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Abstract. The increase in computer power of the last
few decades has allowed the resurgence of the theory
behind spatial filtering (a.k.a. beamforming) and its
application to array signal processing. That is the case
of magnetoencephalographic (MEG) data, which relies
on dense arrays of detectors in order to measure the
brain activity non-invasively. In particular, spatial filters
are used in MEG signal processing to estimate the
magnitude and location of the current sources within
the brain. This is achieved by calculating different
beamformer-based indexes which usually involve a large
computational complexity. Here, a new perspective
on how today’s computers make it possible to handle
such complexity is presented, up to the point when
new and ever more complex neural activity indexes can
be developed. Such is the case of indexes based on
eigenspace projections and reduced-rank beamformers,
whose applicability is shown in this paper for the case of
using real MEG measurements and realistic models.
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1 Introduction

The aim in spatio-temporal processing is to recover
signals coming from a direction of interest, while
attenuating signals from other directions. The
processing element that allows such selective
recovery/attenuation is known as a spatial filter or
beamformer [26].

Although new implementations of spatial filters
may improve their poor resolution when resolving
signals originating from closely-located regions [2],
they also suffer of a fundamental limitation: their
performance directly depends on the number of

sensing elements (aperture), independently of the
number of time samples or the signal-to-noise ratio
(SNR).

One might think that the limitations on aperture
could be solved by using a large number of sensors
(dense sensor array) and by using large-sized
sensors. However, this cannot be always achieved
in practice [18]. First, because sensors might
be costly, but mainly due to the fact that adding
many of them would result in an increase of
computational cost. This is the result of the output
of the spatial filter being a linear combination of the
data acquired by M sensors at N time samples.

The computational cost increases as the number
of sensors is increased, this is due to spatial filters
being dependent on the covariance matrix and its
inverse, which is calculated from raw data. Thus,
the more sensors are considered, the greater
the data matrix would be and therefore it will
be more mathematically complex to calculate the
covariance matrix and its inverse.

Given the limitations previously mentioned,
spatial filters in biomedical applications were
initially used only for interference removal, such
as the case of fetal heart monitoring in [28]. A
spatial filtering method for localizing sources of
brain electrical activity suited for MEG recordings
was first described and analyzed in [27]. However,
their analysis only considered a sphere to model
the head given the limitations in computer power at
the time.

The advent of high speed digital computers
nowadays has led to the emergence of many
numerical techniques and with the rapidly growing
computing capabilities, numerous problems of
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real engineering interest can now be solved with
relative ease and in a much shorter time. Applying
new numerical techniques in the solution of the
inverse problem using a realistic model as a
conductive model would result in an increased
resolution, then making the estimation of the
magnitude and location of a current source within
the brain more accurate.

In this paper, a new perspective on how
today’s computers make it possible to handle the
mathematical complexity involved in MEG array
signal processing is presented, up to the point
when new and ever more complex neural activity
analysis methods can be developed and realistic
geometries to model the head can be used.

2 Methods

This section briefly reviews the concepts related to
spatial filters, then the processing steps involved
in their use for MEG source localization are
explained.

2.1 Measurement Model

MEG is a non-invasive technique that allows
the measurement of ongoing brain activity pro-
duced by the activation of multiple neurons
(i.e.,50,000-100,000) in a specific area generating
a measurable but extremely small magnetic
field oriented at an orthogonal direction outside
the head. Therefore, MEG requires an array
of extremely sensitive superconducting quantum
interference devices (SQUIDs) that can detect and
amplify the magnetic fields generated by neurons
a few centimeters away from the sensors. MEG
is an attractive technology to study brain activity
since magnetic fields pass unimpeded through
the skull, resulting in a undistorted signature of
neural activity that can be recorded at the scalp
level [13, 10].

MEG measurements are assumed to be
produced by a neural source that can be modeled
by an equivalent current dipole (ECD), whose
magnitude is given by s(t) = [sx(t), sy(t), sz(t)]T

(assuming a Cartesian coordinate system) and
located within the brain. The dipole is allowed
to change in time but it remains at the same

position rs during the measurements period. The
ECD model holds in practice for evoked response
and event-related experiments [19]. Then, the
MEG data can be grouped, for the case of k =
1, 2, . . . ,K independent experiments (trials), into a
spatio-temporal matrix Yk of size M ×N at the kth
trial such that

Yk =


y1(1) y1(2) · · · y1(N)
y2(1) y2(2) · · · y2(N)

...
...

...
yM (1) yM (2) · · · yM (N)

 , (1)

where ym(t) is the measurement at themth sensor,
for m = 1, 2, . . . ,M , and acquired at time sample
t = 1, 2, . . . ,N . Under these conditions, the
following measurement model can be proposed:

Yk = A(rs)S + Vk, (2)

where A(rs) is the M × 3 array response matrix,
S = [s(1) · · · s(N)] is the 3 × N dipole
moment matrix, and Vk is the noise matrix.
The array response matrix is derived using the
quasi-static approximation of Maxwell’s equations,
which connect time-varying electric and magnetic
fields produced by an equivalent current dipole on
a volume that approximates the head’s geometry
(see [15], [7], and references therein). Then, in a
physical sense, A(rs) represents the material and
geometrical properties of the medium in which the
sources are submerged.

2.2 Spatial Filtering

A spatial filter W (rs), such that S = WT (rs)Yk,
can be designed in order to satisfy the following
condition:

WT (rs)A(r) =

{
I if r = rs

0 if r 6= rs
. (3)

Note that the unit response in the recovery band
is enforced by

WT (rs)A(rs) = I, (4)

while zero response at any point r in the
attenuating band implies W (rs) must also satisfy

WT (rs)A(r) = 0. (5)
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There are many ways to compute W (rs). One of
them is the linearly constrained minimum variance
(LCMV) spatial filter, which offers an alternative to
design an optimal filter, that is to find W (rs) such
that the variance at the filter’s output is minimum
while satisfying the linear response constraint (4).
Let us consider that the variance of the signal is
given by

var(S) = tr
{
E[SST ]

}
= tr

{
WT (rs)E[Y Y T ]W (rs)]

}
, (6)

where tr{·} indicates the trace. Note that
R = E[Y Y T ] corresponds to the data’s covariance
matrix. Hence, (6) can be written as

var(S) = tr
{
WT (rs)RW (rs)

}
. (7)

Therefore, the LCMV spatial filtering problem is
posed mathematically as

min
W (r s)

tr
{
WT (rs)RW (rs)

}
subject to WT (rs)A(rs) = I. (8)

The solution to (8) may be obtained using
Lagrange multipliers (which is the classical method
for finding local minima of a function subject to
equality constraints) and completing the square,
which results in [25]

W (rs)LCMV =
[
AT (rs)R

−1A(rs)
]−1

AT (rs)R
−1.

(9)
For the case of unknown R, a consistent

estimate of this covariance matrix (denoted by R̂)
can be used.

Applying (9) to the original MEG measurements
provides an estimate of the dipole moment at
location rs. Furthermore, the estimated variance
or strength of the activity at rs is the value of the
cost function in (8) at the minimum. Then, after
some algebra, the estimated variance of the neural
source is given by

v̂ars(rs) = tr

{[
AT (rs)R̂

−1A(rs)
]−1}

. (10)

It is also useful to estimate the amount of
variance that can be credited to the noise. Hence,

in a similar way as in (10), the noise variance is
given by

v̂arv(rs) = tr

{[
AT (rs)Q̂

−1A(rs)
]−1}

, (11)

where Q̂ corresponds to an estimate of the covari-
ance matrix of the noise. This matrix is usually
estimated from portions of the measurements
where the neural source due to the stimulus is
not active (e.g., pre-stimulus interval or base level
of brain activity). Therefore, an estimate of the
source localization based on (10) and (11) can be
computed as

[r̂s]LCMV = max
r

v̂ars(r)

v̂arv(r)
= max

r
ηLCMV(r), (12)

which is equivalent to maximizing the source’s
variance (normalized by the variance of the noise)
as a function of r .

Equation (12) provides an accurate estimate
of rs under the assumption that regions of
large variance presumably have substantial neural
activity [27]. For that reason, ηLCMV(r) in (12)
is often referred to as a neural activity index.
However, the sensitivity of the LCMV filter
to imperfections in the model knowledge is a
well-documented fact [21]. The main approach to
remedy this problem is to improve the conditioning
of the covariance matrix R̂ via an eigenspace
projection, under the consideration that its signal
and noise contributions belong to orthonormal
subspaces [20, 24]:

Π⊥R = U0U
T
0 , (13)

where Π⊥R corresponds to the projection matrix of
the data onto the null space of the covariance
matrix, and U0 is the matrix whose columns are
the orthonormal eigenvectors of R̂ that correspond
to its zero eigenvalues. Hence, motivated by
the “classical” LCMV solution in (9), the following
structure can be proposed [9]:

W (rs)EIG =
[
AT (rs)Π

⊥
RA(rs)

]−
AT (rs)Π

⊥
R. (14)

Note that in (14) the inverse of the matrix
has been replaced by the generalized inverse
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(denoted by [·]− ) because it is a reduced-rank
beamformer [8].

While (10) uses the classical neural activity index
based on an estimate of the signal’s variance,
a similar calculation based on (14) will produce
an estimate of the sparsity as a function of the
position [30]. Such estimate is obtained by
replacing R̂−1 by Π⊥R in (10), which results in

ŝpars(rs) = tr
{[
AT (rs)Π

⊥
RA(rs)

]−}
, (15)

while a similar sparsity measure can be defined for
the case of the noise:

ŝparv(rs) = tr
{[
AT (rs)Π

⊥
QA(rs)

]−}
, (16)

where Π⊥Q is the projection matrix of the noise
onto the null space. Therefore, an estimate of the
source localization based on (10) and (11) can be
computed as

[r̂s]EIG = min
r

ŝpars(r)

ŝparv(r)
= min

r
ηEIG(r), (17)

which is equivalent to minimizing the source’s
sparsity (normalized by the sparsity of the noise)
as a function of r . Hence, ηEIG(r) will be referred to
as the neural sparsity index.

Going back to the properties of the “classical” in-
dex in (12), they have been thoroughly investigated
in [27] and derived works. Its main drawback has
been found to be its sensitivity to correlated source
cancellation and its poor performance under low
SNR conditions. To circumvent this difficulty, a
multi-source extension has been recently proposed
in [14]. Namely, the following multi-source activity
index (MAI) has been proposed for the case of l
neural sources as

MAI(rs) = tr
{
G(rs)H(rs)

−1}− 3l, (18)

where
G(rs) , AT (rs)Q̂

−1A(rs), (19)

and
H(rs) , AT (rs)R̂

−1A(rs). (20)

The applicability of MAI(rs) has been already
demonstrated in [14]. Nevertheless, it shall
be noted that small changes in H(rs) may

cause huge changes in H(rs)
−1 if the former is

ill-conditioned [5]. Furthermore, ill-conditioning
can also be the result of using the estimates
R̂ and Q̂ instead of R and Q, respectively,
which is a common practice in source localization
techniques based in EEG/MEG recordings. In
order to alleviate the aforementioned shortcomings
of the multi-source activity index defined in (18),
a reduced-rank extension has been introduced
in [16] as follows:

RRMAIT1(rs, ρ) =

tr{G(rs)PR(G(r s)ρ)H(rs)
−1} − ρ, (21)

where ρ is a natural number such that 1 ≤
ρ ≤ 3l, where l is the unknown number of
concurrently active sources, and PR(G(r s)ρ) is the
orthogonal projection matrix onto the subspace
spanned by ρ eigenvectors corresponding to the
largest eigenvalues of G(rs). The RRMAIT1(rs, ρ)
achieves its maximum when the covariance matrix
H(rs)

−1 is replaced by a well suited estimator,
such as the one proposed in [17, 29]. Based on
that, another reduced-rank activity index can be
defined as [16]

RRMAIT2(rs, ρ) =

tr{G(rs)PR(H(r s)ρ)H(rs)
−1} − ρ, (22)

where PR(H(r s)ρ) is the orthogonal projection ma-
trix onto the subspace spanned by ρ eigenvectors
corresponding to the largest eigenvalues of H(rs).

3 Numerical Examples

In this section, the applicability of the neural
activity indexes in (12), (17), (18), and (22) is
shown through numerical examples using real
MEG data corresponding to measurements of
visual responses. The goal of these experiments
is to show the use of those spatial filters in finding
the location of neural sources from the MEG data.

The data used for these experiments is available
at the MEG-SIM portal, which is a repository
that contains an extensive series of real and
simulated MEG measurements freely available for
testing purposes [1]. The data were acquired
at a sampling rate of 1200 Hz, and they were
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band-pass filtered between (0.5, 40) Hz with a
sixth-order Butterworth filter. The data correspond
to the response of Subject #1 to small visual
patterns of two sizes (1.0 and 5.0 degrees visual
angle) which were presented at 3.8 degrees
eccentricity in the right and left visual fields,
respectively. The small visual pattern was
designed to activate ≈ 4 mm2 of tissue in
primary visual cortex (located in the occipital lobe
of the brain), while the large stimulus activate
≈ 20 mm2 of visual cortex. In both cases, the
activation in the brain is expected to appear in the
contra-lateral hemisphere (i.e., opposite to the side
of the presentation of the stimulus). The subject
passively viewed a small fixation point at the center
of the screen while the stimuli were randomly
presented to the left and right visual fields for a
duration of 500 ms and at a rate of 800–1300 ms
(slightly randomized to avoid expectation). Two
hundred individual responses for each of 2 stimulus
conditions were acquired.

The MEG measurements were obtained with
an array of M = 275 channels with the spatial
distribution of the VSM MedTech MEG system
considered at the MEG-SIM portal. There, the
anatomical MRI data of the subject is provided
as well. Hence, a realistic head model can
be created by first segmenting the MRI images
with BrainVISA [3], next tessellated meshes were
generated from the segmented volumes using
Brainstorm [23]. If a more refined and specific
segmentation of brain structures is required as an
aid in the source localization, brain atlases may be
used to find homologous points or structures [11].
Here, the head model was composed by three
tessellated meshes which were nested one inside
the other in order to approximate the geometry of
the scalp, skull, and brain. Each volume was given
a homogeneous conductivity of 0.33, 0.0041, and
0.33 S/m, respectively. In particular, the volume
corresponding to the brain was constructed with
11520 triangles. A full rendering of the head model
and the position of the magnetometers is shown in
Figure 1.

Based on those conditions, the beamformers
were evaluated at the position r corresponding to
the centroid of each of the triangles comprising
the brain mesh. In both cases, the array

Fig. 1. Head model used in our experiments (only the
scalp and the brain are shown). The asterisks indicate
the position of the magnetometers above the head

response matrix A was calculated using the
computer implementation provided in [22], which
corresponds to a solution of based on the bound-
ary element method (BEM) of the quasi-static
approximation of Maxwell’s equations. BEM is
a numerical method for solving partial differential
equations (in this case Maxwell’s equations) with
the advantage of reformulating them as discrete
integral equations that then are solved on simple
geometrical elements of a boundary mesh [12].
The data covariance matrix R̂ and the noise
covariance matrix Q̂ were estimated from the data
acquired in the 240 ms following the stimulus and
the previous 240 ms, respectively. For comparison
purposes, we considered the case of l = 1 active
source in the calculation of MAI and RRMAIT2.

Figures 2 and 3 show the results of computing
the index values for each of the beamformers.
Given that the magnitudes of the indexes are
very different, we decided to compare them in
terms of their distributions. Therefore, we show
the histogram of each index, where the red bars
indicate the percentiles that were necessary to
display so that the positions r with most significant
index values (the minimum for the case of the
sparsity-based index and the maximum values for
the others) had an anatomical correspondence
with the expected position neural source. Note that
most of the positions indicated with red dots on the
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surface of the brain’s mesh coincide with a neural
activation located at the primary visual cortex, but
different portions of the respective distributions of
the indexes were accounted for in order to achieve
such correspondence. In all cases, we show the
mesh modeling the head in an orientation such that
the occipital lobe is fully seen from the back of the
head.

In the case of a large visual stimulus presented
to the left visual field (Figure 2), both MAI and
RRMAIT2 provide very good results in terms
of focalization of the source, but RRMAIT2
outperforms MAI as its most significant index
values correspond with the tail of the distribution.
The classical beamformer also achieves good
results in those terms, but the position of the
estimated source location is biased. Finally,
the sparsity-based index is accurate in detecting
the region with less-sparse-sources (i.e., those
more likely to be related with the stimulus),
but fails in terms of focalization. Clearly, an
extreme-value distribution would be the most
desired outcome in the index calculation process,
but the sparsity-based index tends to be better
described by a Gaussian distribution.

For a small visual stimulus presented to the right
visual field (Figure 3), we obtained similar results
as those previously described in terms of the shape
of the distributions. However, in this case RRMAIT2
fails to estimate the source location (an ipsi-lateral
patch is detected instead). This can be credited
to the fact that we maintained the same value of ρ
in (22) for all our calculations, while it is well-known
that such parameter requires to be adjusted in a
case-to-case fashion (see [16] for a full account of
that issue).

In terms of the computational cost, the
calculation of each of the indices here tested was
fully implemented in Matlab r, and the computer
used was a HP ProLiant ML110 G7 server with
a Xeon E3-1220 processor, 3.1 GHz of speed,
and with 6 GB of RAM memory. Under those
conditions, computing the sparsity neural index
(which is the most mathematically complex of
the four) took 42.3095 minutes. Nevertheless,
the distance between the two possible solutions
(i.e., the distance between the centroids of two
triangles sharing a side) was 4.7 millimeters, which

is much larger than the allowed error in source
localization for clinical applications, such as in
neurosurgery, where the sources must be located
with a precision of at least 1 mm. Hence, for
clinical applications, a much more dense brain
mesh (i.e., more triangles in the tessellation)
must be used. Still, such increase in the
computing complexity is something that can be
handled through many different types of hardware
(e.g., graphic processing units), and with different
algorithms to implement the beamformer (see, e.g.,
[4]). In fact, thanks to the increase in computer
power, beamforming has been resurrected as a
suited technique for analysis of brain activity.

4 Conclusions

The use of spatial filters in the solution of
the neuroelectric inverse problem involves very
complex mathematical calculations. However, it is
possible to manage such calculations with today’s
computer power. Furthermore, new spatial filters,
such as those based on eigenspace projections,
can be used to improve the classical LCMV
solution originally proposed in [27].

Here, different indices of neural activity (all of
them based on beamforming) were compared in
terms of their ability to provide a focalized and
anatomically correct estimation of a neural evoked
response. Therefore, we looked for a beamformer
to generate significant index values (i.e., at the
tail of the distribution) and with an accurate
correspondence with the expected location of the
neural activity (primary visual cortex in this case).
However, the methods here analyzed showed little
consistency, that is, a single method not always
provided good results for the same type of data.

Nevertheless, we do not expect to find a spatial
filter that performs well for all types of data.
For example, in the case of the sparsity-based
index, we believe it did not provide good results
for the evoked responses here tested as it is
better suited for data with low SNR (i.e., with
larger sparsity). Another example is the MAI,
which is known to perform better for cases where
correlated sources are involved, then MAI can be
computed within a region-of-interest (ROI) in order
to provide a focalized estimation. Therefore, it
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Classical

Sparsity-
based

MAI

RRMAIT2

Fig. 2. MEG source localization of a large visual stimulus presented on the left side of the visual field for one subject.
The red dots are superimposed in the brain mesh in order to highlight the location of the most significant values of the
corresponding index. In the histogram, the red bars indicate the percentile that corresponds with the index values that
are displayed
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Classical

Sparsity-
based

MAI

RRMAIT2

Fig. 3. MEG source localization of a small visual stimulus presented on the right side of the visual field for one subject.
The red dots are superimposed in the brain mesh in order to highlight the location of the most significant values of the
corresponding index. In the histogram, the red bars indicate the percentile that corresponds with the index values that
are displayed
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is necessary to continue with the development of
new indexes based on more consistent estimates,
as well as characterize the response of different
beamformers for different types of data.

Finally, it is worth mentioning that the methods
here tested are not mutually exclusive, and infor-
mation obtained from a combination of methods
may improve the overall result. An example of
such approach has already been presented in
a preliminary version of this paper (see [6]), in
which the solutions of the classical neural activity
and the sparsity-based indexes were combined in
order to increase the focusing in the estimation
of auditory evoked responses. Therefore, we
believe new techniques in brain source localization
may benefit from using hybrid techniques that take
advantage of complementary information. Such
complementarity could be further extended to the
joint analysis of electroencephalographic (EEG)
and MEG data. While for this paper only MEG data
was available, new acquisition systems allow for
the simultaneous measurement of EEG and MEG.
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