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Abstract. In this paper the problem of trajectory tracking
is studied. Based on the Lyapunov theory, a control
law that achieves the global asymptotic stability of the
tracking error between a recurrent neural network and
a complex dynamical network is obtained. To illustrate
the analytic results we present a tracking simulation of
a dynamical network with each node being just one
Lorenz´s dynamical system and three identical Chen’s
dynamical systems.
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1 Introduction

Since the most famous random graph model was
proposed by Erdös and Rényi [1], the complex network
has attracted much attention in many fields of research,
such as biology, physics, computer networks, the
World Wide Web (WWW) [2], and so on. Network
synchronization has obvious advantages, it has great
application value in practice. Therefore, Atay et al.
[3] studied synchronization of complex network when
delays exist among the nodes; Motter et al. [4] studied
the influence of coupling strength on the synchronizing
ability of a complex network; Timme et al. [5] studied
the web synchronization law of pulse-coupled dynamical
systems; Checco et al. [6] studied the synchronization of
random web. Lü et al. [7] constructed general complex
dynamical networks and studied the synchronization; Lu
and Chen [8] studied synchronization analysis of linearly
coupled networks of discrete time systems; Han and
Lu [9] studied the changes of synchronization ability of
coupled networks from ring networks to chain networks;

He and Yang [10] studied adaptive synchronization in
nonlinearly coupled dynamical networks.

The analysis and control of complex behavior in
complex networks, which consist of dynamical nodes,
has become a point of great interest in recent studies,
[11, 12, 13]. The complexity in networks comes
from their structure and dynamics but also from their
topology, which often axoects their function. Recurrent
neural networks have been widely used in the fields
of optimization, pattern recognition, signal processing
and control systems, among others. They have to be
designed in such a way that there is one equilibrium
point that is globally asymptotically stable. In biological
and artificial neural networks, time delays arise in the
processing of information storage and transmission.
Also, it is known that these delays can create oscillatory
or even unstable trajectories. Trajectory tracking is a
very interesting problem in the field of theory of systems
control; it allows the implementation of important tasks
for automatic control such as: high speed target
recognition and tracking, real-time visual inspection, and
recognition of context sensitive and moving scenes,
among others.

The motivation in this paper lies in the complex
network synchronization and chaos control importance.
Network synchronization is one of the most practical
and valuable issues. A synchronization of network
means the situation in which the output of all nodes
in the study of the complex network is consistent
with any given external input signal under a certain
condition. Numerical simulations are used to verify the
effectiveness of the proposed techniques. We present
the results of the design of a control law that guarantees
the tracking of general complex dynamical networks.
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2 Mathematical Models

2.1 General Complex Dynamical Network

Consider a network consisting of N linearly and
diffusively coupled nodes, with each node being an
n-dimensional dynamical system, described by

ẋi = fi(xi)+

N∑
j=1
j 6=i

cijaijΓ(xj−xi), i = 1, 2, . . . ,N , (1)

where xi = (xi1,xi2, . . . ,xin)T ∈ Rn are the state
vectors of node i, fi : Rn 7−→ Rn represents the
self-dynamics of node i, constants cij > 0 are
the coupling strengths between node i and node
j, with i, j = 1, 2, . . . ,N . Γ = (τ ij) ∈ Rn×n is a
constant internal matrix that describes the way of
linking the components in each pair of connected
node vectors (xj − xi): that is to say for some
pairs (i, j) with 1 ≤ i, j ≤ n and τ ij 6= 0 the two
coupled nodes are linked through their ith and jth
sub-state variables, respectively, while the coupling
matrix A = (aij) ∈ RN×N denotes the coupling
configuration of the entire network: that is to say
if there is a connection between node i and node
j(i 6= j), then aij = aji = 1; otherwise aij = aji =
0.

2.2 Recurrent Neural Network

Consider a recurrent neural network in the
following form:

ẋni = Anixni +Wniσ(xni) + uni +

N∑
j=1
j 6=i

cninjaninjΓ(xnj − xni), (2)

i = 1, 2, . . . ,N ,

where xni = (xni1,xni2, . . . ,xnin)T ∈ Rn is the
state vector of neural network i, uni ∈ Rn is
the input of neural network i, Ani = −λniIn×n,
i = 1, 2, . . . ,N , is the state feedback matrix, with
λni being a positive constant, Wni ∈ Rn×n is the
connection weight matrix with i = 1, 2, . . . ,N , and
σ(·) ∈ Rn is a Lipschitz sigmoid vector function
[14], [15], such that σ(xni) = 0 only at xni = 0, with
Lipschitz constant Lσi , i = 1, 2, . . . ,N and neuron
activation functions σi(·) = tanh(·), i = 1, 2, . . . ,n.

3 Trajectory Tracking

The objetive is to develop a control law such that
the ith neural network (2) tracks to the trajectory
of the ith dynamical system (1). We define the
tracking error as ei = xni − xi, i = 1, 2, . . . ,N
whose time derivative is

ėi = ẋni − ẋi, i = 1, 2, . . . ,N . (3)

Substituting (1) and (2) in (3), we obtain

ėi = Anixni +Wniσ(xni) + uni − fi(xi) +

N∑
j=1
j 6=i

cninjaninjΓ(xnj − xni)− (4)

N∑
j=1
j 6=i

cijaijΓ(xj − xi), i = 1, 2, . . . ,N .

Adding and substracting Wniσ(xi), αi(t), i =
1, 2, . . . ,N , to (4), where αi to be determined
below, and taking into account that xni = ei + xi,
i = 1, 2, . . . ,N , then

ėi = Wni(σ(ei + xi)− σ(xi)) +

(uni − αi(t)) +Aniei +

(Anixi +Wniσ(xi) + αi(t))− fi(xi) +

N∑
j=1
j 6=i

cninjaninjΓ(xnj − xni)− (5)

N∑
j=1
j 6=i

cijaijΓ(xj − xi), i = 1, 2, . . . ,N .

In order to guarantee that the ith neural network
(2) tracks the ith reference trajectory (1), the
following assumption has to be satisfied:

Assumption 1. There exist functions ρi(t) and
αi(t), i = 1, 2, . . . ,N , such that

dρi(t)

dt
= Aniρi(t) +Wniσ(ρi(t)) + αi(t)

ρi(t) = xi(t), i = 1, 2, . . . ,N . (6)

Let define

ũni = (uni − αi(t))
φσ(ei,xi) = σ(ei + xi)− σ(xi), (7)

i = 1, 2, . . . ,N .
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Considering (6) and (7), the equation (5) is
reduced to

ėi = Aniei +Wniφσ(ei,xi) + ũni +

N∑
j=1
j 6=i

cninjaninjΓ(xnj − xni)−

N∑
j=1
j 6=i

cijaijΓ(xj − xi), (8)

i = 1, 2, . . . ,N .

Rewriting the summations as

N∑
j=1
j 6=i

cninjaninjΓ(xnj − xni)

= Γ(

N∑
j=1
j 6=i

cninjaninjxnj − xni
N∑
j=1
j 6=i

cninjaninj )

N∑
j=1
j 6=i

cijaijΓ(xj − xi) (9)

= Γ(

N∑
j=1
j 6=i

cijaijxj − xi
N∑
j=1
j 6=i

cijaij),

i = 1, 2, . . . ,N .

also taking into account that cninj = cij and
aninj = aij , then, using the equations above (8)
becomes

ėi = Aniei +Wniφσ(ei,xi) + ũni +

Γ(

N∑
j=1
j 6=i

cijaijej − ei
N∑
j=1
j 6=i

cijaij)

= Aniei +Wniφσ(ei,xi) + ũni + (10)
N∑
j=1
j 6=i

cijaijΓ(ej − ei),

i = 1, 2, . . . ,N .

It is clear that ei = 0, i = 1, 2, . . . ,N is an
equilibrium point of (10), when ũni = 0, i =
1, 2, . . . ,N . In this way, the tracking problem can
be restated as a global asymptotic stabilization
problem for system (10).

4 Tracking Error Stabilization and
Control Design

In order to establish the convergence of (10) to
ei = 0, i = 1, 2, . . . ,N , which ensures the desired
tracking, first, we propose the following candidate
Lyapunov function

VN (e) =

N∑
i=1

V (ei)

=

N∑
i=1

( 1
2
‖ ei ‖2 (11)

e = (eT1 , . . . , eTN )T .

The time derivative of (11), along the trajectories
of (10), is

V̇N (e) =
∂VN (e)

∂e
ė =

N∑
i=1

∂VN (e)

∂ei
ėi

=

N∑
i=1

eTi (Aniei +Wniφσ(ei,xi) +

ũni +

N∑
j=1
j 6=i

cijaijΓ(ej − ei))). (12)

Reformulating (12), we get

V̇N (e) =

N∑
i=1

(−λni ‖ ei ‖
2 +eTi Wniφσ(ei,xi) + eTi ũni

N∑
i=1

(

N∑
j=1
j 6=i

cijaije
T
i Γej − ei

N∑
j=1
j 6=i

cijaije
T
i Γei).

(13)

Next, let consider the following inequality, proved
in [16, 17]:

XTY + Y TX ≤ XTΛX + Y TΛ−1Y , (14)

which holds for all matrices X,Y ∈ Rn×k and
Λ ∈ Rn×n with Λ = ΛT > 0. Applying (14)
with Λ = In×n to the term ei

TWinφσ(ei,xi),
i = 1, 2, . . . ,N we get

eTi Wniφσ(ei,xi)

≤ 1
2
eTi ei + 1

2
φTσ (ei,xi)W

T
niWniφσ(ei,xi)

= 1
2
‖ ei ‖2 + 1

2
φTσ (ei,xi) (15)

xWT
niWniφσ(ei,xi),

i = 1, 2, . . . ,N .
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Then we have that, and taking into account that
φσ is Lypchitz:

‖ φσ(ei,xi) ‖=‖ σ(ei + xi)− σ(xi) ‖
≤ Lφσi ‖ ei + xi − xi ‖ (16)

= Lφσi ‖ ei ‖, i = 1, 2, . . . ,N ,

with Lipschitz constant Lφσi . Applying (16) to
1
2φ

T
σ (ei,xi)W

T
in
Winφσ(ei,xi) we obtain

1

2
φTσ (ei,xi)W

T
inWinφσ(ei,xi)

≤ 1

2
‖ φTσ (ei,xi)W

T
inWinφσ(ei,xi) ‖ (17)

≤ 1

2
(Lφσi )

2 ‖Win ‖
2‖ ei ‖2, i = 1, 2, . . . ,N .

By simplifying (15), we obtain

eTi Wniφσ(ei,xi)

≤ 1
2
‖ ei ‖2 +

1

2
(Lφσi )

2 ‖Win ‖
2‖ ei ‖2 (18)

=
1

2
(1 + L2

φσi
‖Win ‖

2) ‖ ei ‖2, i = 1, 2, . . . ,N .

Then we have that:

V̇N (e) ≤ −
N∑
i=1

λni ‖ ei ‖2 +
N∑
j=1
j 6=i

cijaije
T
i Γei

 +

1

2

N∑
i=1

(1 + L
2
φσi

‖ Win ‖
2
) ‖ ei ‖

2
+2

N∑
j=1
j 6=i

cijaije
T
i Γej

 +

e
T
i ũni

. (19)

We define ũni =
≈
ui +

≈
uij , i = 1, 2, . . . ,N , then

(19) becomes in

V̇N (e) ≤ −
N∑
i=1

λni ‖ ei ‖2 +

N∑
j=1
j 6=i

cijaije
T
i Γei

+

1

2

N∑
i=1

(
eTi ((1 + L2

φσi
‖Win ‖

2)ei + 2
≈
ui)
)

+

N∑
i=1

eTi
 N∑
j=1
j 6=i

cijaijΓej +
≈
uij


 . (20)

Fig. 1. Sub-State of Lorentz’s attractor with initial
condition X1(0) = (10, 0, 10)T

Fig. 2. Sub-States of Chen’s attractor with initial
condition X2;3;4(0) = (−10, 0, 37)T

Now, we propose to use the following control law:

ũni =
≈
ui +

≈
uij

= − 1
2
(1 + L2

φσi
‖Wni ‖

2)ei −

−
N∑
j=1
j 6=i

cijaijΓej , (21)

i = 1, 2, . . . ,N ,

then V̇N (e) < 0 for all e 6= 0.
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Fig. 3. Structure of the network with each node being a
Lorentz and Chen’s system

This means that the proposed control law (21)
can globally and asymptotically stabilize the ith
error system (10), thereby ensuring the tracking of
(1) by (2). Finally, the control action driving the
recurrent neural networks is given by

uni = ũni + αi

= − 1
2
(1 + L2

φσi
‖Wni ‖

2)ei −
N∑
j=1
j 6=i

cijaijΓej + fi(xi) + λinxi−Wniσ(xi),

i = 1, 2, . . . ,N . (22)

5 Simulations

In order to illustrate the applicability of the
discussed results, we consider a dynamical
network with just one Lorentz’s node and three
identical Chen’s nodes. The single Lorentz´s
system is described byẋ1ẋ2

ẋ3

 =

 10x2 − 10x1
−x2 − x1x2 + 28x1
x1x2 − (8/3)x3

 , (23)

xi(0) = (10, 0, 10)T , i = 1,

and the Chen’s oscillator is described by Eq. 24:

Fig. 4. Time evolution for sub-states 1 with initial state
Xn1(0) = (10, 0, 10)T

ẋi1ẋi2
ẋi3



=



p1(xi2 − xi1) +
∑4
j=1
j 6=i

cijaij(xj1 − xi1)

(p3 − p2)xi1 − xi1xi3 + p3xi2 +
∑4
j=1
j 6=i

cijaij(xj2 − xi2)

xi1xi2 − p2xi3 +
∑4
j=1
j 6=i

cijaij(xj3 − xi3)



xi(0) = (−10, 0, 37)T , i = 1, 2, 3, 4. (24)

Fig. 5. Time evolution for sub-states 1 with initial state
Xn1(0) = (10, 0, 10)T

If the system parameters are selected as p1 =
35, p2 = 3, p3 = 28, then the Lorentz’s system
and Chen’s system are shown in Fig. 1 and Fig.2
respectively. In this set of system parameters, one
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unstable equilibrium point of the oscillator (24) is
x = (7 : 9373; 7 : 9373; 21)T .

Suppose that each pair of two connected Lorentz
and Chen’s oscillators are linked together through
their identical sub-state variables, i.e., Γ =
diag(1, 1, 1), and the coupling strengths are c12 =
c21 = π, c13 = c31 = π, c23 = c32 = π, c14 =
c41 = 2π, c24 = c42 = 2π, c34 = c43 = 2π. Fig. 3
visualizes this entire dynamical network:

The neural network was selected as

Ani =

−1 0 0
0 −1 0
0 0 −1

 ,

Wni =

 1 2 0
−3 4 0
0 2 3

 ,

σ(xni(t− τ)) =

tanh(xni1)
tanh(xni2)
tanh(xni3)

 , (25)

Lφσi , n = 3,

xni(0) = (20, 20,−10)T , i = 1, 2, 3, 4.

Theorem 1 For the unknown nonlinear sys-
tem modeled by (1), the on-line learning law
tr
{
WTW

}
= −eTWσ(x) and the control law (22)

ensure the tracking of to the nonlinear reference
model (2).

Fig. 6. Time evolution for sub-states 2 with initial state
Xn1(0) = (10, 0, 10)T

Remark 2 From (20) we have V̇N (e) ≤∑N
i=1 e

T
i (−λniei −

∑N
j=1
j 6=i

cijaijΓei + ( 1
2 + L2

φσi
‖

Wni ‖2)ei + ũ
(1)
ni +

∑N
j=1
j 6=i

cijaijΓej + ũ
(2)
ni ) < 0,∀

e 6= 0, ∀W , and therefore V is decreasing
and bounded from below by V (0). Since
VN (e) =

∑N
i=1( 1

2 ‖ ei ‖2, then we conclude
that e, W ∈ L1; this means that the weights remain
bounded.

Fig. 7. Time evolution for sub-states 4 with initial state
Xn4(0) = (20, 20,−10)T

Fig. 8. Time evolution for sub-states 4 with initial state
Xn4(0) = (20, 20,−10)T

The experiment is performed as follows. Both
systems, the recurrent neural network (2) and
the dynamical networks (24) and (25), evolve
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Fig. 9. Time evolution for sub-states 4 with initial state
Xn4(0) = (20, 20,−10)T

independently; at that time, the proposed control
law (23) is incepted. Simulation results are
presented in Fig. 4 - Fig. 6 for sub-sates of node 1.
As can be seen, tracking is successfully achieved
and error is asymptotically stable, as it is shown in
Fig. 7 -Fig. 9 for sub-states of node 4.

6 Conclusions

We have presented the controller design for
trajectory tracking determined by a general
complex dynamical network. This framework is
based on dynamic recurrent neural networks and
the methodology is based on Lyapunov theory.
The proposed control is applied to a dynamical
network with each node being a Lorenz and Chen’s
dynamical system, respectively, being able to also
stabilize in asymptotic form the tracking error
between two systems. The results of the simulation
shows clearly the desired tracking. In future work,
we will consider the stochastic case for the complex
dynamical network.
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