
Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

ISSN 2007-9737

Recognizing Textual Entailment by Soft Dependency Tree Matching

Rohini Basak1, Sudip Kumar Naskar1, Partha Pakray2, Alexander Gelbukh3

1 Jadavpur University, Kolkata,
India

2 National Institute of Technology (NIT) Mizoram, Aizawl,
India

3 Instituto Politécnico Nacional, Centro de Investigación en Computación, Mexico City,
Mexico

visitrohinihere@gmail.com, sudip.naskar@cse.jdvu.ac.in,
parthapakray@nitmz.ac.in, www.gelbukh.com

Abstract. We present a rule-based method for

recognizing entailment relation between a pair of text
fragments by comparing their dependency tree
structures. We used a dependency parser to generate
the dependency triples of the text–hypothesis pairs. A
dependency triple is an arc in the dependency parse
tree. Each triple in the hypothesis is checked against all
the triples in the text to find a matching pair. We have
developed a number of matching rules after a detailed
analysis of the PETE dataset, which we used for the
experiments. A successful match satisfying any of these
rules assigns a matching score of 1 to the child node of
that particular arc in the hypothesis dependency tree.
Then the dependency parse tree is traversed in post-
order way to obtain the final entailment score at the root
node. The scores of the leaf nodes are propagated from
the bottom of the tree to the non-leaf nodes, up to the
root node. The entailment score of the root node is
compared against a predefined threshold value to make
the entailment decision. Experimental results on the
PETE dataset show an accuracy of 87.69% on the
development set and 73.75% on the test set, which
outperforms the state-of-the-art results reported on this
dataset so far. We did not use any other NLP tools or
knowledge sources, to emphasize the role of
dependency parsing in recognizing textual entailment.

Keywords. Textual entailment, dependency parsing,

dependency relation matching, rules, PETE dataset.

1 Introduction

Recognizing Textual Entailment (RTE) is a task
that consists in the following: given a pair of text
fragments, decide whether the meaning of one

fragment (referred to as the hypothesis H) can be
derived from that of the other (referred to as the
text T), i.e., whether there is a directional
relationship called entailment between the two
input fragments. Note that if the meaning of H can
be deduced from the meaning of T, the opposite
may not be true. The RTE task has very important
applications in many natural language processing
(NLP) areas, such as information retrieval, text
summarization, question answering, information
extraction, reading comprehension, paraphrase
acquisition, e-learning [15], opinion mining, and
machine translation, to name just a few.

The task of accurately labelling a pair of text
fragments as textually entailed or not is attracting
increasing attention of the NLP community. Due to
its importance, the PASCAL (Pattern Analysis,
Statistical Modelling and Computational Learning)
network has organized the corresponding
competitions, also called RTE.

Consider an example from the PETE
development set:

T: He would wake up in the middle of the night and
fret about it.

H: He would wake up.

Here, the truth value of H can be inferred from T.
However, T contains some extra information not
contained in H, therefore T cannot be inferred from
H, while part of the information contained in T is
sufficient to verify the truth value of H. Thus, textual
entailment (TE) is a unidirectional relation which
holds from T to H, but not vice versa.

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Rohini Basak, Sudip Kumar Naskar, Partha Pakray, Alexander Gelbukh686

ISSN 2007-9737

In this paper, we present a rule-based textual
entailment method based entirely on dependency
parsing. Two separate parse trees are generated
for the text and for the hypothesis using a
dependency parser. Each dependency triple of the
hypothesis H is compared against all triples of the
text T to find a possible matching pair. If a match is
found according to any of the six matching rules we
developed, then the child node of the dependency
triple is assigned a matching score 1. This process
is repeated for all dependency triples of the
hypothesis, and the corresponding child nodes are
assigned scores basing on successful match.
Finally, the dependency tree is traversed in post-
order way to propagate the final entailment score
to the root node. The entailment score for a T–H
pair is in the range from 0 to 1; the maximum score
of 1 indicates that the hypothesis H is completely
contained within the text T. This score is checked
against a threshold value learnt from the PETE
development set to make the final entailment
decision: a score above the threshold indicates
entailment and that below the threshold indicates
absence of entailment.

Evaluation on the PETE dataset shows 87.69%
accuracy on the development set and 73.75%
accuracy on the test set. This is higher than state-
of-the-art results reported on this dataset so far.

The rest of the paper is organized as follows.
Section 2 describes related work, which is mainly
focused on recognizing textual entailment basing
on the syntactic structure of a sentence using
dependency relations. Section 3 describes our
method. Experimental results are presented in
Section 4. Section 5 gives error analysis. Finally,
Section 6 concludes the paper and outlines future
research directions.

2 Related Work

A number of methods have been proposed for RTE
in recent years. Many of them simply use some
form of lexical matching such as simple word
overlap, n-gram matching, skip-gram matching,
etc. Some systems represent the pair of text
fragments as syntactic dependency parse trees
before the actual processing. Many systems also
use semantic relations such as semantic role
labelling or logical inference.

The work by Rios and Gelbukh [25] is based on
the assumption that a given text-hypothesis pair
holds an entailment relation if there exists a
sequence of edit operations that can be performed
on T to produce H with an overall cost below a
certain threshold. This approach needs to
represent the input pair of text fragments in the
predicate-argument structure format.

The approach described by Blake [1] has
demonstrated that the sentence structure alone
plays an important role in recognizing textual
entailment.

The textual entailment recognition system by
Vanderwende et al. [30, 31] represents the T–H
pair as graphs of syntactic dependencies
generated by the NLPwin parser. The system tries
to align each node in H with a node in T using a set
of syntactic heuristics. The main motivation behind
this task was to recognize false entailment.

In the dependency parser-based textual
entailment system by Pakray et al. [18], two
separate parse trees were generated by using
CCG and Stanford parser separately. Then the
hypothesis relations were compared with the text
relations on the basis of various features, and
different weights were assigned to exact and
partial matches. Finally, all these weights were
summed up and checked against a threshold value
to make the final entailment decision.

Rus et al. [26] and Herrera et al. [11] used the
degree of graph subsumption, or graph inclusion.
The dependency tree structure of H was examined
to find whether it can be completely or partially
mapped to the tree of T.

Marsi et al. [16] used the concept of normalized
alignment of dependency trees for the RTE task.

The architecture of the system by Kouylekov
et al. [14] uses a tree edit-distance algorithm on the
T–H dependency tree pair in order to map the tree
of H to the tree of T. If the distance, i.e., the cost of
editing operations, between the two trees is below
a certain threshold, then the text T is said to
entail H.

Haghighi et al. [10] adopted a graph-based
representation of sentences and used a graph-
matching approach to measure the semantic
overlap of the two texts. They developed a learned
graph-matching approach to approximate entail-
ment using the amount of the sentence’s semantic
content that is contained in the text.

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Recognizing Textual Entailment by Soft Dependency Tree Matching 687

ISSN 2007-9737

Pakray et al. [20] used the Universal
Networking Language (UNL), which is a formalism
similar to dependency parsing representation, in
order to find relations between words in a
sentence, which were then used in an unsuper-
vised framework for RTE.

Wang and Neumann [32] proposed a structure-
oriented entailment method that constructed a
sentence similarity function operating on the T–H
pair. Erwin et al. [8] presented a syntax-based
paraphrasing method for recognizing textual
entailment that used the DIRT dataset. Paraphrase
and textual entailment has been considered for
languages other than English [17].

Sidorov [27] introduced various types of
syntactic triples and, more generally, syntactic n-
grams, which can be used in the way similar to our
use of syntactic triples. Unsupervised learning
methods have been applied for disambiguation of
syntactic dependencies [9].

Apart from RTE, dependency tree-based
patterns have been also proved to be a powerful
tool for sentiment analysis [21], aspect extraction
in opinion mining [3, 22], and text-based
personality recognition [23].

On the other hand, a large body of literature has
been devoted to measuring text similarity using
various techniques. Syntactic n-grams have been
used by Calvo et al. [2] to measure text similarity in
a way similar to our proposal. Other recent
proposals include such measures as soft

cardinality [13], soft cosine measure [28], graph
distance metrics [7], semantic and discourse-
based measures [6], as well as relational features
and latent topic detection [12].

3 The Method

A flowchart of the proposed method is presented in
Fig. 1. The individual modules are presented in the
following sections.

3.1 Pre-Processing

This module takes a text–hypothesis pair and
checks for the presence of contracted tokens. In
case of the presence of such tokens, they are
replaced by their corresponding expanded forms
listed in Table 1, because the dependency parser
produces erroneous output for such contracted
tokens; therefore, it is necessary to replace them
before further processing.

The next step of pre-processing is to find the
root form of each word. We used the Porter
stemming algorithm [24]. This is a very important
step because the text and the hypothesis may
contain different word-forms of the same base
form; which will not match according to any of the
matching criteria, resulting in an incorrect score
assignment, which leads to wrong entailment
decision.

Fig. 1. Modularized system architecture

Table 1. Token replacement

Contracted tokens Expanded forms

didn’t did not

aren’t are not

that’ll that will

hadn’t had not

it’s it is

I’ve I have

they’re they are

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Rohini Basak, Sudip Kumar Naskar, Partha Pakray, Alexander Gelbukh688

ISSN 2007-9737

3.2 Dependency Parsing

The modified text–hypothesis pairs are passed on
to the dependency parsing module. In the present
work, we used the Stanford dependency parser1
for this purpose. The output of this module is a set
of dependency triples. A dependency triple
produced by the parser consists of three parts in
the form R(N1, N2), where N1 and N2 are two words
in the sentence connected by the relation R.

An example of a text–hypothesis pair from the
PETE development set is:

T: Thus committed, action might follow.
H: Action might follow.

For this T–H pair, the dependency parser
generates the set of triples shown in Table 2.

3.3 Dependency Tree Representation

A complete dependency parse tree is built by
combining all the dependency triples generated in
the previous stage. For each word in a sentence, a
separate node is created. Each dependency triple
is represented as an arc in the parse tree. The first
word of the triple N1 is the parent node of the arc
and the second word N2 is the child node linked to
that parent by the relationship R. Thus, for a
dependency triple in the form R(N1,N2), an arc is
created as shown in Fig. 2.

3.4 Comparing Dependency Trees

Each dependency triple of the hypothesis H is
compared against all triples of the text T in search
of a matching pair. If a match is found according to
any one of the six matching criteria listed below,
then the child (dependent) node N2

H of that arc in
the hypothesis parse tree is assigned a matching
score of 1; if none of the following matching criteria
is satisfied for any triple of the hypothesis, a 0
score is assigned to the node N2

H of that triple. The
matching criteria are stated below in detail and are
illustrated by corresponding diagrams.

Rule 1. This rule corresponds to the complete triple
match. If a dependency triple RH(N1

H, N2
H) of the

hypothesis H entirely matches a dependency triple

1 http://nlp.stanford.edu/software/stanford-

dependencies.shtml

RT(N1
T, N2

T) of the text T, then the child node N2
H

of the dependency triple of H is assigned a parent
matching score of 1. The entailment score
calculation component of a node is described in
Section 3.5. A few examples are listed in Table 3
to illustrate complete triple match. Fig. 3 illustrates
this matching rule.

Rule 2. If the nodes N2
H and N1

H of a dependency
triple of H match N1

T and N2
T, respectively, of a

dependency triple of T, but the relations RH and RT
do not match, while the dependency relation RT
belongs to the set

{vmod, amod, rcmod, ccomp, advcl},

then the cases listed in Table 4 are checked for
matching. Upon finding a successful match, the
child node N2

H of the triple of H is assigned a parent
matching score of 1. Examples of text-hypothesis
pairs satisfying this rule are given in Table 4.
Rule 2 is illustrated in Fig. 4.

Rule 3. If the nodes N1
H and N2

H of a dependency
triple in H match N1

T and N2
T, respectively, of a

dependency triple of T, but the relations RH and RT

do not match, then for the cases listed in Table 5,
the child node N2

H of the hypothesis dependency
triple is assigned a parent matching score of 1.
Table 5 presents examples of T–H pairs satisfying
this rule. Fig. 5 illustrates this matching rule.

Rule 4. If the node N1
H and relation RH of a triple of

H match N1
T and RT, respectively, of a triple in T,

but the node N2
H does not match N2

T, and the
relation belongs to the set

{nsubj, dobj, pobj}

the matching criteria listed in Table 6 are checked.
If any of these criteria is satisfied, the child node

Fig. 2. Representing a dependency triple R(N1,N2)

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Recognizing Textual Entailment by Soft Dependency Tree Matching 689

ISSN 2007-9737

Table 2. Dependency triples for a T–H pair

Text dependency triples Hypothesis dependency triples

advmod(committed-2, Thus-1)

vmod(follow-6, committed-2)

nsubj(follow-6, action-4)

aux(follow-6, might-5)

root(ROOT-0, follow-6)

nsubj(follow-3, action-1)

aux(follow-3, might-2)

root(ROOT-0, follow-3)

Table 3. Examples satisfying matching rule 1

RT and RH T–H pairs Dependency triples

nsubj

T: For the fifth consecutive month, purchasing
managers said prices for the goods they purchased
fell.

H: The prices fell.

nsubj(fell-15, prices-9)

nsubj(fell-3, prices-2)

dobj

T: My host went over and stared out the window at his
peacocks; then he turned to me.

H: Somebody stared out the window.

dobj(stared-6, window-9)

dobj(stared-2, window-5)

Table 4. Examples satisfying matching rule 2

RT RH T–H pairs Dependency triples

vmod nsubj

T: Producers have seen this market opening up and
they are now creating wines that appeal to these
people.

H: The market is opening up.

vmod(market-5, opening-6)

nsubj(opening-4, market-2)

amod nsubjpass

T: Occasionally, the children find steamed, whole-
wheat grains for cereal which they call ‘buckshot’.

H: Grains are steamed.

amod(grains-7,steamed-5)

nsubjpass(steamed-3, Grains-1)

ccomp advcl

T: If he was sober, which was doubtful, he would have
him get in touch with Mr. Crombie.

H: It is doubtful, if he was sober.

ccomp(sober-4, doubtful-7)

advcl(doubtful-3, sober-7)

rcmod dobj

T: It required an energy he no longer possessed to be
satirical about his father.

H: Somebody no longer possessed the energy.

rcmod(energy-4, possessed-8)

dobj(possessed-4, energy-6)

rcmod nsubj

T: I reached into that funny little pocket that is high up
on my dress.

H: The pocket is high up on something.

rcmod(pocket-7, is-9)

nsubj(is-3, pocket-2)

Table 5. Examples satisfying matching rule 3

RT RH T–H pairs Dependency triples

dobj nsubjpass

T: The Big Board also added computer capacity to
handle surges in trading volume.

H: Computer capacity was added.

dobj(added- 5, capacity-7)

nsubjpass(added-4,capacity-2)

nsubj nsubjpass
T: Totals include only vehicle sales reported in period.

H: The sales were reported.

nsubj(reported-6, sales-5)

nsubjpass(reported-3, sales-2)

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Rohini Basak, Sudip Kumar Naskar, Partha Pakray, Alexander Gelbukh690

ISSN 2007-9737

N2
H of that triple is assigned a parent matching

score of 1. Some examples are presented in
Table 6, and Fig. 6 illustrates this matching rule.

Rule 5. If node N1
H of a hypothesis triple matches

that of N1
T of a triple of T, but neither N2

H nor RH
matches that of N2

T and RT, then only for the cases
presented in Table 7, the child node N2

H is
assigned a parent matching score of 1. An
example is given in Table 7, and Fig. 7 illustrates
this rule.

Rule 6. There are some insignificant relations that
we have identified after a thorough study of the
PETE dataset. These insignificant relations are as
follows:

{aux, auxpass, cop, det, expl,
mark, nn, prt, predet}.

Wherever two nodes N1
H and N2

H in a triple are
connected by any of these relations, the child node
N2

H of that triple is assigned a parent matching
score of 1. When ignoring these insignificant
relations, the overall entailment score at the root
node often is decreased and falls below the
threshold value, which results in an incorrect
entailment decision. So these relations, although
seem to be less important, should also be
considered.

3.4 Entailment Score Calculation

The score of each node NH in the hypothesis
dependency parse tree is divided into three

components: the parent score (p_score), the child
score (c_score), and the total score (t_score).

The previous comparison module assigns a
matching score of 1 to the p_score component of a
node N2

H if any of the six matching criteria is
satisfied for the dependency triple RH(N1

H,N2
H).

Otherwise, a score value of 0 is assigned to the
p_score component of the node N2

H of the
dependency triple.

After assigning matching score to the p_score
components of all the nodes in the hypothesis
parse tree, the parse tree is traversed in bottom-up
fashion from the leaf nodes to the root node, the
scores for non-leaf nodes being calculated by
traversing the tree in the post-order way. Since the
leaf nodes have no children, their c_score
component is set to 0 and the t_score component

Fig. 3. Matching rule 1

Fig. 4. Matching rule 2

Fig. 5. Matching rule 3

Fig. 6. Matching rule 4

Fig. 7. Matching rule 5

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Recognizing Textual Entailment by Soft Dependency Tree Matching 691

ISSN 2007-9737

is set to the value of their p_score. For a non-root
non-leaf node, the c_score is calculated by taking
the average of all the t_scores of its child nodes.
Then its own t_score is set to the average of its
p_score and c_score. Finally, the p_score
component of the topmost node of the dependency
tree immediately below the dummy ROOT node of
the parse tree is assigned a value of 0 since it has
no parent. The t_score of this node is set to the
value of its c_score, which has already been
calculated by the average of its immediate
children.

The final t_score of the root node of the tree is
considered as the entailment score of the T–H pair.
It lies in the interval between 0 and 1. This
entailment score is then used for making the
entailment decision at the final stage of the
algorithm. The rules used for assigning the scores
to the various components of a node are
summarized in Table 8. The diagram in Fig. 8
presents the different score components of the

nodes in a parse tree, which are calculated
following the rules listed in Table 8.

Consider the following T–H pair from the PETE
development set:

T: He could also hear the stream which he had
seen from his position.

H: Someone had seen the stream.

The output of the Stanford dependency parser for
this T–H pair is shown in Table 9. Table 10 lists the
hypothesis triples, their corresponding matching
text triples, the matching rules satisfied by each of
them, and the actions taken on successful
matching. Fig. 8 shows the score components of
the nodes in this parse tree.

3.5 Entailment Decision

The final entailment score calculated at the
previous step is then compared with a predefined
threshold value. If it exceeds the threshold value,

Table 6. Examples satisfying the matching rule 4

RT N2
H T–H pairs Dependency triples

nsubj

somebody
someone
something

it

T: It required an energy he no longer possessed to
be satirical about his father.

H: Somebody no longer possessed the energy.

nsubj(possessed-8, he-5)

nsubj(possessed-4, Somebody-1)

dobj
something
somebody

T: That was where the pegboard would go on which
he would hang his hand tools.

H: He would hang something.

dobj(hang-12, tools-15)

dobj(hang-3, something-4)

pobj
something
somebody

T: I reached into that funny little pocket that is high
up on my dress.

H: The pocket is high up on something.

pobj(on-12, dress-14)

pobj(on-6, something-7)

nsubjpass somebody

T: It said the man, whom it did not name, had been
found to have the disease after hospital tests.

H: Somebody had been found to have the disease.

nsubjpass(found-12, man-4)

nsubjpass(found-4, somebody-1)

advmod
somewhere
somehow

T: That was where the pegboard would go on which
he would hang his hand tools.

H: The pegboard would go somewhere.

advmod(go-7, where-3)

advmod(go-4, somewhere-5)

Table 7. Example satisfying matching rule 5

RT RH T–H pairs Dependency triples

prep dobj

T: “Last year we probably bought one out of every
three new deals,” he says.

H: Someone bought deals.

prep(bought-5, of-8)

dobj(bought-2, deals-3)

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Rohini Basak, Sudip Kumar Naskar, Partha Pakray, Alexander Gelbukh692

ISSN 2007-9737

the T–H pair is marked as entailment; otherwise it
is marked as having no entailment. The threshold
was learned from the PETE development set. We
used the same threshold to make the entailment
decisions for all 301 T–H pairs of the PETE test set.

Evaluation results on the PETE dataset show
87.69% accuracy on the development set and
73.75% accuracy on the test set.

4 Experimental Results

We tested our system on the PETE development
dataset, which consists of 66 T–H pairs. We
experimented with different values of the threshold
that controls the entailment decision as described

in Section 3.5. We observed that the best
performance, with accuracy of 87.69%, was
achieved on the PETE development set for the
threshold values in the range between 0.84
and 0.9.

Fig. 9 shows the accuracy of our system for
different threshold values on the PETE
development set. The accuracy reaches its peak
when the threshold is 0.84, stays nearly constant
in the interval between 0.84 and 0.9, and falls
at 0.95.

The threshold value of 0.84, which optimizes
the system performance on the PETE
development set, was used to make the entailment
decisions for all 301 T–H pairs of the PETE test set.
The evaluation results obtained on the PETE test

Fig. 8. Assignment of scores

Table 8. Score assignment to the nodes in the parse tree

Types of nodes p_score c_score t_score

Leaf node
1 on successful match

0 otherwise.
0 p_score

Non-leaf non-root
node

1 on successful match

0 otherwise.

Average of the t_scores
of all its children.

1

2
 (p_score + c_score)

Topmost node
next to ROOT

0
Average of the t_scores

of all its children.
c_score

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Recognizing Textual Entailment by Soft Dependency Tree Matching 693

ISSN 2007-9737

set are presented in Tables 11 and 12. The
performance of our system in terms of accuracy is
better than the highest-scoring system among all
the teams participated in the SemEval 2010
task 12 [33].

5 Error Analysis

Since in the development of the system we
focused on the dependency triples, any two nodes
connected in a triple of the hypothesis parse tree
but not connected in the text’s tree failed to be
properly detected by any of our matching rules.
There are several such examples for which our
system gives erroneous results.

Example 1. Consider the following T–H pair from
the PETE test set:

T: Moreland sat brooding for a full minute, during
which I made each of us a new drink.

H: Someone made a drink.

The corresponding dependency triples
generated by the Stanford parser are shown in
Tables 13, 15 and 16.

Our system failed to detect the entailment
relation in this T–H pair, because for the nodes
made and drink, which are connected in the
hypothesis’s parse tree, the parser failed to
correctly identify a dependency relation in the text’s
tree. Thus these nodes failed to satisfy any of our
matching rules. As a result, the p_score

Table 9. Example of dependency triples of a T–H pair

Text triples Hypothesis triples

T1. nsubj(hear-4,He-1)

T2. aux(hear-4,could-2)

T3. advmod(hear-4,also-3)

T4. root(ROOT-0,hear-4)

T5. det(stream-6,the-5)

T6. dobj(hear-4,stream-6)

T7. dobj(seen-10,which-7)

T8. nsubj(seen-10,he-8)

T9. aux(seen-10,had-9)

T10. rcmod(stream-6,seen-10)

T11. prep(seen-10,from-11)

T12. poss(position-13,his-12)

T13. pobj(from-11,position-13)

H1. nsubj(seen-3,someone-1)

H2. aux(seen-3,had-2)

H3. root(ROOT-0,seen-3)

H4. det(stream-5,the-4)

H5. dobj(seen-3,stream-5)

Table 10. Simulated matching rules on dependency triples

Hypothesis
dependency

triple

Matched with
text dependency

triple

Satisfying
matching

rule #
Action

H1 T8 4 Assigns p_score=1 to ‘someone’

H2 T9 1 Assigns p_score=1 to ‘had’

H3 None NA (the ROOT node) Assigns p_score=0 to ‘seen’

H4 T5 1 Assigns p_score=1 to ‘the’

H5 T10 2 Assigns p_score=1 to ‘stream’

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Rohini Basak, Sudip Kumar Naskar, Partha Pakray, Alexander Gelbukh694

ISSN 2007-9737

component of drink is set to 0 and the entailment
relation was not detected.

Partial dependency parse trees of T and H are
shown in Fig. 10. All the score components of the
nodes in the hypothesis are indicated in this figure.
The overall entailment score is 0.75, which is
below our chosen threshold value of 0.84.
Therefore, the system marked this T–H pair as
having no entailment. There have been several
such cases where two nodes in one of the
dependency trees were not connected in the other
dependency tree. Such T–H pairs resulted in false
negatives.

Example 2. Consider another T–H pair:

T: It wasn’t clear how NL and Mr. Simmons would
respond if Georgia Gulf spurns them again.

H: Simmons would respond.

In this case, the hypothesis sentence H is
completely contained in the text sentence T, and
the words in the sentence T appear in the
hypothesis in the same order. However, in this
case the additional information in T appearing
before the underlined part of the text contradicts
the truthfulness of the hypothesis. Some of the
dependency triples of this pair are shown in

Fig. 9. Accuracy at different threshold values

Table 11. PETE test set results

 Actual positive Entailment Actual Negative Entailment

System Positive Entailment True Positive: 96 False Positive: 19

System Negative Entailment False Negative: 60 True Negative: 126

Table 12. Precision and recall on the PETE test set

 P R F-Measure

Positive TE 0.8348 0.6154 0.7085

Negative TE 0.6774 0.8689 0.7613

Overall 0.7375

62.12%

73.84%
76.92%

84.61%

75.38%

86.15%
87.69% 87.69%

80.30%

60%

65%

70%

75%

80%

85%

90%

95%

0.5 0.6 0.65 0.7 0.75 0.8 0.84 0.9 0.95

A
cc

u
ra

cy

Threshold

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Recognizing Textual Entailment by Soft Dependency Tree Matching 695

ISSN 2007-9737

Table 15. Here, the hypothesis triples H1 and H2
completely match the text triples T5 and T6,
respectively, satisfying our matching rule 1.

Therefore, the system incorrectly reports such
T–H pairs as entailment, being not sophisticated
enough to infer the absence of entailment in this
case. This T–H pair is an example of a false
positive.

Example 3. Consider the following T–H pair:

T: And many in the young cast bear striking
resemblances to American TV and movie
personalities known for light roles.

H: Many bear resemblances to movie personali-
ties.

In this case, the dependency parser again
produces erroneous triples. Some of them are
shown in Table 16. The parser fails to properly
POS-tag the words in the hypothesis, which
resulted in incorrect triples H1 and H2. So H1 and
H2 do not match the text triples T2 and T9,
respectively, and the system fails to properly
identify entailment in this T–H pair. Such types of

errors occur due to wrong parsing and not due to
limitations of the method itself.

6 Conclusion and Future Work

We have presented a method for recognizing
textual entailment that relies solely on the
dependency tree matching. Since our aim was to
emphasize the role of dependency structure in the
task of recognizing textual entailment, we avoided
the use of any enhancements or any resources
other than a dependency parser. Even with this
restriction, our method outperforms all systems
that participated in the SemEval 2010 task 12.

Besides simply matching dependency triples,
the system makes use of six rules that account for
slight differences in the syntactic structures in the
text and the hypothesis, to improve the accuracy of
the textual entailment recognition. Since we tested
our system only on the PETE dataset, which
exhibits mainly syntactic differences in the text and
the hypothesis, we concentrated primarily on soft
matching of syntactic structures and did not feel a

Table 13. Dependency triples for the T–H pair in Example 1

Text triples Hypothesis triples

T1. nsubj(sat-2, Moreland-1)

T2. root(ROOT-0, sat-2)

T3. xcomp(sat-2, brooding-3)

T4. prep(brooding-3, for-4)

T5. det(minute-7, a-5)

T6. amod(minute-7, full-6)

T7. pobj(for-4, minute-7)

T8. prep(made-12, during-9)

T9. pobj(during-9, which-10)

T10. nsubj(made-12, I-11)

T11. rcmod(minute-7, made-12)

T12. dobj(made-12, each-13)

T13. prep(each-13, of-14)

T14. pobj(of-14, us-15)

T15. det(drink-18, a-16)

T16. amod(drink-18, new-17)

T17. dep(us-15, drink-18)

H1. nsubj(made-2, Someone-1)

H2. root(ROOT-0, made-2)

H3. det(drink-4, a-3)

H4. dobj(made-2, drink-4)

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Rohini Basak, Sudip Kumar Naskar, Partha Pakray, Alexander Gelbukh696

ISSN 2007-9737

Table 14. Simulated matching rules on dependency triples for the T–H pair in Example 1

Hypothesis
dependency

triple

Matched with
text dependency

triple

Satisfying
matching

rule #
Action

H1 T10 4 Assigns p_score=1 to ‘someone’

H2 None NA (the ROOT node) Assigns p_score=0 to ‘made’

H3 T15 1 Assigns p_score=1 to ‘a’

H4 None NA Assigns p_score=0 to ‘drink’

Table 15. Dependency triples for the T–H pair in Example 2

Text triples Hypothesis triples

T1. nsubj(clear-4, It-1)

T2. cop(clear-4, was-2)

T3. neg(clear-4, not-3)

T4. root(ROOT-0, clear-4)

T5. nsubj(respond-11, Simmons-9)

T6. aux(respond-11, would-10)

H1. nsubj(respond-3, Simmons-1)

H2. aux(respond-3, would-2)

H3. root(ROOT-0, respond-3)

Table 16. Dependency triples for the T–H pair in Example 3

Text triples Hypothesis triples

T1. cc(bear-7, And-1)

T2. nsubj(bear-7, many-2)

T3. prep(many-2, in-3)

T4. det(cast-6, the-4)

T5. amod(cast-6, young-5)

T6. pobj(in-3, cast-6)

T7. root(ROOT-0, bear-7)

T8. amod(resemblances-9, striking-8)

T9. dobj(bear-7, resemblances-9)

T10. prep(bear-7, to-10)

T11. amod(TV-12, American-11)

T12. pobj(to-10, TV-12)

T13. cc(TV-12, and-13)

T14. nn(personalities-15, movie-14)

T15. conj(TV-12, personalities-15)

T16. vmod(TV-12, known-16)

T17. prep(known-16, for-17)

T18. amod(roles-19, light-18)

T19. pobj(for-17, roles-19)

H1. amod(bear-2, Many-1)

H2. nsubj(resemblances-3, bear-2)

H3. root(ROOT-0, resemblances-3)

H4. prep(resemblances-3, to-4)

H5. nn(personalities-6, movie-5)

H6. pobj(to-4, personalities-6)

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Recognizing Textual Entailment by Soft Dependency Tree Matching 697

ISSN 2007-9737

need in the use of any additional lexical resources
or involving semantic similarity calculations in our
system.

Only identifying the base forms of the words
using the Porter stemming algorithm followed by
applying the matching criteria was sufficient to
assign a binary matching score of 1 or 0 to each
node in the hypothesis dependency parse tree. We
used equal weighting in assigning the matching
scores to the nodes in the parse tree: when any of
the six matching rules was satisfied, a matching
score of 1 was assigned to a node, thus giving
equal importance to all the matching rules. These
matching scores were then propagated in a
bottom-up fashion by post-order tree traversal to
the root node, with which the final entailment score
was obtained.

Thus the presented algorithm is deliberately
simplistic and can be improved and generalized in
many ways. Still this simple method has proved to
be quite effective in correctly labelling a significant
percentage of T–H pairs as representing or not
representing entailment. The method is completely
rule-based and the matching rules have been
developed after a thorough and minute analysis of
the development set. Only string comparison was
used for matching.

In future work, we expect to augment the
system with semantic similarity measures so that it
can capture both syntactic divergence as well as
semantic similarity. We also expect to explore the
UNL parser for the system to be able to efficiently
capture the entailment relations. Anaphora
resolution as a pre-processing step for the textual

Fig 10 (a). Partial text dependency tree Fig 10 (b). Hypothesis dependency tree

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Rohini Basak, Sudip Kumar Naskar, Partha Pakray, Alexander Gelbukh698

ISSN 2007-9737

entailment [5, 19] and application of advanced text
similarity measures [4, 29] are also parts of our
future works.

Acknowledgements

This work was fully supported by the Jadavpur
University and National Institute of Technology
(NIT) Mizoram. The fourth author recognizes
support of the Instituto Politécnico Nacional, grants
SIP 20152095, and SIP 20152100, and CONACYT
grant 122030.

References

1. Blake, C. (2007). The role of sentence structure in

recognizing textual entailment. Proc. of the ACL-
PASCAL Workshop on Textual Entailment and
Paraphrasing (RTE'07). ACL, pp. 101–106.

2. Calvo, H., Segura-Olivares, A., & García, A.
(2014). Dependency vs. constituent based syntactic

n-grams in text similarity measures for paraphrase
recognition. Computación y Sistemas, Vol. 18, No.
3, pp. 517–554. DOI: 10.13053/CyS-18-3-2044.

3. Cruz, I., Gelbukh, A., & Sidorov, G. (2014). Implicit

aspect indicator extraction for aspect based opinion
mining. International Journal of Computational
Linguistics and Applications, Vol. 5, No. 2, pp. 135–
152.

4. Cristofaro, S., Cantone, D., & Pappalardo, J.
(2015). Computing efficiently the closeness of word
sets in natural language texts. International Journal
of Computational Linguistics and Applications,
Vol. 6, No. 1, pp. 167–188.

5. Cybulska, A. & Vossen, P. (2015). Bag of events

approach to event conference resolution.
Supervised classification of event templates.
International Journal of Computational Linguistics
and Applications, Vol. 6, No. 2, pp. 9–24.

6. Da Cunha, I., Vivaldi, J., Torres-Moreno, J.M., &
Sierra, G. (2014). SIMTEX: An approach for

detecting and measuring textual similarity based on
discourse and semantics. Computación y Sistemas,

Vol. 18, No. 3, pp. 505–516. DOI: 10.13053/CyS-18-
3-2033.

7. Das, N., Ghosh, S., Gonçalves, T., & Quaresma,
P. (2014). Comparison of different graph distance

metrics for semantic text based classification.
Polibits, Vol. 49, pp. 51–57.

8. Erwin, M., Krahmer, E., & Bosma, B. (2007).

Dependency based paraphrasing for recognizing

textual entailment. Proc. of ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing.
ACL, pp. 83–88.

9. Gelbukh, A. (2014). Unsupervised learning for

syntactic disambiguation. Computación y Sistemas,
Vol. 18, No. 2, pp. 329–344.

10. Haghighi, A.D., Ng, A.Y., & Manning, C.D (2005).
Robust textual inference via graph matching. Proc.
of the conference on Human Language Technology
and Empirical Methods in Natural Language
Processing (HLT'05). ACL, pp. 387–394. DOI:
10.3115/1220575.1220624.

11. Herrera, J., Peñas, A., & Verdejo, F. (2006).

Textual entailment recognition based on
dependency analysis and WordNet. Lecture Notes
in Computer Science, Vol. 3944, pp. 231–239, DOI:
10.1007/11736790_13.

12. Huynh, D., Tran, D., Ma, W., & Sharma, D. (2014).

Semantic Similarity Measure Using Relational and
Latent Topic Features. International Journal of
Computational Linguistics and Applications, Vol. 5,
No. 1, pp. 11–25.

13. Jimenez, S., Gonzalez, F.A., & Gelbukh, A.
(2015). Soft cardinality in semantic text processing:

Experience of the SemEval international
competitions. Polibits, Vol. 51, pp. 63–72. DOI:
10.17562/PB-51-9.

14. Kouylekov, M. & Magnini, B. (2005). Recognizing

textual entailment with tree edit distance algorithms.
Proc. of the PASCAL Challenges Workshop:
Recognising Textual Entailment Challenge
(RTE’05), pp. 17–20.

15. Peñuela, C., León, E., & Gómez, J. (2015).

Warnings and recommendation system for an e-
learning platform. Polibits, Vol. 52, pp. 33–42.

16. Marsi, E., Krahmer, E., Bosma, W., & Theune, M.
(2006). Normalized alignment of dependency trees
for detecting textual entailment. Proc. of the
PASCAL Challenges Workshop: Recognising
Textual Entailment Challenge (RTE’06), pp. 56–61.

17. Nevĕřilová, Z. (2014). Paraphrase and textual
entailment generation in Czech. Computación y
Sistemas, Vol. 18, No. 3, pp. 555–568. DOI:
10.13053/CyS-18-3-2040.

18. Pakray, P., Bandyopadhyay, S., & Gelbukh, A.
(2010). Dependency parser based textual
entailment system. Proc. of the International
Conference on Artificial Intelligence and Compu-
tational Intelligence (AICI’10). IEEE, pp. 393–397.
DOI: 10.1109/AICI.2010.89.

19. Pakray, P., Neogi, S., Bhaskar, P., Poria, S.,
Bandyopadhyay, S., & Gelbukh, A. (2011). A

textual entailment system using anaphora

http://dx.doi.org/10.3115/1220575.1220624

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Recognizing Textual Entailment by Soft Dependency Tree Matching 699

ISSN 2007-9737

resolution. System Report. Proceedings of Text
Analysis Conference Recognizing Textual
Entailment Track. Notebook.

20. Pakray, P., Poria, S., Bandyopadhyay, S., &
Gelbukh, A. (2011). Semantic textual entailment
recognition using UNL. Polibits, Vol. 43, pp. 23–27.

21. Poria, S., Cambria, E., Gelbukh, A., Bisio, F., &
Hussain, A. (2015). Sentiment data flow analysis by
means of dynamic linguistic patterns. IEEE
Computational Intelligence Magazine, Vol. 10,
No. 4, pp. 26–36. DOI:10.1109/MCI.2015.2471215.

22. Poria, S., Cambria, E., Ku, L.W., Gui, C., &
Gelbukh, A. (2014). A rule-based approach to as-
pect extraction from product reviews. Proc. of the
Second Workshop on Natural Language Processing
for Social Media (SocialNLP), pp. 28–37.

23. Poria, S., Gelbukh, A., Agarwal, B., Cambria, E.,
& Howard, N. (2013). Common sense knowledge
based personality recognition from text. Lecture
Notes in Computer Science, Vol. 8266, pp 484–496.
DOI: 10.1007/978-3-642-45111-9_42.

24. Porter, M.F. (1980). An algorithm for suffix
stripping. Program, Vol. 14, No. 3, pp. 130−137.

25. Rios, M., & Gelbukh, A. (2012). Recognizing

textual entailment with a semantic edit distance
metric. Proc. of the 11th Mexican International
Conference on Artificial Intelligence (MICAI’11).
IEEE, pp. 15–20. DOI: 10.1109/MICAI.2012.29.

26. Rus, V., Graesser, A., McCarthy, P.M., & Lin, K.I.
(2005). A study on textual entailment. Proc. of 17th
International Conference on Tools with Artificial
Intelligence (ICTAI’05). IEEE, pp. 326–333. DOI:
10.1142/S0218213008004096.

27. Sidorov, G. (2014). Should syntactic n-grams

contain names of syntactic relations? International
Journal of Computational Linguistics and
Applications, Vol. 5, No. 2, pp. 25–47.

28. Sidorov, G., Gelbukh, A., Gómez-Adorno, H., &
Pinto, D. (2014). Soft similarity and soft cosine

measure: Similarity of features in vector space
model. Computación y Sistemas, Vol. 18, No. 3, pp.
491–504. DOI: 10.13053/CyS-18-3-2043.

29. Torres-Moreno, J.M., Sierra, G., & Peinl, P.
(2014). A German Corpus for Similarity Detection
Tasks. International Journal of Computational
Linguistics and Applications, Vol. 5, No. 2, pp. 9–24.

30. Vanderwende, L., Menezes, A., & Snow, R.
(2006). Effectively using syntax for recognizing false
entailment. Proc. of HLT/NAACL. ACL, pp. 33–40.
DOI: 10.3115/1220835.1220840.

31. Vanderwende, L., Menezes, A., & Snow, R.
(2006). Microsoft Research at RTE-2: Syntactic

Contributions in the entailment task: an

implementation. Proc. of the Second PASCAL
Recognising Textual Entailment Challenge
Workshop (RTE’06). ACL.

32. Wang, R., & Neumann, G. (2007). Recognizing

textual entailment using sentence similarity based
on dependency tree skeletons. Proc. of the ACL-
PASCAL Workshop on Textual Entailment and
Paraphrasing (RTE’07). ACL, pp. 36–41.

33. Yuret, D., Han, A. & Turgut, Z. (2010). SemEval-

2010 task 12: Parser evaluation using textual
entailments. Proc. of the 5th Workshop on Semantic
Evaluation (ACL’10). ACL, pp. 51–56.

Rohini Basak is pursuing her Ph.D. degree from
the Jadavpur University, at the department of
Computer Science and Engineering. She is also a
guest faculty at the same university since
February 2015. She formerly worked as an
Assistant Systems Engineer for TATA
Consultancy Services Ltd. in 2010. Her areas of
teaching include data structures, object-oriented
programming, numerical methods, C program-
ming, computer organization, and computer
networks. Her research work is mainly focused on
recognizing textual entailment.

Sudip Kumar Naskar received his Ph.D. degree
from the Jadavpur University, India. He is an
Assistant Professor in Computer Science and
Engineering at the Jadavpur University, India. He
served as a postdoctoral researcher at the Centre
for Next Generation Localisation (CNGL), at the
MT Research Group, National Centre for
Language Technology, School of Computing,
Dublin City University, Ireland, for almost 5 years.
Earlier, he was a Lecturer in Information
Technology at the Bengal Engineering and
Science University (presently Indian Institute of
Engineering Science and Technology), Shibpur,
India, and Assistant Professor in Computer and
System Sciences at Visva-Bharati University,
Santiniketan, India. His research interests lie in the
area of Natural Language Processing. He is an
author of more than 70 research publications.

Partha Pakray received his Ph.D. degree in
Computer Science and Engineering from the
Jadavpur University, India. He is currently Head
and Assistant Professor at the Department of
Computer Science and Engineering of the
National Institute of Technology Mizoram. He
received fellowship from European Research

Computación y Sistemas, Vol. 19, No. 4, 2015, pp. 685–700
doi: 10.13053/CyS-19-4-2331

Rohini Basak, Sudip Kumar Naskar, Partha Pakray, Alexander Gelbukh700

ISSN 2007-9737

Consortium for Informatics and Mathematics
(ERCIM) for two times and worked at the
Norwegian University of Science and Technology,
Norway, and the Masaryk University, Czech
Republic, as a postdoctoral fellow. He also worked
at the Xerox Research Centre Europe (XRCE) as
a research intern. He has published 45 research
publications in various areas of natural language
processing.

Alexander Gelbukh received his M.Sc. degree in
Mathematics from the Lomonosov Moscow State
University, Russia, and his Ph.D. in Computer
Science from VINITI, Russia. He is currently a
Research Professor and Head of the Natural

Language Processing Laboratory of the Center for
Computing Research (Centro de Investigación in
Computación, CIC) of the Instituto Politécnico
Nacional (IPN), Mexico. He is a former President
of the Mexican Society of Artificial Intelligence
(SMIA), a Member of the Mexican Academy of
Sciences, and a National Researcher of Mexico
(SNI) at excellence level 2. He is author or
coauthor of more than 500 research publications
in natural language processing and artificial
intelligence.

Article received on 14/05/2015; accepted on 17/08/2015.
Corresponding author is Partha Pakray.

