (MIPSOL), also 
referred to as compactness, and  

ii) the resulting profitability variance among 
branches (VARS). 

The solutions with a smaller total Euclidean 
distance and a smaller profitability variance among 
branches are deemed to be of high quality.  We aim 
to provide some insights about the choice of the 
heuristic parameter values that increase the 
efficiency of the search. 

5 Analysis 

This section provides graphical and statistical 
analyses based on the described experimental 
design. The objective is to evaluate the patterns of 
the relationship among the four hybrid heuristic 
parameters KERNEL, PERT, KVARS, and CORE 
and three performance indicators: (1) the 
compactness of the solution, (2) the resulting 
profitability variance among branches, (3) the 
length of the computational time.  

Locally weighted regression (loess) analysis 
was used via the R software package [23]. Loess 
is a non-parametric regression method for fitting a 
regression surface to data through multivariate 
smoothing [24]. After presenting the computational 

results, a discussion is provided in order to share 
the gained insights.  

5.1 Computational Results  

Figure 2 shows the influence of the perturbation 
parameter on compactness of the solution while 
controlling the size of the area searched for optimal 
territory centers (CORE). It should be noted that, 
for illustration purposes, the variance weight factor 
was discretized as terciles with respect to its 
empirical distribution (i.e., [500, 5000) [5000, 6000) 
[6000, 10000]).  In general, an increase in the 
perturbation parameter results in less compact 
solutions.   

The effect of the variance weight factor on the 
compactness is directly proportional to the size of 
the area searched for optimal territory centers. 
Therefore, a significant part of the variability in the 
solution compactness is explained by the 
magnitude of the perturbation factor, and to a 
lesser extent by the magnitude of the variance 
weight factor KVARS.  

Larger variance weight factor values result in 
more compact solutions as shown in Figure 2. An 
increase in the area searched for optimal territory 
centers in conjunction with an increase in the 
variance weight factor also leads to more 
compact solutions. 

Figure 3 shows how the compactness of the 
solution varies across the range of values for the 
parameter of initial allocation assignment 
(KERNEL) that fixes a subset of Xij binary variables 
as one. It is shown that smaller values for the 
magnitude of the variance weight factor results in 
solutions with larger total Euclidean distances.  

For a larger number of initial allocation 
assignments during the pre-processing phase, the 
larger magnitudes of the variance weight factor 
(observe the dotted line) are more consistently 
associated with more compact solutions. 

There is more variability in the compactness of 
the solution for a larger number of initial allocation 
assignments (0.30).  The variability of the 
compactness of the solution also increases with 
larger perturbations. Regardless of the magnitude 
of the variance weight factor, for a larger 
percentage of initial allocation assignments during 
pre-processing (0.30), the variability of the 
compactness of the solution is smaller.  
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Fig. 4. Contribution of each variable to R2: MIPSOL 

 

Fig. 5. Relationship among VARS and PERT, KERNEL, KVARS. 
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We fit linear models to evaluate the magnitude 
of the relationships observed in the graphical 
analysis.  Interaction effects between parameters 
are also considered in the models for non-linear 
patterns. Non-parametric bootstrap interval 
estimators [25] were generated for each slope 
coefficient, as a remedy to the violations of the 
Gauss-Markov Theorem in the residuals. 

Graphical analyses to evaluate the effect of the 
hybrid heuristic parameters on the profitability 
variance among branches (VARS) are shown in 
Figures 5 and 6.  Determining the percentage of 
initial allocation assignments during pre-
processing as 0 results in a positive linear pattern 
for the profitability variance among branches and 
perturbation.  Setting the percentage of the initial 
allocation assignments during pre-processing to 
0.2 and 0.3 leads to curvilinear relationships 
between the heterogeneity of the profitability, 
profitability variance among branches, and 
perturbation (see Figure 5). There is also evidence 
implying that an increase in the variance weight 
factor is associated with an increase in profitability 
variance among branches (see Figure 6). Indeed, 
most of the variation in the resulting profitability 
variability can be explained by the magnitude of the 
variance weight factor. 

Table 9 shows the non-parametric bootstrap 
slope estimates resulting from 1000 replications for 
a linear model, including second order interaction 
effects, to estimate profitability variance among 
branches as a function of 1) the size of the area 
searched for optimal territory centers, 2) the 
percentage of initial allocation assignments, 3) 
perturbation, and 4) variance weight factor. These 
bootstrap estimates support some of the patterns 
observed in Figures 5 and 6 such as the positive 
relationship between profitability variance among 
branches and perturbation, the positive 
relationship between the variance weight factor, 
and the difference in patterns for profitability 
variance among branches for the various 
percentages of initial allocation assignments. The 
regression model suggests with a 95% confidence 
that the proportion of the variability in profitability 
variance among branches explained by these 
parameters is contained in the interval (88%, 93%).  
Figure 7 shows the proportion of R2 loss if the 
variable is removed.  The resulting profitability 

variability is explained by the magnitude of the 
variance weight factor. 

Table 10 shows non-parametric bootstrap slope 
estimates resulting from 1000 replications for the 
model (including second order interaction effects) 
to estimate computational time as a function of 1) 
the size of the area searched for optimal territory 
centers, 2) the percentage of initial allocation 
assignments, 3) perturbation, and 4) variance 
weight factor. 

 A graphical analysis for the hybrid heuristic 
parameters appears in Figure 8. Larger values of 
the perturbation factor are associated with larger 
computational time. However, larger values of the 
variance weight factor are associated with faster 
convergence. This pattern is more pronounced for 
a larger area searched for optimal territory centers 
(CORE=0.90). 

The relationships among the parameters and 
completion time are non-linear, see Figure 8. For 
large percentages of initial allocation assignments 
during pre-processing, the better computational 
times are also associated with the larger values of 
the variance weight factor. Figure 9 provides 
evidence that larger values of the size of the area 
searched for optimal territory centers, percentage 

Table 8. Bootstrap estimates for the slope 
coefficients: MIPSOL 

Coefficients 95% Int.estimates 

Intercept (33.90, 34.29 ) 

CORE = 0.9 ( 0.0134,  0.2908 ) 

KERNEL = 0.1 (-0.1884,  0.5843 ) 

KERNEL = 0.2 (-0.2764,  0.3426 ) 

KERNEL = 0.3 (-0.1336,  0.3427 ) 

PERT ( 0.0153,  0.0197 ) 

KVARS (-0.0001,  0.0000 ) 

CORE=0.9*KVARS (-0.0001,  0.0000 ) 

KERNEL=0.1*PERT (-0.0087,  0.0000 ) 

KERNEL=0.2*PERT (-0.0040,  0.0048 ) 

KERNEL=0.3*PERT (-0.0066, -0.0006 ) 

KERNEL=0.1*KVARS ( 0.0000,  0.0001 ) 

KERNEL=0.2*KVARS ( 0,  0 ) 

KERNEL=0.3*KVARS ( 0,  0 ) 

df=251 R2 =(0.6789,  0.784) 
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of initial allocation assignments during pre-
processing, and the magnitude of the variance 
weight factor are associated with a solution of 
better compactness and faster convergence 

These bootstrap estimates support patterns 
observed in Figures 8 and 9 such as the curvilinear 
relationship between computational time and 
perturbation, and the changes in the relationships 
between the magnitude of the variance weight 
factor, perturbation, and time for different values of 
percentage of initial allocation assignments, 
KVARS, KERNEL.  

The regression model suggests with a 95% 
confidence that the proportion of the variability in 
computational time explained by these parameters 
is contained in the interval (22%, 35%).  Figure 10 
shows the proportion of R2 loss if the variable is 
removed.  Omitting the percentage of initial 
allocation assignments during pre-processing or 
perturbation from the model results in the loss of 

about half of the explanatory power of 
computational time. Likewise, omitting the 
magnitude of the variance weight factor will drop 
the explanatory power of the model more than by 
35%. 

5.2 Discussion of the Results 

The experiment shows that, in general, there is a 
complex interaction between these heuristics and 
the overall performance. Our evidence shows that 
the heuristics can be fine-tuned to improve the 
quality of the optimal solution as well as the length 
of the computational time. 

Concerning the effect on compactness, in 
general, lower perturbation parameters and larger 
variance weight factors lead to more compactness. 
The negative effect of increasing perturbation on 

Table 10. Bootstrap estimates for slope 
coefficients: TIME 

Coefficients 95% Int.estimates 

Intercept  ( 5078, 15823 )  

CORE = 0.9  (-2395.7,  1520.5 )  

KERNEL=0.1  ( 1034, 14340 )  

KERNEL=0.2  ( 203, 6832 )  

KERNEL=0.3  ( 925, 8442 )  

PERT  (-471.9,  -55.1 )  

PERT2  ( 0.553,  5.488 )  

PERT3  (-0.0180,  0.0003 )  

KVARS  (-0.5607,  0.0286 )  

PERT*KVARS  (-0.0011,  0.0054 )  

CORE=0.9*KERNEL=0.1  (-3876.7,  2833.4 )  

CORE=0.9*KERNEL=0.2  (-3055.9,  1381.6 )  

CORE=0.9*KERNEL=0.3  (-118, 4968 )  

CORE=0.9*PERT  (-13.2,  39.2 )  

KERNEL=0.1*PERT  (-96.66,   8.17 )  

KERNEL=0.2*PERT  (-28.385,  40.413 )  

KERNEL=0.3*PERT  (-69.68,  -7.37 )  

KERNEL=0.1*KVARS  (-0.7587,  0.0249 )  

KERNEL=0.2*KVARS  (-0.5378,  0.0212 )  

KERNEL=0.3*KVARS  (-0.6398, -0.0518 )  

df = 245   R2 (0.2208,  0.3525)  

 

Table 9. Bootstrap estimates for slope coefficients: 
VARS 

Coefficients 95% Int.estimates 

Intercept (-548.2, -242.5 ) 

CORE = 0.9 (-391.1,   14.8 ) 

KERNEL=0.1 ( 14.4, 607.8 ) 

KERNEL=0.2 (162.9, 892.9 ) 

KERNEL=0.3 ( 422.7, 1434.7 ) 

PERT ( 2.924,  6.117 ) 

KVARS ( 0.2704,  0.2980 ) 

CORE=0.9*KERNEL=0.1 (-307.5,   40.0 ) 

CORE=0.9*KERNEL=0.2 (-560.5,  -46.8 ) 

CORE=0.9*KERNEL=0.3 (-740.1, -234.0 ) 

CORE=0.9*PERT ( 0.581,  5.376 ) 

CORE=0.9*KVARS (-0.0235,  0.0224 ) 

KERNEL=0.1*PERT (-4.084,  1.508 ) 

KERNEL=0.2*PERT (-4.796,  2.259 ) 

KERNEL=0.3*PERT (-7.490, -0.705 ) 

KERNEL=0.1*KVARS (-0.0404,  0.0087 ) 

KERNEL=0.2*KVARS (-0.0532,  0.0112 ) 

KERNEL=0.3*KVARS (-0.0669,  0.0121 ) 

df = 247 R2 = ( 0.8790,  0.9279 ) 
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compactness is moderated (stabilized) by 
adjusting the percentage of initial allocation 
assignments during pre-processing. The 

compactness is also improved by increasing the 
search area for optimal territory centers.  

 

Fig. 6. Relationship among VARS and PERT, KVARS 

 

Fig. 7. Contribution of each variable to R2: VARS 
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With regards to the effect on profitability 
variance among branches, naturally, the variance 

of profitability is greatly influenced by the variance 
weight factor.  An increase in perturbation 

 

Fig. 8. Relationship among TIME and PERT, CORE, KVARS 

 

Fig. 9. Relationship among TIME and PERT 
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decreases the variance of profitability for a larger 
percentage of initial allocation assignments during 
pre-processing. The profitability variance also 
decreases if the percentage of initial allocation 

assignments during pre-processing and the search 
area for optimal territory centers are relatively 
large.  

 

Fig. 10. Contribution of variables to R2: TIME 

 
 

Fig. 11. Mapping representation for the solved territory design model 
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Concerning the effects on computational time, 
in general, larger values of the variance weight 
factor are associated with faster convergence. 

The speed of convergence is heavily influenced 
by the pre-processing heuristic. 

5.3 Managerial Insights 

In addition to the computational test for heuristics, 
a method to understand a representation of the 
solution is determined as a requirement for 
business users before implementation. We used a 
GIS application in order to make a graphical 
representation of our territory design solution. This 
strategy was useful not only to demonstrate how 
the business rules are considered on the proposed 
solution, particularly, for risk balance constraints, 
but also to figure out any other potential 
operational difficulties during implementation. 
Figure 11 includes an example of a real-world 
solution implemented for the MFI. Because of size 
and complexity issues, we show a partial map of 
the entire territory design for presentation. 

Each territory has a number-ID and a branch 
location indicated with a red point. From this 
drawing we can easily determine the compactness 
of the territories. Since we have activity measure 
constraints and risk balance constraints, it is clear 
that contiguity and compactness are compromised. 
The balance of basic units among territories can be 
visually recognized although it is not required. 

The proposed model provides near optimal 
solutions to the problem. This is true not only 
because our approach considers all the real world 
constraints from business requirements, but in 
addition we take particular focus on risk balancing 
for territory design. Furthermore, on each iteration 
during the branch and cut framework, we obtain 
solutions that are lower bound solutions to the 
relaxed problem without contiguity constraints. 
This strategy assures a near optimal solution. 
Finally, the dynamic re-location approach for 
territory center location offers the business a 
selection for territory branches not only from 
geographic perspective but in terms of capacities 
and balance as well. The additional managerial 
implications include potential changes of 
compactness due to changes of demand from new 
customers and lower capacity because of the 
closure of branches. This may need to be 

addressed in a dynamic manner along with the 
development of the market. The existing model can 
be updated accordingly with respect to the 
practical needs of the MFI. 

6 Conclusions and Future Work 

Micro finance has emerged in the early 21st 
century as a solution to scarce capital in countries 
with developing economies. One of the key 
elements in micro financing is accessibility to the 
funds. The allocation of branches for these micro 
finance institutions presents a difficult task. 

This manuscript addresses an actual territory 
design problem faced by a large-size micro 
financial firm. In this territory allocation problem, 
two main decisions have been identified: location 
of branches for territory centers and allocation of 
end customers to each territory center. For a robust 
territory design, profit variability, measure of risk 
among branches is minimized. This real world 
problem was modeled using a large scale mixed 
integer program which is solved with a hybrid 
heuristic approach. These heuristics were 
implemented within a recursive branch and cut 
procedure to solve this NP-hard complete problem. 
The high computational cost for an exact optimal 
solution justifies the heuristic approach. 

The value of the hybrid heuristic approach to solve 
large scale mixed integer programs with 
hard/complex constraints is shown by the 
computational results.  

We provide a comprehensive statistical 
analysis regarding the choice of the parameters. 
The impact of the hybrid heuristic parameters is 
analyzed using (1) territory design compactness, 
(2) variance of the profitability among branches, 
and (3) total computational time. The proportion of 
branches that can be used for re-centering, the 
perturbation parameter, and the variance weight 
factor are found to have a significant impact on 
territory design compactness. It has been 
observed that the perturbation parameter accounts 
for most of the variability in compactness.  
Therefore, one needs to be careful about choosing 
the perturbation parameter if the quality of the 
solution is the main concern rather than the 
computational time. 
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Moreover, the percentage of initial allocation 
assignments, perturbation and variance weight 
parameters are found to have a significant impact 
on the profitability variance. The variance weight 
factor, relative weight on the penalized objective 
function for heterogeneity among branches, 
accounts for most of the variability in profitability 
variance.  The negative impact of initial allocation 
assignments on profit variability among branches 
implies that larger search spaces and more 
complexity show increased profit variance 
among branches. 

Lastly, we can suggest that the covariance 
model is not significantly able to capture the 
complexity of the relationship among the 
completion time and the parameters, which is 
observed in the graphical analysis. Nevertheless, 
the covariance model provides interesting insights. 
For instance, we found that larger values of the 
perturbation parameter are convexly associated 
with the computational time. Contrary to what was 
expected, positive associations between the 
perturbation parameter and computational time 
and between the percentage of initial allocation 
assignments and computational time have been 
detected. The increases in convergence time with 
increasing values of the perturbation parameter 
and the percentage of initial allocation 
assignments are moderated by the interaction of 
the percentage of initial allocation assignments 
and variance weight parameters. We have got 
graphical evidence suggesting that larger values of 
percentage of initial allocation assignments, the 
proportion of branches that can be used for re-
centering, and the variance weight factor are 
associated with better quality solutions 
(compactness) and faster convergence. This 
especially occurs for larger values of the variance 
weight factor. 

Our future research will include an exploration 
of the complex behavior of computational time and 
optimality for solution spaces with higher levels of 
profitability heterogeneity. We can also utilize a 
dynamic linear negative function for the variance 
weight factor that starts with an initial large value 
and seeks for smaller variance weight factor values 
at iterations without an improvement in the overall 
variance. Our initial computational experience 
provides positive evidence that this dynamic 
strategy can be valuable in terms of decreasing the 

computational time with lower profit variability. 
Future work will also include a simulator for the 
second phase. As of now, we have investigated the 
feasibility of the consideration of uncertainty within 
the model and explored potential ways to solve that 
model. 

In conclusion, this manuscript presents a hybrid 
heuristic solution to a territory design problem in 
MFI literature by adding the consideration of both 
mean and variance of profit allocation to the 
existing mixed integer programming models. The 
experimental design and computational instances 
provide insights about the behavior of the 
heuristics within the proposed setting and show 
their effectiveness.  
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