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Abstract. We present a rule-based method for 

recognizing entailment relation between a pair of text 
fragments by comparing their dependency tree 
structures. We used a dependency parser to generate 
the dependency triples of the text–hypothesis pairs. A 
dependency triple is an arc in the dependency parse 
tree. Each triple in the hypothesis is checked against all 
the triples in the text to find a matching pair. We have 
developed a number of matching rules after a detailed 
analysis of the PETE dataset, which we used for the 
experiments. A successful match satisfying any of these 
rules assigns a matching score of 1 to the child node of 
that particular arc in the hypothesis dependency tree. 
Then the dependency parse tree is traversed in post-
order way to obtain the final entailment score at the root 
node. The scores of the leaf nodes are propagated from 
the bottom of the tree to the non-leaf nodes, up to the 
root node. The entailment score of the root node is 
compared against a predefined threshold value to make 
the entailment decision. Experimental results on the 
PETE dataset show an accuracy of 87.69% on the 
development set and 73.75% on the test set, which 
outperforms the state-of-the-art results reported on this 
dataset so far. We did not use any other NLP tools or 
knowledge sources, to emphasize the role of 
dependency parsing in recognizing textual entailment. 

Keywords. Textual entailment, dependency parsing, 

dependency relation matching, rules, PETE dataset.  

1 Introduction 

Recognizing Textual Entailment (RTE) is a task 
that consists in the following: given a pair of text 
fragments, decide whether the meaning of one 

fragment (referred to as the hypothesis H) can be 
derived from that of the other (referred to as the 
text T), i.e., whether there is a directional 
relationship called entailment between the two 
input fragments. Note that if the meaning of H can 
be deduced from the meaning of T, the opposite 
may not be true. The RTE task has very important 
applications in many natural language processing 
(NLP) areas, such as information retrieval, text 
summarization, question answering, information 
extraction, reading comprehension, paraphrase 
acquisition, e-learning [15], opinion mining, and 
machine translation, to name just a few.  

The task of accurately labelling a pair of text 
fragments as textually entailed or not is attracting 
increasing attention of the NLP community. Due to 
its importance, the PASCAL (Pattern Analysis, 
Statistical Modelling and Computational Learning) 
network has organized the corresponding 
competitions, also called RTE. 

Consider an example from the PETE 
development set: 

T: He would wake up in the middle of the night and 
fret about it. 

H: He would wake up. 

Here, the truth value of H can be inferred from T. 
However, T contains some extra information not 
contained in H, therefore T cannot be inferred from 
H, while part of the information contained in T is 
sufficient to verify the truth value of H. Thus, textual 
entailment (TE) is a unidirectional relation which 
holds from T to H, but not vice versa. 
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In this paper, we present a rule-based textual 
entailment method based entirely on dependency 
parsing. Two separate parse trees are generated 
for the text and for the hypothesis using a 
dependency parser. Each dependency triple of the 
hypothesis H is compared against all triples of the 
text T to find a possible matching pair. If a match is 
found according to any of the six matching rules we 
developed, then the child node of the dependency 
triple is assigned a matching score 1. This process 
is repeated for all dependency triples of the 
hypothesis, and the corresponding child nodes are 
assigned scores basing on successful match. 
Finally, the dependency tree is traversed in post-
order way to propagate the final entailment score 
to the root node. The entailment score for a T–H 
pair is in the range from 0 to 1; the maximum score 
of 1 indicates that the hypothesis H is completely 
contained within the text T. This score is checked 
against a threshold value learnt from the PETE 
development set to make the final entailment 
decision: a score above the threshold indicates 
entailment and that below the threshold indicates 
absence of entailment. 

Evaluation on the PETE dataset shows 87.69% 
accuracy on the development set and 73.75% 
accuracy on the test set. This is higher than state-
of-the-art results reported on this dataset so far. 

The rest of the paper is organized as follows. 
Section 2 describes related work, which is mainly 
focused on recognizing textual entailment basing 
on the syntactic structure of a sentence using 
dependency relations. Section 3 describes our 
method. Experimental results are presented in 
Section 4. Section 5 gives error analysis. Finally, 
Section 6 concludes the paper and outlines future 
research directions. 

2 Related Work 

A number of methods have been proposed for RTE 
in recent years. Many of them simply use some 
form of lexical matching such as simple word 
overlap, n-gram matching, skip-gram matching, 
etc. Some systems represent the pair of text 
fragments as syntactic dependency parse trees 
before the actual processing. Many systems also 
use semantic relations such as semantic role 
labelling or logical inference.  

The work by Rios and Gelbukh [25] is based on 
the assumption that a given text-hypothesis pair 
holds an entailment relation if there exists a 
sequence of edit operations that can be performed 
on T to produce H with an overall cost below a 
certain threshold. This approach needs to 
represent the input pair of text fragments in the 
predicate-argument structure format. 

The approach described by Blake [1] has 
demonstrated that the sentence structure alone 
plays an important role in recognizing textual 
entailment.  

The textual entailment recognition system by 
Vanderwende et al. [30, 31] represents the T–H 
pair as graphs of syntactic dependencies 
generated by the NLPwin parser. The system tries 
to align each node in H with a node in T using a set 
of syntactic heuristics. The main motivation behind 
this task was to recognize false entailment.  

In the dependency parser-based textual 
entailment system by Pakray et al. [18], two 
separate parse trees were generated by using 
CCG and Stanford parser separately. Then the 
hypothesis relations were compared with the text 
relations on the basis of various features, and 
different weights were assigned to exact and 
partial matches. Finally, all these weights were 
summed up and checked against a threshold value 
to make the final entailment decision. 

Rus et al. [26] and Herrera et al. [11] used the 
degree of graph subsumption, or graph inclusion. 
The dependency tree structure of H was examined 
to find whether it can be completely or partially 
mapped to the tree of T. 

Marsi et al. [16] used the concept of normalized 
alignment of dependency trees for the RTE task.  

The architecture of the system by Kouylekov 
et al. [14] uses a tree edit-distance algorithm on the 
T–H dependency tree pair in order to map the tree 
of H to the tree of T. If the distance, i.e., the cost of 
editing operations, between the two trees is below 
a certain threshold, then the text T is said to 
entail H. 

Haghighi et al. [10] adopted a graph-based 
representation of sentences and used a graph-
matching approach to measure the semantic 
overlap of the two texts. They developed a learned 
graph-matching approach to approximate entail-
ment using the amount of the sentence’s semantic 
content that is contained in the text. 
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Pakray et al. [20] used the Universal 
Networking Language (UNL), which is a formalism 
similar to dependency parsing representation, in 
order to find relations between words in a 
sentence, which were then used in an unsuper-
vised framework for RTE. 

Wang and Neumann [32] proposed a structure-
oriented entailment method that constructed a 
sentence similarity function operating on the T–H 
pair. Erwin et al. [8] presented a syntax-based 
paraphrasing method for recognizing textual 
entailment that used the DIRT dataset. Paraphrase 
and textual entailment has been considered for 
languages other than English [17].  

Sidorov [27] introduced various types of 
syntactic triples and, more generally, syntactic n-
grams, which can be used in the way similar to our 
use of syntactic triples. Unsupervised learning 
methods have been applied for disambiguation of 
syntactic dependencies [9]. 

Apart from RTE, dependency tree-based 
patterns have been also proved to be a powerful 
tool for sentiment analysis [21], aspect extraction 
in opinion mining [3, 22], and text-based 
personality recognition [23]. 

On the other hand, a large body of literature has 
been devoted to measuring text similarity using 
various techniques. Syntactic n-grams have been 
used by Calvo et al. [2] to measure text similarity in 
a way similar to our proposal. Other recent 
proposals include such measures as soft 

cardinality [13], soft cosine measure [28], graph 
distance metrics [7], semantic and discourse-
based measures [6], as well as relational features 
and latent topic detection [12].  

3 The Method 

A flowchart of the proposed method is presented in 
Fig. 1. The individual modules are presented in the 
following sections. 

3.1 Pre-Processing 

This module takes a text–hypothesis pair and 
checks for the presence of contracted tokens. In 
case of the presence of such tokens, they are 
replaced by their corresponding expanded forms 
listed in Table 1, because the dependency parser 
produces erroneous output for such contracted 
tokens; therefore, it is necessary to replace them 
before further processing.  

The next step of pre-processing is to find the 
root form of each word. We used the Porter 
stemming algorithm [24]. This is a very important 
step because the text and the hypothesis may 
contain different word-forms of the same base 
form; which will not match according to any of the 
matching criteria, resulting in an incorrect score 
assignment, which leads to wrong entailment 
decision. 

 

Fig. 1. Modularized system architecture 

Table 1. Token replacement 

Contracted tokens Expanded forms 

didn’t did not 

aren’t are not 

that’ll that will 

hadn’t had not 

it’s it is 

I’ve I have 

they’re they are 
 

 



Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Rohini Basak, Sudip Kumar Naskar, Partha Pakray, Alexander Gelbukh688

ISSN 2007-9737

 

3.2 Dependency Parsing 

The modified text–hypothesis pairs are passed on 
to the dependency parsing module. In the present 
work, we used the Stanford dependency parser1 
for this purpose. The output of this module is a set 
of dependency triples. A dependency triple 
produced by the parser consists of three parts in 
the form R(N1, N2), where N1 and N2 are two words 
in the sentence connected by the relation R. 

An example of a text–hypothesis pair from the 
PETE development set is: 

T: Thus committed, action might follow. 
H: Action might follow. 

For this T–H pair, the dependency parser 
generates the set of triples shown in Table 2. 

3.3 Dependency Tree Representation 

A complete dependency parse tree is built by 
combining all the dependency triples generated in 
the previous stage. For each word in a sentence, a 
separate node is created. Each dependency triple 
is represented as an arc in the parse tree. The first 
word of the triple N1 is the parent node of the arc 
and the second word N2 is the child node linked to 
that parent by the relationship R. Thus, for a 
dependency triple in the form R(N1,N2), an arc is 
created as shown in Fig. 2. 

3.4 Comparing Dependency Trees 

Each dependency triple of the hypothesis H is 
compared against all triples of the text T in search 
of a matching pair. If a match is found according to 
any one of the six matching criteria listed below, 
then the child (dependent) node N2

H of that arc in 
the hypothesis parse tree is assigned a matching 
score of 1; if none of the following matching criteria 
is satisfied for any triple of the hypothesis, a 0 
score is assigned to the node N2

H of that triple. The 
matching criteria are stated below in detail and are 
illustrated by corresponding diagrams. 

Rule 1. This rule corresponds to the complete triple 
match. If a dependency triple RH(N1

H, N2
H) of the 

hypothesis H entirely matches a dependency triple 
                                                      
1 http://nlp.stanford.edu/software/stanford-

dependencies.shtml 

RT(N1
T, N2

T) of the text T, then the child node N2
H 

of the dependency triple of H is assigned a parent 
matching score of 1. The entailment score 
calculation component of a node is described in 
Section 3.5. A few examples are listed in Table 3 
to illustrate complete triple match. Fig. 3 illustrates 
this matching rule. 

Rule 2. If the nodes N2
H and N1

H of a dependency 
triple of H match N1

T and N2
T, respectively, of a 

dependency triple of T, but the relations RH and RT 
do not match, while the dependency relation RT 
belongs to the set 

{vmod, amod, rcmod, ccomp, advcl}, 

then the cases listed in Table 4 are checked for 
matching. Upon finding a successful match, the 
child node N2

H of the triple of H is assigned a parent 
matching score of 1. Examples of text-hypothesis 
pairs satisfying this rule are given in Table 4. 
Rule 2 is illustrated in Fig. 4. 

Rule 3. If the nodes N1
H and N2

H of a dependency 
triple in H match N1

T and N2
T, respectively, of a 

dependency triple of T, but the relations RH and RT 

do not match, then for the cases listed in Table 5, 
the child node N2

H of the hypothesis dependency 
triple is assigned a parent matching score of 1. 
Table 5 presents examples of T–H pairs satisfying 
this rule. Fig. 5 illustrates this matching rule.  

Rule 4. If the node N1
H and relation RH of a triple of 

H match N1
T and RT, respectively, of a triple in T, 

but the node N2
H does not match N2

T, and the 
relation belongs to the set 

{nsubj, dobj, pobj} 

the matching criteria listed in Table 6 are checked. 
If any of these criteria is satisfied, the child node 
 

 

Fig. 2. Representing a dependency triple R(N1,N2) 
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Table 2. Dependency triples for a T–H pair 

Text dependency triples Hypothesis dependency triples 

advmod(committed-2, Thus-1) 

vmod(follow-6, committed-2) 

nsubj(follow-6, action-4) 

aux(follow-6, might-5) 

root(ROOT-0, follow-6) 

nsubj(follow-3, action-1) 

aux(follow-3, might-2) 

root(ROOT-0, follow-3) 

 

Table 3. Examples satisfying matching rule 1 

RT and RH T–H pairs Dependency triples 

nsubj 

T: For the fifth consecutive month, purchasing 
managers said prices for the goods they purchased 
fell. 

H: The prices fell. 

nsubj(fell-15, prices-9) 

nsubj(fell-3, prices-2) 

dobj 

T: My host went over and stared out the window at his 
peacocks; then he turned to me. 

H: Somebody stared out the window.  

dobj(stared-6, window-9) 

dobj(stared-2, window-5) 

Table 4. Examples satisfying matching rule 2 

RT RH T–H pairs Dependency triples 

vmod nsubj 

T:  Producers have seen this market opening up and 
they are now creating wines that appeal to these 
people. 

H:  The market is opening up. 

vmod(market-5, opening-6) 

nsubj(opening-4,  market-2) 

amod nsubjpass 

T:  Occasionally, the children find steamed, whole-
wheat grains for cereal which they call ‘buckshot’. 

H:  Grains are steamed. 

amod(grains-7,steamed-5) 

nsubjpass(steamed-3, Grains-1) 

ccomp advcl 

T:  If he was sober, which was doubtful, he would have 
him get in touch with Mr. Crombie. 

H:  It is doubtful, if he was sober. 

ccomp(sober-4, doubtful-7) 

advcl(doubtful-3, sober-7) 

rcmod dobj 

T:  It required an energy he no longer possessed to be 
satirical about his father. 

H:  Somebody no longer possessed the energy. 

rcmod(energy-4, possessed-8) 

dobj(possessed-4, energy-6) 

rcmod nsubj 

T:  I reached into that funny little pocket that is high up 
on my dress. 

H:  The pocket is high up on something. 

rcmod(pocket-7, is-9) 

nsubj(is-3, pocket-2) 

Table 5. Examples satisfying matching rule 3 

RT RH T–H pairs Dependency triples 

dobj nsubjpass 

T:  The Big Board also added computer capacity to 
handle surges in trading volume. 

H:  Computer capacity was added. 

dobj(added- 5, capacity-7) 

nsubjpass(added-4,capacity-2) 

nsubj nsubjpass 
T: Totals include only vehicle sales reported in period. 

H: The sales were reported. 

nsubj(reported-6, sales-5) 

nsubjpass(reported-3, sales-2) 
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N2
H of that triple is assigned a parent matching 

score of 1. Some examples are presented in 
Table 6, and Fig. 6 illustrates this matching rule. 

Rule 5. If node N1
H of a hypothesis triple matches 

that of N1
T of a triple of T, but neither N2

H nor RH 
matches that of N2

T and RT, then only for the cases 
presented in Table 7, the child node N2

H is 
assigned a parent matching score of 1. An 
example is given in Table 7, and Fig. 7 illustrates 
this rule. 

Rule 6. There are some insignificant relations that 
we have identified after a thorough study of the 
PETE dataset. These insignificant relations are as 
follows: 

{aux, auxpass, cop, det, expl, 
mark, nn, prt, predet}. 

Wherever two nodes N1
H and N2

H in a triple are 
connected by any of these relations, the child node 
N2

H of that triple is assigned a parent matching 
score of 1. When ignoring these insignificant 
relations, the overall entailment score at the root 
node often is decreased and falls below the 
threshold value, which results in an incorrect 
entailment decision. So these relations, although 
seem to be less important, should also be 
considered. 

3.4 Entailment Score Calculation 

The score of each node NH in the hypothesis 
dependency parse tree is divided into three 
  

components: the parent score (p_score), the child 
score (c_score), and the total score (t_score).  

The previous comparison module assigns a 
matching score of 1 to the p_score component of a 
node N2

H if any of the six matching criteria is 
satisfied for the dependency triple RH(N1

H,N2
H). 

Otherwise, a score value of 0 is assigned to the 
p_score component of the node N2

H of the 
dependency triple.  

After assigning matching score to the p_score 
components of all the nodes in the hypothesis 
parse tree, the parse tree is traversed in bottom-up 
fashion from the leaf nodes to the root node, the 
scores for non-leaf nodes being calculated by 
traversing the tree in the post-order way. Since the 
leaf nodes have no children, their c_score 
component is set to 0 and the t_score component 

 

Fig. 3. Matching rule 1 

 
Fig. 4. Matching rule 2 

 

Fig. 5. Matching rule 3 

 

Fig. 6. Matching rule 4 

 

Fig. 7. Matching rule 5 
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is set to the value of their p_score. For a non-root 
non-leaf node, the c_score is calculated by taking 
the average of all the t_scores of its child nodes. 
Then its own t_score is set to the average of its 
p_score and c_score. Finally, the p_score 
component of the topmost node of the dependency 
tree immediately below the dummy ROOT node of 
the parse tree is assigned a value of 0 since it has 
no parent. The t_score of this node is set to the 
value of its c_score, which has already been 
calculated by the average of its immediate 
children. 

  

The final t_score of the root node of the tree is 
considered as the entailment score of the T–H pair. 
It lies in the interval between 0 and 1. This 
entailment score is then used for making the 
entailment decision at the final stage of the 
algorithm. The rules used for assigning the scores 
to the various components of a node are 
summarized in Table 8. The diagram in Fig. 8 
presents the different score components of the 

nodes in a parse tree, which are calculated 
following the rules listed in Table 8.  

Consider the following T–H pair from the PETE 
development set: 

T: He could also hear the stream which he had 
seen from his position. 

H: Someone had seen the stream.  

The output of the Stanford dependency parser for 
this T–H pair is shown in Table 9. Table 10 lists the 
hypothesis triples, their corresponding matching 
text triples, the matching rules satisfied by each of 
them, and the actions taken on successful 
matching. Fig. 8 shows the score components of 
the nodes in this parse tree. 

3.5 Entailment Decision 

The final entailment score calculated at the 
previous step is then compared with a predefined 
threshold value. If it exceeds the threshold value, 

Table 6. Examples satisfying the matching rule 4 

RT N2
H T–H pairs Dependency triples 

nsubj 

somebody 
someone 
something 

it 

T: It required an energy he no longer possessed to 
be satirical about his father. 

H: Somebody no longer possessed the energy. 

nsubj(possessed-8,  he-5) 

nsubj(possessed-4, Somebody-1) 

dobj 
something 
somebody 

T: That was where the pegboard would go on which 
he would hang his hand tools. 

H: He would hang something. 

dobj(hang-12, tools-15) 

dobj(hang-3, something-4) 

pobj 
something 
somebody 

T: I reached into that funny little pocket that is high 
up on my dress. 

H: The pocket is high up on something. 

pobj(on-12, dress-14) 

pobj(on-6, something-7) 

nsubjpass somebody 

T: It said the man, whom it did not name, had been 
found to have the disease after hospital tests. 

H: Somebody had been found to have the disease. 

nsubjpass(found-12, man-4) 

nsubjpass(found-4,  somebody-1) 

advmod 
somewhere 
somehow 

T: That was where the pegboard would go on which 
he would hang his hand tools. 

H: The pegboard would go somewhere. 

advmod(go-7, where-3) 

advmod(go-4, somewhere-5) 

Table 7. Example satisfying matching rule 5 

RT RH T–H pairs Dependency triples 

prep dobj 

T: “Last year we probably bought one out of every 
three new deals,” he says. 

H: Someone bought deals. 

prep(bought-5,  of-8) 

dobj(bought-2, deals-3) 
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the T–H pair is marked as entailment; otherwise it 
is marked as having no entailment. The threshold 
was learned from the PETE development set. We 
used the same threshold to make the entailment 
decisions for all 301 T–H pairs of the PETE test set. 

Evaluation results on the PETE dataset show 
87.69% accuracy on the development set and 
73.75% accuracy on the test set.  

4 Experimental Results  

We tested our system on the PETE development 
dataset, which consists of 66 T–H pairs. We 
experimented with different values of the threshold 
that controls the entailment decision as described 

in Section 3.5. We observed that the best 
performance, with accuracy of 87.69%, was 
achieved on the PETE development set for the 
threshold values in the range between 0.84 
and 0.9. 

Fig. 9 shows the accuracy of our system for 
different threshold values on the PETE 
development set. The accuracy reaches its peak 
when the threshold is 0.84, stays nearly constant 
in the interval between 0.84 and 0.9, and falls 
at 0.95. 

The threshold value of 0.84, which optimizes 
the system performance on the PETE 
development set, was used to make the entailment 
decisions for all 301 T–H pairs of the PETE test set. 
The evaluation results obtained on the PETE test 

 

Fig. 8. Assignment of scores 

Table 8. Score assignment to the nodes in the parse tree 

Types of nodes p_score c_score t_score 

Leaf node 
1 on successful match 

0 otherwise. 
0 p_score 

Non-leaf non-root 
node 

1 on successful match 

0 otherwise. 

Average of the t_scores 
of all its children. 

1

2
 (p_score + c_score) 

Topmost node 
next to ROOT 

0 
Average of the t_scores 

of all its children. 
c_score 
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set are presented in Tables 11 and 12. The 
performance of our system in terms of accuracy is 
better than the highest-scoring system among all 
the teams participated in the SemEval 2010 
task 12 [33]. 

 

5 Error Analysis 

Since in the development of the system we 
focused on the dependency triples, any two nodes 
connected in a triple of the hypothesis parse tree 
but not connected in the text’s tree failed to be 
properly detected by any of our matching rules. 
There are several such examples for which our 
system gives erroneous results. 

Example 1. Consider the following T–H pair from 
the PETE test set: 

T: Moreland sat brooding for a full minute, during 
which I made each of us a new drink. 

H: Someone made a drink. 

The corresponding dependency triples 
generated by the Stanford parser are shown in 
Tables 13, 15 and 16. 

Our system failed to detect the entailment 
relation in this T–H pair, because for the nodes 
made and drink, which are connected in the 
hypothesis’s parse tree, the parser failed to 
correctly identify a dependency relation in the text’s 
tree. Thus these nodes failed to satisfy any of our 
matching rules. As a result, the p_score 

Table 9. Example of dependency triples of a T–H pair 

Text triples Hypothesis triples 

T1. nsubj(hear-4,He-1) 

T2. aux(hear-4,could-2) 

T3. advmod(hear-4,also-3) 

T4.  root(ROOT-0,hear-4) 

T5. det(stream-6,the-5) 

T6.  dobj(hear-4,stream-6) 

T7.  dobj(seen-10,which-7) 

T8. nsubj(seen-10,he-8) 

T9.  aux(seen-10,had-9) 

T10. rcmod(stream-6,seen-10) 

T11. prep(seen-10,from-11) 

T12. poss(position-13,his-12) 

T13. pobj(from-11,position-13) 

H1. nsubj(seen-3,someone-1) 

H2. aux(seen-3,had-2) 

H3. root(ROOT-0,seen-3) 

H4. det(stream-5,the-4) 

H5. dobj(seen-3,stream-5) 

Table 10. Simulated matching rules on dependency triples 

Hypothesis 
dependency 

triple 

Matched with 
text dependency 

triple 

Satisfying 
matching 

rule # 
Action 

H1 T8 4 Assigns p_score=1 to ‘someone’ 

H2 T9 1 Assigns p_score=1 to ‘had’ 

H3 None NA (the ROOT node) Assigns p_score=0 to ‘seen’  

H4 T5 1 Assigns p_score=1 to ‘the’ 

H5 T10 2 Assigns p_score=1 to ‘stream’ 
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component of drink is set to 0 and the entailment 
relation was not detected. 

Partial dependency parse trees of T and H are 
shown in Fig. 10. All the score components of the 
nodes in the hypothesis are indicated in this figure. 
The overall entailment score is 0.75, which is 
below our chosen threshold value of 0.84. 
Therefore, the system marked this T–H pair as 
having no entailment. There have been several 
such cases where two nodes in one of the 
dependency trees were not connected in the other 
dependency tree. Such T–H pairs resulted in false 
negatives. 

Example 2. Consider another T–H pair: 

T: It wasn’t clear how NL and Mr. Simmons would 
respond if Georgia Gulf spurns them again. 

H: Simmons would respond.  

In this case, the hypothesis sentence H is 
completely contained in the text sentence T, and 
the words in the sentence T appear in the 
hypothesis in the same order. However, in this 
case the additional information in T appearing 
before the underlined part of the text contradicts 
the truthfulness of the hypothesis. Some of the 
dependency triples of this pair are shown in 

 

Fig. 9. Accuracy at different threshold values 

Table 11. PETE test set results 

 Actual positive Entailment Actual Negative Entailment 

System Positive Entailment True Positive: 96 False Positive: 19 

System Negative Entailment False Negative: 60 True Negative: 126 

Table 12. Precision and recall on the PETE test set 

 P R F-Measure 

Positive TE 0.8348 0.6154 0.7085 

Negative TE 0.6774 0.8689 0.7613 

Overall   0.7375 
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Table 15. Here, the hypothesis triples H1 and H2 
completely match the text triples T5 and T6, 
respectively, satisfying our matching rule 1.  

Therefore, the system incorrectly reports such 
T–H pairs as entailment, being not sophisticated 
enough to infer the absence of entailment in this 
case. This T–H pair is an example of a false 
positive. 

Example 3. Consider the following T–H pair: 

T: And many in the young cast bear striking 
resemblances to American TV and movie 
personalities known for light roles. 

H: Many bear resemblances to movie personali-
ties.  

In this case, the dependency parser again 
produces erroneous triples. Some of them are 
shown in Table 16. The parser fails to properly 
POS-tag the words in the hypothesis, which 
resulted in incorrect triples H1 and H2. So H1 and 
H2 do not match the text triples T2 and T9, 
respectively, and the system fails to properly 
identify entailment in this T–H pair. Such types of 

errors occur due to wrong parsing and not due to 
limitations of the method itself. 

6 Conclusion and Future Work 

We have presented a method for recognizing 
textual entailment that relies solely on the 
dependency tree matching. Since our aim was to 
emphasize the role of dependency structure in the 
task of recognizing textual entailment, we avoided 
the use of any enhancements or any resources 
other than a dependency parser. Even with this 
restriction, our method outperforms all systems 
that participated in the SemEval 2010 task 12. 

Besides simply matching dependency triples, 
the system makes use of six rules that account for 
slight differences in the syntactic structures in the 
text and the hypothesis, to improve the accuracy of 
the textual entailment recognition. Since we tested 
our system only on the PETE dataset, which 
exhibits mainly syntactic differences in the text and 
the hypothesis, we concentrated primarily on soft 
matching of syntactic structures and did not feel a 
 

Table 13. Dependency triples for the T–H pair in Example 1 

Text triples Hypothesis triples 

T1.  nsubj(sat-2, Moreland-1) 

T2.  root(ROOT-0, sat-2) 

T3.  xcomp(sat-2, brooding-3) 

T4.  prep(brooding-3, for-4) 

T5.  det(minute-7, a-5) 

T6.  amod(minute-7, full-6) 

T7.  pobj(for-4, minute-7) 

T8.  prep(made-12, during-9) 

T9.  pobj(during-9, which-10) 

T10.  nsubj(made-12, I-11) 

T11.  rcmod(minute-7, made-12) 

T12.  dobj(made-12, each-13) 

T13.  prep(each-13, of-14) 

T14.  pobj(of-14, us-15) 

T15.  det(drink-18, a-16) 

T16.  amod(drink-18, new-17) 

T17.  dep(us-15, drink-18) 

H1. nsubj(made-2, Someone-1) 

H2. root(ROOT-0, made-2) 

H3. det(drink-4, a-3) 

H4. dobj(made-2, drink-4) 
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Table 14. Simulated matching rules on dependency triples for the T–H pair in Example 1 

Hypothesis 
dependency 

triple 

Matched with 
text dependency 

triple 

Satisfying 
matching 

rule # 
Action 

H1 T10 4 Assigns p_score=1 to ‘someone’ 

H2 None NA (the ROOT node) Assigns p_score=0 to ‘made’ 

H3 T15 1 Assigns p_score=1 to ‘a’ 

H4 None NA Assigns p_score=0 to ‘drink’ 

Table 15. Dependency triples for the T–H pair in Example 2 

Text triples Hypothesis triples 

T1. nsubj(clear-4, It-1) 

T2. cop(clear-4, was-2) 

T3. neg(clear-4, not-3) 

T4. root(ROOT-0, clear-4) 

T5. nsubj(respond-11, Simmons-9) 

T6. aux(respond-11, would-10) 

H1. nsubj(respond-3, Simmons-1) 

H2. aux(respond-3, would-2) 

H3. root(ROOT-0, respond-3) 

Table 16. Dependency triples for the T–H pair in Example 3 

Text triples Hypothesis triples 

T1.  cc(bear-7, And-1)               

T2.  nsubj(bear-7, many-2) 

T3.  prep(many-2, in-3) 

T4.  det(cast-6, the-4) 

T5.  amod(cast-6, young-5) 

T6.  pobj(in-3, cast-6) 

T7.  root(ROOT-0, bear-7) 

T8.  amod(resemblances-9, striking-8) 

T9.  dobj(bear-7, resemblances-9) 

T10.  prep(bear-7, to-10) 

T11. amod(TV-12, American-11) 

T12. pobj(to-10, TV-12) 

T13. cc(TV-12, and-13) 

T14. nn(personalities-15, movie-14) 

T15. conj(TV-12, personalities-15) 

T16. vmod(TV-12, known-16) 

T17. prep(known-16, for-17) 

T18. amod(roles-19, light-18) 

T19. pobj(for-17, roles-19) 

H1. amod(bear-2, Many-1) 

H2. nsubj(resemblances-3, bear-2) 

H3. root(ROOT-0, resemblances-3) 

H4. prep(resemblances-3, to-4) 

H5. nn(personalities-6, movie-5) 

H6. pobj(to-4, personalities-6) 
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need in the use of any additional lexical resources 
or involving semantic similarity calculations in our 
system. 

Only identifying the base forms of the words 
using the Porter stemming algorithm followed by 
applying the matching criteria was sufficient to 
assign a binary matching score of 1 or 0 to each 
node in the hypothesis dependency parse tree. We 
used equal weighting in assigning the matching 
scores to the nodes in the parse tree: when any of 
the six matching rules was satisfied, a matching 
score of 1 was assigned to a node, thus giving 
equal importance to all the matching rules. These 
matching scores were then propagated in a 
bottom-up fashion by post-order tree traversal to 
the root node, with which the final entailment score 
was obtained.  

Thus the presented algorithm is deliberately 
simplistic and can be improved and generalized in 
many ways. Still this simple method has proved to 
be quite effective in correctly labelling a significant 
percentage of T–H pairs as representing or not 
representing entailment. The method is completely 
rule-based and the matching rules have been 
developed after a thorough and minute analysis of 
the development set. Only string comparison was 
used for matching.  

In future work, we expect to augment the 
system with semantic similarity measures so that it 
can capture both syntactic divergence as well as 
semantic similarity. We also expect to explore the 
UNL parser for the system to be able to efficiently 
capture the entailment relations. Anaphora 
resolution as a pre-processing step for the textual 

 

Fig 10 (a). Partial text dependency tree Fig 10 (b). Hypothesis dependency tree 
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entailment [5, 19] and application of advanced text 
similarity measures [4, 29] are also parts of our 
future works. 
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