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Abstract. This paper presents a new method using
discrete transforms to segment blood vessels and
exudates in eye fundus color images. To obtain
the desired segmentation, an illumination correction is
previously done based on a homomorphic filter because
of the uneven illuminance in the eye fundus image. To
distinguish foreground objects from the background, we
propose a super-Gaussian bandpass filter in the discrete
cosine transform (DCT) domain. These filters are
applied on the green channel that contains information
to segment pathologies. To segment exudates in the
filtered DCT image, a gamma correction is applied to
enhance foreground objects; in the resulting image,
the Otsu’s global threshold method is applied, after
which, a masking operation over the effective area of
the eye fundus image is performed to obtain the final
segmentation of exudates. In the case of blood vessels,
the negative of the image filtered with DCT is first
calculated, then a median filter is applied to reduce noise
and artifacts, followed by a gamma correction. Again, the
Otsu’s global threshold method is used for binarization,
next a morphological closing operation is employed,
and a masking operation gives the corresponding final
segmentation. Illustrative examples taken from a
free clinical database are included to demonstrate the
capability of the proposed methods.

Keywords. Discrete cosine transform, eye fundus
images, segmentation, super-Gaussian filter.

1 Introduction

Millions of people in North America live with varying
degrees of irreversible vision loss because they
have an untreatable, degenerative eye disorder,
which affects the retina. In these conditions, the
delicate layer of tissue that lines the inside back of

the eye is damaged affecting its ability to send light
signals to the brain. When the blood vessels are
damaged by high blood sugar levels and initially
become defective, later they may become blocked
off. The defective vessels can lead to hemorrhages
(spots of bleeding), fluid and exudates (fats) to
escape from the blood vessels over the retina. The
blocked vessels can starve the retina from oxygen
(ischaemia), leading to the growth of new abnormal
vessels in the retina [1].

Actually, there are several screening eye exams
that help to find any illness, among the exams
are amsler grid, autofluorescence, dilated eye
exam, fundoscopy or ophthalmoscopy, eye fundus
photography, fluorescence angiography, optical
coherence tomography (OCT), and tonometry [2,
3]. In recent researches diverse techniques like
the Hough transform, mathematical morphology
techniques, illumination correction and histogram
equalization [4, 5, 6, 7, 8, 9, 10] have worked
in eye fundus photography to find blood vessels,
exudates, and hemorrhages. Other works enhance
the image and detect edges using Gaussian filters,
the watershed transform, and the Canny edge
finder [11, 12, 13, 14]. More recently, the use of
spatial frequency filters as edge detector has been
reported in [15, 16].

In this paper, we use the databases DIARETDB0
and DIARETDB1 (Standard Diabetic Retinopathy
Database Calibration Level {0,1}) from
Lappeenranta University (Finland). We remark
that the image data contained in these databases
were clinically validated by several experts. Each
image in these databases has a size of 1152×1500
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pixels. Knowing that the area of the optic disk is
2.47 mm2 (radius = 0.88 mm), the corresponding
approximate spatial resolution is of 4.746µm per
pixel [17].

The purpose of this work is to extract exudates
and blood vessels in eye fundus color images.
Basically, our proposal consists of the following
steps. First, a binary image mask is created
to obtain the boundary of the eye fundus in the
acquired color image by clipping the effective area
taken by the camera. Second, an homomorphic
filter in the Fourier domain and in the discrete
cosine transform (DCT) [18] domain are applied
to homogenize the image illumination, after which
a super-Gaussian bandpass filter in the frequency
DCT domain is proposed and applied to distinguish
between foreground objects and the corresponding
eye fundus image background. Third, two
procedures are proposed for the different types of
pathologies mentioned earlier.

The first procedure that determines exudates
employs a gamma correction to enhance contrast,
the Otsu’s global threshold method is applied
to binarize the image, and a logical operation
between the binary mask and the thresholded
image is realized to get the segmented image. The
second procedure is for blood vessels, in which
we first use the negative of the filtered image,
then a median filter to reduce noise and artifacts
is applied, also a gamma correction is applied to
enhance contrast, and image thresholding (Otsu’s
method) is performed using global statistics to
obtain the desired object regions including their
edges. Segmentation of the blood vessels is
obtained applying a morphological closing and a
logical operation between the binary mask and the
thresholded image.

The paper is organized as follows: Section 2
explains in detail the different image processing
steps involved in the proposed frequency filtering
based method for the segmentation of the afore-
mentioned pathologies and several representative
examples are provided. In Section 3 we present
the segmentation results obtained including our
segmentation algorithm in pseudocode format. We
close the paper with Section 4 of conclusions and
some pertinent comments.

2 Segmentation of Exudates and Blood
Vessels

2.1 Theoretical Background

A binary mask is build to delete the effective
area taken by the eye fundus camera. The
corresponding Algorithm 1 is given next and an
example of a mask is shown in Fig. 1.

Algorithm 1 Eye Fundus Mask

procedure MASK(I)
IR ← ExtractChannel(I,R)
IG ← ExtractChannel(I,B)
IQ ← IR/(IG + 1)
IQ ← MedianFilter(IQ)
LMOtsu ← OtsuThreshold(IQ)
M← Binarize(IQ,LMOtsu)

In a segmentation process it is possible
to discriminate objects of interest from the
background by dividing the image in regions that
satisfy certain conditions [19]. In general, due
to the presence of non-uniform illumination in
eye fundus images, we propose the use of a
Fourier or DCT homomorphic filter to homogenize
illumination.

Fig. 1. Top: original eye fundus color images (right eye
and left eye). Bottom: eye fundus binary masks

The discrete cosine transform (DCT) is a finite
sequence of data points in terms of a sum of
cosine functions oscillating at different frequencies
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and amplitudes. DCTs are important to numerous
applications in science and engineering. Formally,
the DCT is a linear, invertible function in the real
domain R2 to the real domain R2, which is also
equivalent to an array of M × N elements. The
two dimensional DCT is given by:

C(u, v) = α(u)α(v)× (1)
M−1∑
x=0

N−1∑
y=0

f(x, y) cos

[
π(2x+ 1)u

2M

]
cos

[
π(2y + 1)v

2N

]
,

where,

α(u)α(v) =


√

1
MN for u, v = 0,√
2

MN for u, v 6= 0.

Recall that the two dimensional discrete Fourier
transform (DFT) is given by

F (u, v) =

M−1∑
x=0

N−1∑
y=0

f(x, y)e−i2π(ux/M+vy/N), (2)

where, f(x, y) is an image of size M × N , u =
0, 1, ..,M − 1, and v = 0, 1, ..,N − 1 for both
transforms. Also, f(x, y) is multiplied by (−1)(x+y)
to center the transform that is computed with a Fast
Fourier Transform (FFT) algorithm.

In each case the filtered image, denoted by
g(x, y), is computed as follows:

g(x, y) = IDFT[F (u, v)H(u, v)], or (3)
g(x, y) = IDCT[C(u, v)H(u, v)], (4)

where, IDFT is the inverse discrete Fourier
transform, F (u, v) is the DFT of the input image
f(x, y), and C(u, v) is the inverse discrete cosine
transform IDCT of the input image f(x, y), using
Eq. 1, with u, v changed by x, y, respectively,
and H(u, v) is a specific homomorphic filter in
the Fourier or DCT domain. For numerical
computation, the functions C, F , H, and g are
matrices of the same size as the given image. A
high pass Butterworth homomorphic filter (HF) is
defined as

HHF(u, v) = (γH − γL)/[1 + (D0/D(u, v))2n] + γL,
(5)

where, γL < 1, γH > 1, and n (filter order) is the
slope of the function between the given gamma
bounds. The particular values we use for filtering
with Fourier the eye fundus color images are γL =
0.75, γH = 1.75, n = 2, and D0 = 10 for the cutoff
spatial frequency. The values used for filtering the
eye fundus color images with DCT are γL = 0.75,
γH = 1.75, n = 2, and D0 = 20 for the cutoff spatial
frequency. An example of illumination correction
for an RGB color image is shown in Fig. 2.

We introduce a super-Gaussian function [20] as
a novel filter for processing images in the frequency
domain. The advantages of the use of this filter
is explained next in comparison with a Butterworth
filter.

In Fig. 3, we show several Butterworth bandpass
and super-Gaussian bandpass filter profiles of
different orders in the DCT domain, the specific
parameters values are D0 = 200 (cutoff
frequency), and W = 150 (bandwidth) for both
filters. As we can see on the given graphs,
the bandwidth value is better delimited with
the super-Gaussian filter (i.e., a better selective
bandwidth), hence, its curve is more sharpened
than the Butterworth filter profile. We remark, that
the values of D, D0, W are in pixels.

We can observe in Fig. 2 that the homomorphic
filtered image using the DCT is better, because its
illumination is more uniform than the DFT filtered
image. For that reason we will work with the DCT
instead of the DFT filtered image.

Once the illumination is corrected, the segmen-
tation process is facilitated by filtering with the dis-
crete cosine transform to intensify the foreground
objects against the surrounding background of
the corresponding green channel in a given eye
fundus color image. The proposed super-Gaussian
bandpass (SGBP) filter is given by:

HSGBP(u, v) = e−
[
D(u, v)2 −D2

0

D(u, v)W

]2n

, (6)

where, n is the order of the filter,W is the bandpass
width, D(u, v) =

√
u2 + v2 is the Euclidean

distance from the center of the filter, and D0 is the
cutoff spatial frequency. In the present study, the
chosen values are n = 2, W = 275, and D0 = 100.
The resulting image after inversion with the IDCT
is given by the equivalent spatial expression:

gSGBP(x, y) = [IG(x, y) ∗ hHF(x, y)] ∗ hSGBP(x, y). (7)



Computación y Sistemas, Vol. 20, No. 4, 2016, pp. 697–708
doi: 10.13053/CyS-20-4-2305

Luis David Lara Rodríguez, Gonzalo Urcid Serrano700

ISSN 2007-9737

Fig. 2. Top: example color image. Middle: illumination
corrected color image with DFT. Bottom: illumination
corrected color image with DCT

The filtering stage based on the DCT is the
same for segmenting exudates as well as blood
vessels. The specific steps to segment each
type of pathology is described in the following
subsections.

2.2 Segmentation of Exudates

For this type of pathology, we apply on image
gSGBP a 3 × 3 median filter with the purpose to
emphasize exudates contrast. Then, a gamma
correction is applied to med(gSGBP(x, y)) with
value 2 and Otsu’s method [19], based on global
and local statistics, is used to calculate a global
threshold value for the computed image.

In particular, the binary output image is
determined as:

BE(x, y) =

{
0 if gSGBP(x, y) < LEOtsu,

1 otherwise,
(8)

where, the subindex label E refers to exudates.
The segmented exudates image is found by

masking the previous image with the initially binary
mask M . That is to say, SE = BE ∧M , where ∧ is
the logical AND operation. An illustrative example
of exudates is displayed in Fig. 4.

2.3 Segmentation of Blood Vessels

In order to remark blood vessels, we take the
negative of the previous filtered image computing.
That is, gNSGBP(x, y) = (L−1)− gSGBP(x, y), where
L is the maximum value of the corresponding
grayscale dynamic range. Then, as in exudates,
we apply again on image gNSGBP a 3 × 3 median
filter, with the purpose to emphasize contrast of
blood vessels present in the image. Then a gamma
correction is applied med(gNSGBP(x, y)) with value
2. In the next step, an image thresholding is
performed using Otsu’s method to obtain a binary
image using the global threshold value provided by
this method. Specifically, the binary output image
is computed as:

BV(x, y) =

{
0 if gNSGBP(x, y) < LVOtsu,

1 otherwise,
(9)

where, the subindex label V refers to blood
vessels.

A binary closing morphological operation [21] is
used to connect object edges in the corresponding
regions of BV(x, y), i. e., BV • S = (BV ⊕ S) 	 S,
where the structuring element S is an isotropic
square of size 3 × 3 pixels. Finally, the segmented
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Fig. 3. From top to bottom: Butterworth bandpass
filter 3D contour (n = 2), Butterworth filter profiles,
super-Gaussian bandpass filter 3D contour (n = 2), and
super-Gaussian filter profiles

Fig. 4. Top: Eye fundus color image with hard and
soft exudates (database:diaretdb1−v1−1/image015).
Middle: Super-Gaussian bandpass filtered image.
Bottom: Binary image with segmented hard and soft
exudates
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image SV containing the blood vessels is obtained
by masking the previous image. Hence, SV =
BV ∧ M . An example is shown in Fig. 5. We
remark that with this same technique, it is possible
to segment simultaneously aneurysms which are
localized blood filled balls of variable size in the wall
of a blood vessel [22].

3 Image Segmentation Results

To test our proposed segmentation technique,
we use six eyes fundus color images taken
from the free domain databases DIARETDB0 and
DIARETDB1. The first database consists of 130
eye fundus color images, of which 20 are normal
and 110 contain signs of diabetic retinopathy
(hard exudates, soft exudates, microaneuyrysms,
hemorrhages and neovascularization). The
database DIARETDB1 consists of 89 eye fundus
color images, from which 84 images contain
at least mild non-proliferate signs of diabetic
retinopathy. The other 5 images are considered
normal since these do not contain any signs of
diabetic retinopathy, according to all experts who
participated in the evaluation.

The eye fundus color images were captured
using the same 50 degree field-of-view digital
fundus camera with varying imaging settings [23].
As mentioned earlier, each image has a size of
1152 × 1500 pixels, with an approximately spatial
resolution of 4.756 micrometers per pixel. We
remark that the global threshold value obtained by
applying Otsu’s method value is different for each
image. Figures 6 to 11 show illustrative examples
of exudates and blood vessels segmentations.

Table 1 shows the segmentation parameters
and numerical values used for exudates and blood
vessels.

In the exudates segmentation images obtained,
we can observe that the optic disk has a similar
color as exudates, however our technique does not
segment the optic disk. In Figs. 8 to 10 besides
blood vessels segmentation, aneurysms are also
observed in the segmentation and correspond to
small amorphous regions not connected to the
blood vessels. Algorithm 2 provides the sequence
of steps of our technique.

Fig. 5. Top: Eye fundus color image with blood
vessels (database: diaretdb0−v1−1/image064). Middle:
Super-Gaussian bandpass filtered image. Bottom:
Binary image with segmented blood vessels
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Table 1. Gamma correction and threshold values for
segmenting exudates and blood vessels

Exudates (γ = 2)
Figure Number & Pathology LEOtsu

4 : Hard & Soft Exudates 0.19
6 : Hard Exudates 0.20
7 : Hard Exudates 0.17

Blood Vessels (γ = 3)
Figure Number & Pathology LV Otsu

5 : Blood Vessels 0.29
8 : Blood Vessels & Aneurysms 0.32
9 : Blood Vessels & Aneurysms 0.31
10 : Blood Vessels & Aneurysms 0.36
11 : Blood Vessels 0.32

Algorithm 2 DTBS - Discrete Transform Based
Segmentation for Exudates and Blood Vessels

procedure DTBS
Input parameters

D0H ,nH , γL, γH ,D0,n,W ,M ,α
Illumination correction

HHF ← HF(D0H , γL, γH ,nH)
F ← FFT(IG) or C ← DCT(IG)
g ← IFFT(F ∗HHF ) or IDCT(C ∗HHF )

DCT Filtering
HSGBP ← HBP(D0,W ,n)
G← DCT(g)
gSGBP ← IDCT(G ∗HSGBP )

Case: Exudates Segmentation
gSGBP ← med(gSGBP )
gSGBP ← GammaCorrection(gSGBP , γ)
BE ← Binarize(gSGBP ,LEOtsu)
SE ← BE ∧M

Case: Blood Vessels Segmentation
gNSGBP ← Negative(gSGBP )
gNSGBP ← med(gNSGBP )
gNSGBP ← GammaCorrection(gNSGBP , γ)
BV ← Binarize(gNSGBP ,LV Otsu)
BV ← BV • S
SV ← BV ∧M

Soft exudates (Fig. 4) are nerve fiber layer
infarcts or pre-capillary arterial occlusions. On
the other hand, hard exudates (Figs. 4, 6, and 7)
represent the accumulation of lipid in or under the

retina secondary to vascular leakage, this is due
to the aqueous portion of the fluid that is absorbed
more quickly than the lipid component. Thus, the
lipid that builds up in or under the retina becomes
visible as yellowish deposits. In Figs. 5 to 11, we
can observe the segmentation of the blood vessels
(temporal arcades), and aneurysms are shown in
Figs. 8 to 10, they look like islands and are easily
seen where the macula is located.

Fig. 6. Top: Eye fundus color image with hard exudates
(database: diaretdb0−v1−1/image003). Bottom: Binary
image with segmented hard exudates

The confusion matrix contains information about
actual and predicted classifications realized by a
pattern recognition system [24]. Performance of
such systems is commonly evaluated using the
data in the matrix shown below.

Positive True Positive False Positive
Test TP FP

Negative False Negative True Negative
Test FN TN
Total TP+FN FP+TN


The entries in the confusion matrix are: the

number TP of correct objects (exudates or blood
vessels) that a tested group sample gives positive,
the number TN of incorrect objects that a tested
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Fig. 7. Top: Eye fundus color image with hard exudates
(database: ddb1−v02−01/image064). Bottom: Binary
image with segmented hard exudates

Fig. 8. Top: Eye fundus color image with blood vessels
and aneurysms (database: diaretdb0−v1−1/image005).
Bottom: Binary image with segmented blood vessels and
aneurysms

Fig. 9. Top: Eye fundus color image with blood vessels
and aneurysms (database: diaretdb0−v1−1/image006).
Bottom: Binary image with segmented blood vessels and
aneurysms

Fig. 10. Top: Eye fundus color image with blood vessels
and aneurysms (database: diaretdb1−v1−1/image006).
Bottom: Binary image with segmented blood vessels and
aneurysms
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Fig. 11. Top: Eye fundus color image with blood vessels
(database: diaretdb1−v1−/image093). Bottom: Binary
image with segmented blood vessels

group sample is negative, the number FP of correct
objects that classification is negative, and the
number FN of incorrect objects that objects are
positively classified.

The confusion matrix allows us to find the
sensitivity or true positive rate (TPR), i.e., the
“positive cases” which refers to the proportion of
objects that give positive test results, and the
specificity or true negative rate (TNR) meaning
that, the “negative cases” which refers to the
proportion of objects that give negative test results
(see Eqs. 10 and 11):

Sensitivity =
TP

TP + FN
, (10)

Specificity =
TN

FP + TN
. (11)

To obtain the sensitivity and specificity rates
of our test examples, 20 eye fundus color
images hand marked of exudates and blood
vessels were used as ground-truth. In Table 2
the values of sensitivity and specificity of the
method proposed (DTBS) are compared with
other methods taken from the technical literature,

both for the segmentation of exudates and blood
vessels.

Table 2. Sensitivity (TPR) and specificity (TNR) rates for
the segmentation of exudates and blood vessels in eye
fundus images vs. other segmentation techniques.

Exudates sensitivity & specificity
TPR TNR

Garaibeh [6] 0.9210 0.9901
Jaafar [4] 0.8930 0.9930
Kande [25] 0.8600 0.9800
Welfer [7] 0.7048 0.9884
Youssef [10] 0.8000* 1.0000*
Kumar [14] 0.9710 0.9830
Nugroho [15] 0.9015 0.9999
DTBS 0.9412 0.9910
Blood vessels sensitivity & specificity

TPR TNR
Niemeijer [26] 0.6898 0.9696
Rangayyan [27] 0.8579 0.9000
Saleh [9] 0.8423 0.9658
Staal [28] 0.7194 0.7793
Youssef [10] 0.8000* 1.0000*
DTBS 0.8517 0.9832

In Table 2, the entries marked with an asterisk (*)
means that the sensitivity and specificity given by
Youssef were calculated taking into account both
exudates and blood vessels. Also, TNR= 1.000
results from considering finite number of regions of
interest (ROI’s) versus a complete image as in the
rest of table entries.

4 Conclusion

In this work, we have introduced a discrete cosine
transform based filtering approach to the problem
of extracting exudates and blood vessels in eye
fundus color images. A Fourier transform or DCT
homomorphic filter is proposed for illumination
correction of the input images and a binary mask of
the effective area of the retinography is constructed
as a quotient between the red and green channels.
An important step in the proposed method is the
(DCT) spatial frequency domain processing using
a super-Gaussian bandpass filter with carefully
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selected parameters. This novel type of filtering
achieves an adequate contrast of the foreground
objects against the background. We choose
the DCT over the Fourier transform since its
computation deals only with real values instead of
complex numbers; in addition, the result obtained
with the corresponding homomorphic DCT based
filter is visually better. For blood vessels a negative
of the filtered image is preliminary obtained, then
a median filter is applied for both pathologies to
reduce background noise and artifacts. There after
a gamma correction is applied to enhance the
resulting image contrast.

A binary image is determined using Otsu’s
simple statistics method for both cases and,
before the final masking operation is realized,
an intermediate operation is used only for blood
vessels. In this case, a closing morphological
operation is required. Several illustrative examples
are given that demonstrate the results obtained
with the proposed method. Notice that high
sensitivity and specificity rate values have been
obtained in our segmentation examples. Future
work contemplates extending the number of
tests on other clinical databases available such
as DRIVE [29] and STARE [30] as well as
pathology recognition (e.g., diabetic retinopathy
and maculopathy) on image samples taken from
the database used here (DIARETDB).
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