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Abstract. In this paper the problem of trajectory tracking
is studied. Based on Lyapunov theory, a control law
that achieves global asymptotic stability of the tracking
error between a fractional recurrent neural network and
the state of each single node of the fractional complex
dynamical network is obtained. To illustrate the analytic
results we present a tracking simulation of a simple
network with four different nodes and five non-uniform
links.
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1 Introduction

Trajectory tracking is a well studied problem in
control theory. Its applications cover a wide
range of topics from recognition of moving objects
to synchronization, see, for example, [3, 9,
11]. Complex networks are dynamical systems
interconnected by a function. Its behavior can be
difficult to control and the dynamics of its nodes
require a precise analysis, see for example [4].
In the classical case, one can track the nodes of
the network by using Lyapunov theory and neural
networks as in [10].

In recent years, there has been an increasing
interest in studying fractional order systems, i.e.
dynamical systems with differential equations of
fractional order, see, for example, [1]. In these
systems, the classical mathematical notion of
derivative is changed to allow arbitrary orders.
Fractional order neural network synchronization
is studied, for instance, in [6]. In the case of
complex dynamical networks of fractional order,
cluster synchronization, stabilization, and partial
synchronization has been studied, see [7, 8, 5].

In this paper we propose to use recurrent neural
networks to track the nodes of a fractional order
complex network. We use a Lyapunov function
and the result in [2] to design a control law that
tracks the system. We prove that tracking is
guaranteed by showing that the error between the
network and the neural network stabilizes if the
control is applied. We show this in a rigorous
mathematical form. The control law we obtain
is of very general nature and applies to general
networks. We provide an example to show how
the control law applies to a specific situation.

2 Mathematical Models

2.1 Fractional General Complex Dynamical
Network

In this work we use Caputo’s fractional operator
which is defined, for 0 <α<1, by

x(α)(t) =c
0 D

α
t x(t) =

1

Γ(1− α)

∫ t

0

x’(τ)(t− τ)−αdτ .

If x(t) ∈ Rn, we consider that x(α)(t) is the
Caputo fractional operator applied to each entry:

x(α)(t) = (c0D
α
t xi1(t), ...,c0D

α
t xin(t))T .

Consider a network consisting of N linearly and
diffusively coupled nodes, with each node being an
n-dimensional dynamical system, described by

x
(α)
i = fi(xi)+

N∑
j=1
j 6=i

cijaijΓ(xj−xi), i = 1, 2, . . . ,N ,

(1)
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where xi = (xi1,xi2, . . . ,xin)T ∈ Rn are the state
vectors of node i, fi : Rn 7−→ Rn represents the
self-dynamics of node i, constants cij > 0 are
the coupling strengths between node i and node
j, with i, j = 1, 2, . . . ,N . Γ = (τ ij) ∈ Rn×n is a
constant internal matrix that describes the way of
linking the components in each pair of connected
node vectors (xj−xi): i.e. for some pairs (i, j) with
1 ≤ i, j ≤ n and τ ij 6= 0 the two coupled nodes are
linked through their ith and jth sub-state variables,
respectively, while the coupling matrix A = (aij) ∈
RN×N denotes the coupling configuration of the
entire network: i.e. if there is a connection between
node i and node j(i 6= j), then aij = aji = 1;
otherwise aij = aji = 0.

2.2 Fractional Recurrent Neural Network

Consider a fractional recurrent neural network in
the following form:

x(α)ni = Anixni +Wniσ(xin) + uin +

N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin),

i = 1, 2, . . . ,N , (2)

where xin = (xin1 ,xin2 , . . . ,xinn)T ∈ Rn is the
state vector of neural network i, uin ∈ Rn is
the input of neural network i, Ain = −λinIn×n,
i = 1, 2, . . . ,N , is the state feedback matrix, with
λin being a positive constant, Win ∈ Rn×n is the
connection weight matrix with i = 1, 2, . . . ,N , and
σ(·) ∈ Rn is a Lipschitz sigmoid vector function
[4], [5], such that σ(xin) = 0 only at xin = 0, with
Lipschitz constant Lσi , i = 1, 2, . . . ,N and neuron
activation functions σi(·) = tanh(·), i = 1, 2, . . . ,n.

3 Trajectory Tracking

The objective is to develop a control law such
that the ith fractional neural network (2) tracks the
trajectory of the ith fractional dynamical system
(1). We define the tracking error as ei = xin − xi,
i = 1, 2, . . . ,N whose time derivative is

e
(α)
i = x

(α)
ini
− x(α)i , i = 1, 2, . . . ,N . (3)

From (1), (2) and (3), we obtain

e
(α)
i = Ainxin +Winσ(xin) + uin − fi(xi) +

N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin)− (4)

N∑
j=1
j 6=i

cijaijΓ(xj − xi),

i = 1, 2, . . . ,N .

Adding and substrating Winσ(xi), αi(t), i =
1, 2, . . . ,N , to (4), where αi is defined below, and
considering that xin = ei + xi, i = 1, 2, . . . ,N , then

e
(α)
i = Ainei +Win(σ(ei + xi)− σ(xi)) +

(uin − αi) +

(Ainxi +Winσ(xi) + αi)− fi(xi) +
N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin)− (5)

N∑
j=1
j 6=i

cijaijΓ(xj − xi),

i = 1, 2, . . . ,N .

In order to guarantee that the ith neural network
(2) tracks the ith reference trajectory (1), the
following assumption has to be satisfed:

Assumption 1. There exist functions ρi(t) and
αi(t), i = 1, 2, . . . ,N , such that

ρ
(α)
i (t) = Ainρi(t) +Winσ(ρi(t)) + αi(t),

ρi(t) = xi(t), (6)
i = 1, 2, . . . ,N .

Let’s define

ũin = (uin − αi),
φσ(ei,xi) = σ(ei + xi)− σ(xi), (7)

i = 1, 2, . . . ,N .
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From (6) and (7), equation (5) is reduced to

e
(α)
i = Ainei +Winφσ(ei,xi) + ũin +

N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin)−

N∑
j=1
j 6=i

cijaijΓ(xj − xi), (8)

i = 1, 2, ...,N .

We can also write
N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin) =

Γ(

N∑
j=1
j 6=i

cinjnjainjnxjn − xin
N∑
j=1
j 6=i

cinjnainjn) =

N∑
j=1
j 6=i

cijaijΓ(xj − xi) = (9)

Γ(

N∑
j=1
j 6=i

cijaijxj − xi
N∑
j=1
j 6=i

cijaij),

i = 1, 2, . . . ,N ,

where we used cinjn = cij and ainjn = aij . Then,
with the above equation, equation (8) becomes

e
(α)
i = Ainei +Winφσ(ei,xi) + ũin +

Γ(

N∑
j=1
j 6=i

cijaijej − ei
N∑
j=1
j 6=i

cijaij)

= Aniei +Winφσ(ei,xi) + ũin + (10)
N∑
j=1
j 6=i

cijaijΓ(ej − ei),

i = 1, 2, . . . ,N .

It is clear that ei = 0, i = 1, 2, . . . ,N is an
equilibrium point of (10), when ũin = 0, i =
1, 2, . . . ,N . Therefore, the tracking problem can
be restated as a global asymptotic stabilization
problem for the system (10).

4 Tracking Error Stabilization and
Control Design

In order to establish the convergence of (10) to
ei = 0, i = 1, 2, . . . ,N , which ensures the desired
tracking, first, we propose the following candidate
Lyapunov function

VN (e) =

N∑
i=1

V (ei) =

N∑
i=1

1
2 ‖ ei ‖

2

=
1

2

N∑
i=1

eTi ei, e = (eT1 , . . . , eTN )T .(11)

In fractional calculus, the product rule for the
derivative is no longer valid. However, we still have
an upper bound for the product that appears in
(11). Specifically, from Lemma 1 in [2] the time
derivative of (11), along the trajectories of (10), is

V
(α)
N (e) ≤ ∂VN (e)

∂e
Dαei

=

N∑
i=1

∂VN (e)

∂ei
Dαei

= (eT1 , . . . , eTN )T×

A1ne1 +W1nφσ(ei,xi) + ũ1n+∑N
j=1
j 6=i

c1ja1jΓ(ej − e1)

...
ANneN +WNnφσ(eN ,xN ) + ũNn+∑N

j=1
j 6=i

cNjaNjΓ(ej − eN )



=

N∑
j=1

eTi (Ainei +Winφσ(ei,xi) + ũin +

N∑
j=1
j 6=i

cijaijΓ(ej − ej)). (12)

We can then write

V
(α)
N (e) ≤
N∑
i=1

(
−λin ‖ei‖

2
+ eᵀiWinφσ(ei,xi) + eᵀi

∼
uin

)
+
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N∑
i=1

 N∑
j=1
j 6=i

cijaije
ᵀ
i Γej −

N∑
j=1
j 6=i

cijaije
ᵀ
i Γei

 . (13)

Next, let’s consider the following inequality,
proved in [12]:

X>Y + Y >X ≤ X>ΛX + Y >Λ−1Y , (14)

which holds for all matrices X,Y ∈ Rn×k and Λ ∈
Rn×n with Λ = Λ> > 0. Applying (14) with Λ =
In×n to the term eᵀiWinφσ(ei,xi), i = 1, 2, ...,N , we
get

eᵀiWinφσ(ei,xi) ≤
1

2
eᵀi ei +

1

2
φ>σ (ei,xi)W

>
inWinφσ(ei,xi) =

1

2
‖ei‖2 +

1

2
φ>σ (ei,xi)×W>inWinφσ(ei,xi),

i = 1, 2, ...,N . (15)

Since φσ is Lipschitz, then

‖φσ(ei,xi)‖ ≤ Lφσ1 ‖ ei ‖, i = 1, 2, ...,N (16)

with Lipschitz constant Lφσi . Applying (16) to
1
2φ
>
σ (ei,xi)W

>
in
Winφσ(ei,xi) we obtain

1

2
φ>σ (ei,xi)W

>
inWinφσ(ei,xi)

≤ 1

2

∥∥∥φ>σ (ei,xi)W
>
inWinφσ(ei,xi)

∥∥∥ (17)

≤ 1

2

(
Lφσi

)2
‖Win‖

2 ‖ei‖2 , i = 1, 2, ...,N .

Next, (15) is reduced to

eᵀiWinφσ(ei,xi)

≤ 1

2
‖ei‖2 +

1

2

(
Lφσi

)2
‖Win‖

2 ‖ei‖2 (18)

=
1

2

(
1 + L2

φσi
‖Win‖

2
)
‖ei‖2 , i = 1, 2, ...,N .

Then, we have that

V
(α)
N (e) ≤ −

N∑
i=1

λin ‖ei‖2 +
N∑
j=1
j 6=i

cijaije
ᵀ
i Γei

+

1

2

N∑
i=1

(1 + L2
φσi
‖Win‖

2
)
‖ei‖2 + 2

N∑
j=1
j 6=i

cijaije
ᵀ
i Γej


+

N∑
i=1

eᵀi
∼
uin . (19)

We define
∼
uin =

≈
ui+

≈
uij , i = 1, 2, ...,N , and from

(19) we get

V
(α)
N (e) ≤ −

N∑
i=1

λin ‖ei‖2 +
N∑
j=1
j 6=i

cijaije
ᵀ
i Γei

+

1

2

N∑
i=1

(
eᵀi

((
1 + L2

φσi
‖Win‖

2
)
ei + 2

≈
ui

))
+ (20)

N∑
i=1

eᵀi
 N∑
j=1
j 6=i

cijaijΓej +
≈
uij


 .

Now, we propose to use the following control law:

∼
uin =

≈
ui +

≈
uij

= −1

2

(
1 + L2

φσi
‖Win‖

2
)
ei

−
N∑
j=1
j 6=i

cijaijΓej , (21)

i = 1, 2, ...,N .

In this case, V (α)
N (e) < 0, ∀ e 6= 0. This means

that the proposed control law (21) can globally and
asymptotically stabilize the ith error system (10),
therefore ensuring the tracking of (1) by (2).

Finally, the control action of the recurrent neural
networks is given by

uin =
∼
uin + αi

= −1

2

(
1 + L2

φσi
‖Win‖

2
)
ei −

N∑
j=1
j 6=i

cijaijΓej + fi (xi) + λinxi −Winσ (xi) ,

i = 1, 2, ...,N . (22)
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5 Simulations

In order to illustrate the application of the discussed
results, we consider a simple network with four
different nodes and five non-uniform links, see
Fig.1. The node self-dynamics are described by
(see [13] for the origins of this example):

x
(α)
1 = −x31, x

(α)
2 = −3x2,

x
(α)
3 = sinx3, x

(α)
4 = − | x4 | (23)

and the coupling strengths are c12 = c21 = 1.3,
c14 = c41 = 1.0, c13 = c31 = 2.7, c24 = c42 = 2.1,
c34 = c43 = 1.5.

Fig. 1. Scheme of a simple network (23) with four
different nodes and five non-uniform links

Fig. 2 shows the divergent phenomenon of
network (23) with initial state X(0) = (0, 0, 10, 0)T

and a three-time stronger coupling strength.

Fig. 2. The evolution of fractional network states with
initial state X(0) = (0, 0, 10, 0)T

The neural network was selected as

Ain = −I1×1, Win = (1)1×1, σ(·) = (tanhxin)1×1,

Lφσi
M
= ni = 1, i = 1, 2, 3, 4, (24)

with initial state Xn(0) = (0, 0,−10, 0)T and Γ =
I1×1.

Fig. 3. Time evolution for state 1

The simulation was as follows: for the first 0.5
seconds, the two systems evolve by themselves; in
this moment the control law (22) is applied.

Figure 3 represents numerical solutions of the
following: 1) the dynamical system of integer order
for the first state of the complex network (called
original state in the figure), 2) the corresponding
integer order neural network (called original state
in the figure), 3) the dynamical system of fractional
order for the first state, 3) the corresponding neural
network.

Similar results for states 2, 3 and 4 are displayed
in Fig. 4, Fig. 5, and Fig. 6, respectively. They
show the time evolution for network states and
the successful tracking as was expected from the
general control law we obtained.

6 Conclusions

We have presented a controller design for
trajectory tracking of a fractional general complex
dynamical networks [15]. This framework is
based on controlling dynamic neural networks
using Lyapunov theory in the fractional case. We
obtained a control law in a purely theoretical way,
and it can be applied to a wide range of problems
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Fig. 4. Time evolution for state 2

Fig. 5. Time evolution for state 3

in trajectory tracking. As an example, the proposed
control is applied to a simple network with four
different nodes and five non-uniform links. In
future work, we will consider the stochastic case
in fractional systems.
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Fig. 6. Time evolution for state 4
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