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1 CINVESTAV-IPN, Mathematics Department, Mexico City,
Mexico

2 CINVESTAV-IPN, Computer Science Department, Mexico City,
Mexico

fsagols@math.cinvestav.mx, gmorales@cs.cinvestav.mx, ibuitron@computacion.cs.cinvestav.mx

Abstract. We formally state Skein Problems in
Hamiltonian graphs and prove that they are reduced
to the Independence Problem in Graph Theory.
Skein problems can be widely used in cryptography,
particularly, in protocols for message authentication or
entities identification. Let G be a Hamiltonian graph.
Given a Hamiltonian cycle H, let Π be a set of pairwise
disjoint sub-paths within H,

P1 = [v11, . . . , vm1], . . . ,Pk = [v1k, . . . , vmk]

where m and k are two positive integers, then the pairs
of extreme vertices V = {(v11, vm1), . . . , (v1k, vmk)}
are connected by the paths at Π without any crossing.
Conversely, let us assume that the following problem is
posed: given a collection of pairs V it is required to find a
collection of pairwise disjoint paths, without any crossing,
connecting each pair at V . We reduce this last problem
to the Independence Problem in Graph Theory. In
particular, for the case of the n-dimensional hypercube,
we show that the resulting translated instances are not
Berge graphs, thus the most common polynomial-time
algorithms to solve the translated problem do not
apply. We have built a computing system to explicitly
generate the resulting graphs of the reduction to the
Independence problem. Nevertheless, due to the doubly
exponential growth in terms of n of these graphs, the
physical computational resources are quickly exhausted.

Keywords. Independence problem in graph theory,
Berge graphs, doubly-exponential growth.

1 Introduction

Within a graph, a vertex pair is connectable if
there is a path going from a point at the pair

to the complementary point. A collection of
connectable vertex pair poses the simple problem
to find explicitly connecting paths for each vertex
pair. Evidently, some supplementary conditions
may be imposed, e.g., the located connecting
paths should have the shortest possible lengths,
or the paths should not cross among themselves,
or the collection of connecting paths should allow
the extension to a k-factor of the graph, for a fixed
k ≥ 2, etc. Let us say that a skein is a set of
connecting paths for a collection of connectable
vertex pairs.

Let us consider the following problems:

Skein extension Given a collection of equally
length paths in a graph which are pairwise
non-crossing (no pair has a common vertex which
is internal in at least one of the paths) and disjoint
(no edge is shared), it is required to add one path
with prescribed endpoints in the graph such that
the resulting set of paths remains pairwise disjoint
and non-crossing.

Skein search Given a collection of vertex pairs, it
is required to decide whether there are connecting
paths, all of the same length such that they are
pairwise non-crossing and disjoint.

2 Preliminaries

For ease of exposition, let us recall some basic
notions. A graph is a pair G = (V ,E) where
V (G) is a finite and non-empty set of vertices,
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and the set E(G) of edges is an unordered subset
of V × V . The cardinalities of V (G) and E(G)
are, respectively, the order and the size of G. A
subgraph H of G is a graph such that V (H) ⊂
V (G) and E(H) ⊂ E(G). If V ′ ⊂ V (G) then the
induced subgraph of G by V ′ is the graph having
V ′ as set of vertices, and two vertices u, v in V ′ are
joined by an edge in V ′ if and only if uv ∈ E(G). If
e = v1v2 ∈ E(G) then v1 is adjacent to v2 and the
vertices v1 and v2 are incident to the edge e. The
complete graph Kn of order n is a graph having n
vertices, where each one is adjacent to any other.
A clique in G is a complete induced subgraph of G.
A path in G with initial vertex v0 and ending vertex
vm is a sequence of vertices π = [v0, v1, . . . , vm]. A
path can also be written π = v0v1 . . . vm, such that
for i = 0, . . . ,m − 1, vivi+1 ∈ E(G), v0, . . . , vm−1
are pairwise different, and m is a positive integer.
The vertices v0 and vm are the end-vertices or
endpoints of π. The length |π| of the path π is
m, hence π is said to be an m-path. The internal
vertices of π are v1, . . . , vm−1. If v0 = vm, then π is
a cycle.

The distance dG(u, v) between two vertices u, v
in G is the length of a shortest path connecting u
and v. Two paths which are not cycles π1, π2 are
non-crossing if there is no common vertex in π1 and
π2 which is internal in at least one of the paths. We
say that the paths π1 and π2 are disjoint if no edge
appears in both paths.

A two-factor in a graph G is a family C1, . . . ,Ck
of cycles of G such that any vertex in G belongs
to one and only one cycle Ci. A two-factor of G
consisting of only one cycle is a Hamiltonian cycle
of G. Let HG be the collection of Hamiltonian
cycles inG. IfHG 6= ∅ thenG is called Hamiltonian.

An independent set of G is a subset I of
V (G) such that no edge in E(G) contains both
end-points in I. A maximal independent set
of G is an independent set of G that is not a
proper subset of another independent set of G.
A maximum independent set of G is a maximal
independent set with the largest cardinality, the
so-called independence number α(G) of G.

The Independent Set Problem consists in finding
a maximum independent set in a given instance
graph G. This is an NP-hard problem, difficult even
to be approximated [6].

A graph G is a Berge graph, if neither G nor its
complement has an odd-length induced cycle of
length 5 or more. It is well-known that if G is a
Berge graph, then the independence problem on
G can be solved in polynomial time [5].

Any Hamiltonian cycle H in a graph G =
(V ,E) determines, for each pair of distinct vertices
(u, v) ∈ V 2, two paths, one going, let us say, from
u to v and the supplementary path from v to u. Let
πH(u, v) be the path going from u to v following the
order in which the vertices of H are listed. Since
H is Hamiltonian, for any two pairs (u0, v0), (u1, v1)
such that u0, v0,u1, v1 appear in the cyclic order
of the Hamiltonian cycle, the paths πH(u0, v0) and
πH(u1, v1) are non-crossing.

Given a positive integer n, the n-dimensional
hypercube, denoted Qn, is the graph containing
the n-dimensional vectors with entries in {0, 1} as
the set of vertices, and two vertices form an edge
if and only if they differ in just one entry. The
Hamming distance between two vertices u, v inQn,
denoted Hamming(u, v) is the number of entries in
which they differ. It is easy to see that the graph
distance and the Hamming distance coincide, that
is, dQn

(u, v) = Hamming(u, v) holds for every pair
of vertices u, v in V (Qn).

3 Particular Problems

Let us consider the following problem:

NonCrossingPaths

Instance: A graph G = (V ,E). A positive number
k, a set of pairs K = {(i1, j1), . . . , (ik, jk)} of k
pairwise different vertex pairs in G, and a positive
integerm satisfyingm·k ≤ |V (G)| and dG(i, j) ≤ m
for all (i, j) ∈ K.
Solution: A pairwise non-crossing and disjoint
collection of m-length paths Π = {π1, . . . ,πk} such
that πl has endpoints il and jl, for l = 1, . . . , k.

Given a Hamiltonian cycle H of G it is very
simple to complete instances of the problem
NonCrossingPaths having as solutions non-
crossing and disjoint paths taken from H. For
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instance, if H = v0v1 . . . v|V (G)|−1, and m · k ≤
|V (G)|, then for

K = {(v0, vm) ,
(vm+1, v2(m+1)−1) ,
... ,
(v(k−1)(m+1), vk(m+1)−1)}

the collection of paths

Π = {v0 . . . vm ;
vm+1 . . . v2(m+1)−1 ;
...
v(k−1)(m+1) . . . vk(m+1)−1}

is a solution.

Conversely, given the collection Π one may
wonder whether it is built from a Hamiltonian cycle.

Let us consider the following problem:

HamiltonianExtension

Instance: a Hamiltonian graph G = (V ,E). A
collection Π of pairwise disjoint and non-crossing
m-paths.
Solution: a Hamiltonian cycle H ∈ HG such that
for any π ∈ Π, if u and v are the initial and the
ending points of π, respectively, then πH(u, v) = π.

For instance, for the n-dimensional
hypercube Qn and Π a perfect matching
at Qn (the paths at Π are just edges),
then HamiltonianExtension(Qn, Π) always
has a solution, although it is not uniquely
determined [2, 3].

Thus, HamiltonianExtension would allow to
recover a Hamiltonian cycle from a solution of the
problem NonCrossingPaths. However, a solution
of NonCrossingPaths may be obtained without
building a whole Hamiltonian cycle containing that
solution.

But solving NonCrossingPaths can be reduced
to finding a maximum independent set in a huge
graph as we see now.

Definition 3.1 (Path Graphs) Given the instance
(G, k, K = {(ui1 ,uj1), . . . , (uik ,ujk)}, m)

of the problem NonCrossingPaths, let the path
graph Pm,k,K,G be the graph whose vertices are
the m-paths in G connecting pairs at K:

π = [uj0 . . . ujm ] ∈ V (Pm,k,K,G) ⇔ (uj0 ,ujm) ∈ K,

and the edges are of two types: for any π, ρ ∈
V (Pm,k,K,G),

— if π, ρ are crossing, then πρ ∈ E(Pm,k,K,G),
and

— if π, ρ have the same extreme points, then πρ ∈
E(Pm,k,K,G).

An independent set I of Pm,k,K,G yields a set
of non-crossing and disjoint paths with ends in K,
with no pair of extreme points connected by two
paths.

For any pair (u, v) ∈ K let R(u, v) be the
subgraph of Pm,k,K,G induced by the set of vertices
at V (Pm,k,K,G) having as extreme points u and v.
Then R(u, v) is a clique.

Those cliques produce a partition of the vertices
in Pm,k,K,G in k subsets, and any solution of the
problem NonCrossingPaths should contain exactly
one member at each clique, hence it has at most k
paths. Thus, whenever there exists an independent
set I∗ reaching the upper bound k, such I∗ is
maximum. Hence:

Proposition 3.1 With the above notation, the
parameter k equals the independence number of
Pm,k,K,G, k = α (Pm,k,K,G), and an independent
set of Pm,k,K,G is maximum if and only if it is a
solution of an instance of NonCrossingPaths of the
form: (G, k,K = {(u1, v1), . . . , (uk, vk)},m).

4 Hamiltonian Cycles in the Hypercube

Let us examine some criteria to select instances of
NonCrossingPaths making it difficult to solve the
problem.

The main interest in the stated problem is to find
maximum independent sets in the graph Pm,k,K,G

for a given instance

(G, k,K = {(ui1 ,uj1), . . . , (uik ,ujk)},m)
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of NonCrossingPaths.
As we have agreed before, let us consider, in

particular, the hypercube G = Qn for some positive
integer n. The edges in the hypercube Qn are
pairs of the form vu where v + u = ei is a vector
in the canonical basis of Qn: all its entries are
zero, except for the i-th entry. A Hamiltonian
cycle in Qn is a sequence H = h0 · · ·h2n−1 such
that its terms form a permutation of V (Qn) and
each pair of contiguous terms hκhκ+1 is an edge
(the successor map is taken modulus 2n). A
square, or 4-cycle, in Qn is a sequence v0v1v2v3
of pairwise different vertices forming a cycle in the
hypercube. Necessarily, any square has the form
v, v + ei, v + ei + ej , v + ej for two distinct indexes
i, j ∈ {0, . . . ,n− 1}.

The typical Hamiltonian cycle at the hypercube is
the binary Gray code. As a sequence, this code is
determined recursively by the following recurrence:

g1 = [0, 1] , gn = join(0 ∗ gn−1, 1 ∗ rev(gn−1))

(join and rev are, respectively, list concatenation
and list reversing, ∗ is a prepend map: b ∗ list
prepends the bit b to each entry at the list). For
instance: g1 = [0, 1], g2 = [00, 01, 11, 10], g3 =
[000, 001, 011, 010, 110, 111, 101, 100], and so on.

In order to have an idea about the cardinality of
V (Pm,k,K,Qn

) we start by estimating the number of
m-length paths connecting two different vertices at
the n-dimensional hypercube.

Remark 4.1 Let u0,um ∈ V (Qn), u0 6= um.
The number of paths with end vertices u0
and um depends exclusively upon the distance
Hamming(u0,um).

In fact, if v0, vm are other vertices in Qn with

Hamming(u0,um) = Hamming(v0, vm) = h

then um = u0 +
∑h
i=1 eki and vm = v0 +

∑h
i=1 ek′i

where the index sets {k1, . . . , kh}, {k′1, . . . , k′h} are
h-subsets in {1, . . . ,n}, i.e. sets with exactly h
elements. For any permutation π of {1, . . . ,n} such
that

{π(k1), . . . ,π(kh)} = {k′1, . . . , k′h}

we have that any m-path u0u1 . . . um with uj =

u0 +
∑j
i=1 e`i , for j = 1, . . . ,m, determines the

m-path v0v1 . . . vm where vj = v0 +
∑j
i=1 eπ(`i) for

j = 1, . . . ,m. Hence, the m-paths connecting u0
with um can be put in a bijective correspondence
with the m-paths connecting v0 with vm.

Therefore, without losing any generality, we may
assume u0 = 0(h)0(n−h) and um = 1(h)0(n−h).
Let N(n,h,m) denote the number of m-paths
connecting u0 and um. The following remarks are
evident:

— If either m < h = Hamming(u0,um) or m mod
2 6= h mod 2, then N(n,h,m) = 0.

— If m = h, then N(n,h,m) = m!.

— If m > Hamming(u0,um) and m ≥ n, then
N(n,h,m) > m!.

The experimental calculations allow to expect that
the growth of N(n,h,m) exceeds the growth of m!:

m mod 2 = h mod 2 =⇒ m! = o(N(n,h,m)).

From the simulations explained in the following
section, we have checked that no Berge graph
appeared in the trajectory graphs. However, this
result is sufficient to claim that a general result
holds:

Proposition 4.1 Let m ∈ Z+ be a fixed length for
the connecting paths. If there exists an n0 ∈ N
such that for any set K0 of k pairwise disjoint
vertex pairs in the n0-dimensional hypercube Qn0

the graph Pm,k,K0,Qn0
is not a Berge graph, then

for any n ≥ n0 and any set K of k pairwise disjoint
vertex pairs in the n-dimensional hypercube Qn the
graph Pm,k,K,Qn

is not a Berge graph.

Proof. Let n0 and k be as in the proposition
statement. Let n be an integer such that n ≥ n0
and let K be a collection of k pairwise disjoint
vertex pairs in the n-dimensional hypercube Qn.
Let N0 ⊂ {1, . . . ,n} be an n0-index subset and let

K1 = {(πN0(x0κ),πN0(x1κ)) | (x0κ,x1κ) ∈ K}

and let K0 be a maximal subset of K1 consisting
of pairwise disjoint vertex pairs, then card(K0) =
k0 ≤ k.

Let λn0
: Qn0

→ {0, 1}N0 be the natural
identification consisting of just a renumbering of the
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coordinates and let ιN0,n : {0, 1}N0 → Qn be the
embedding map consisting of padding with zero
values the entries with index out of N0.

Then λn0 ◦ ιN0,n is an embedding of the n0-
dimensional hypercube Qn0

into the n-dimensional
hypercube Qn. Via λn0

◦ ιN0,n, the graph
Pm,k0,K0,Qn0

is identified with a subgraph of
Pm,k,K,Qn

.

Since Pm,k0,K0,Qn0
is not a Berge graph, neither

can be Pm,k,K,Qn . �

On the other hand, it can be observed that
neither sparse graphs nor their complements do
appear. Evidently, neither claw-free graphs are
produced.

Thus the currently known polynomial-time
methods [4, 7] to find maximal independent sets
do not apply to the introduced graphs Pm,k,K,Qn

.

5 Computational Results

In Table 1 we give an exact calculation obtained
experimentally for some particular values of n, m
and h.

Table 1. Count of the 8-paths (m = 8) connecting a pair
of points at distance h in the hypercube Qn

n
h

2 4 6 8

6 10 056 12 552 14 400 –
7 22 960 26 880 29 520 –
8 43 740 46 728 44 640 40 320

In our experiments, we have been restricted to
n = 6, 7, 8. And thus, we implemented the vertex
counting at Pm,k,K,Qn

for k = 8, 16, 32 and m
with fixed value 8, where k is the number of the
given connectable pairs, and m is the length of the
required paths. We have performed one hundred
simulations for each value of n in {6, 7, 8} and in
all cases, the graph P8,k,K,Qn

or its complement
contained induced cycles with five or more vertices.

Input : n ∈ Z+ | n ≥ 5,
k,m ∈ Z+ | m · k ≤ |V (Qn)|.

Output: A path graph Pm,k,K,Qn
.

1 begin
2 h ∈ HQn

// Generate randomly h
3 Π← paths(h, k,m) // Compute m-paths

4 K ← endpoint(Π) // Compute endpoints

5 V (Pm,k,K,Qn)← ∅ // Initialize set

6 foreach (u, v) ∈ K do
7 Compute Πu,v, all m-paths in Qn where

its endpoint are u and v
8 V (Pm,k,K,Qn

) ∪Πu,v // Join sets

9 E(Pm,k,K,Qn
) ⊂ V (Pm,k,K,Qn

)2

// Compute edges

Algorithm 5.1: Path graphs random generation

Input : A path graph Pm,k,K,Qn
,

k < 5 an odd integer.
Output: An odd-hole πk if exists.

1 begin
2 v0 ∈ V (P ) // Randomly initial vertex

3 π = [v0] // Append v0 to π
4 repeat
5 while len(π) ≤ k do // Fill π
6 π ← vi ∈ N(last(π)) // Append vi

7 if π[0] = π[−1] then // π is cycle

8 c← cycle(π) // Search cycles

9 if c then // Inner-cycle c found

10 return π // k-odd-hole

11 poll(π) // Remove first

12 until always

Algorithm 5.2: Odd-hole search

5.1 Programs

We propose algorithm 5.1 to compute path graphs
and algorithm 5.2 to search odd-holes within a
given path graph.

Our programs implement a series of basic
modules (BM):

1. BM 0: Given a positive integer n this
module generates a Hamiltonian cycle h in the
hypercube Qn.
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2. BM 1: Given a Hamiltonian cycle h and a
positive integer m this module generates k
non-crossing and disjoint m-paths, splitting h
into k segments.

3. BM 2: Given a collection Π of non-crossing
and disjoint m-paths this module computes a
set K of cardinality k with m-paths in Π.

4. BM 3: Given a set K of endpoints pairs, m,
and n this module computes V (Pm,k,K,Qn).

5. BM 4: Given a set V (Pm,k,K,Qn
) this module

computes E(Pm,k,K,Qn
) as well as the degree

of each vertex.

6. BM 5: Given a path graph Pm,k,K,Qn

this module searchs for odd-holes through
a random walk in V (Pm,k,K,Qn

) and its
complement.

Generating n-dimensional hypercube path
graphs yielded huge amounts of data requiring
careful management and storage. Our programs
were written in Ruby, are open-source, and are
available at [1].

6 Contributions and Applications

We introduced a family of problems, globally
named “skein problems”. They were posed on
general graphs and in particular, on the hypercube.
These problems are reduced into the problem of
finding independence subsets in graphs, which
poses by itself an NP-hard problem and hard
even to be approximated (in other words, it is
PTAS-hard), and we provide evidence that the
obtained reduced graphs are not Berge graphs,
thus they are not suitable to be treated by the
currently known polynomial-time approaches to
solve the independence problem.

In general, from a Hamiltonian cycle in a graph,
it is easy to show a family of non-crossing and
pairwise disjoint paths connecting, obviously, the
extreme vertex pairs. However, the converse of this
problem is extremely difficult. This could be used
in cryptographic protocols where the public-key
corresponds to the path end vertices, and the
private key is just the skein, namely, the set of
non-crossing paths connecting them pairwisely.

This work opens the possibility to carry out
many applications, particularly, in cryptography.
The stated Skein Problem can be used to design
authentication challenge-response protocols or to
implement key exchange protocols.

In the same way, based on the Skein Problem,
appropriate protocols arise for such different
environments as conventional computing, mobile
computing, and several communication platforms.

7 Conclusions

Finding maximum independent sets in graphs is
a classical NP-hard problem. So, it is possible
to profit of it for authentication purposes. In a
naı̈ve approach, one may use a huge graph as
a private key and a maximum independent set
as the public one, but several difficulties arise:
the first is the manipulation of the graph which
may require hundreds of megabytes to offer an
acceptable security level, and the second difficulty
is to find maximum independent sets to act as the
public key.

Skein problems override these difficulties. The
path graphs in the hypercube play the role of
hard instances, and the corresponding maximum
independent sets to be used as public keys can
be easily found from Hamiltonian cycles in the
hypercube. On the other hand, finding maximum
independent sets in path graphs is a very difficult
problem due to their size, even for hypercubes of
relatively small dimensions.

This is a first intended paper in a series planned
to publish the cryptographic protocols and their
robustness. Now, we have introduced the skein
problems and we discussed their most basic
mathematical properties in a purely Graph Theory
approach.
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