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Abstract. Positron Emission Tomography (PET) is a
nuclear medicine technique used to obtain metabolic
images of the body. PET scanners used in the
research, treatment, and monitoring of several diseases
provide images of metabolic activity associated with
the ailments. However, the data produced by PET
are heavily corrupted by noise and other errors,
thereby causing degradation in the quality of the final
reconstructed images. In order to improve the image
reconstruction process, this paper presents a new
algorithm that addresses the problem from a variational
perspective. We propose the use of a modified
version of total variation regularization by including a
second term in order to better deal with noise; in the
proposed version, both regularizing terms are balanced
by calculating weights adapted to the PET images
through the use of anatomical information from another
medical modality, such as computer tomography (CT)
or magnetic resonance imaging (MRI). Simulated image
results show that our proposed method is more effective
in dealing with heavy noise and in preserving small
structures (e.g., possible lesions) than the expectation
maximization method that is commonly used with
commercial scanners.
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1 Introduction

Positron emission tomography (PET), is a medical
imaging procedure that is helpful in the diagnosis,
staging, and monitoring of several diseases. The
images obtained from PET scans reflect the
spatial and temporal distribution of a radiotracer
within the body. Radiotracers are biochemical

compounds designed to be metabolized by
certain tissues of interest, such as cancer
cells; moreover, radiotracers are positron-emitting
particles. PET scanners are constructed to detect
photon coincidences or events that are products of
the annihilation resulting from positron decay.

Thus, the data obtained from a PET scan com-
prise the counts of detected event coincidences,
which can be presented as either sinograms or
lists. The reconstruction of these data provides
an image adequate for diagnostics or research.
However, data produced by PET are heavily
corrupted by noise resulting from several error
sources, such as non-collinearity, scatter events,
and death time in sensors [4]. Even though
methods exist to alleviate and to correct most
of these errors, the final quality still suffers
degradation, especially at low-count rates.

Two main approaches are used to reconstruct
PET data: direct methods and iterative methods.
Direct methods, which were commonly used in
early PET-scan procedures, provide fast recon-
struction times compared with iterative methods;
however, the quality of the image suffers. As
the processing power of computers increased,
iterative methods became more accessible and
provided better reconstruction quality. One of the
first iterative methods proposed was the maximum
likelihood expectation maximization (EM) [18],
followed by the use of ordered subsets (OSEM)
[7], an improved version commonly used on
commercially available scanners.
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Recently, with the introduction of hybrid scanners
such as PET/computer tomography (PET/CT)
units, which are able to perform both exams on the
same study, anatomical data are easily available.
The literature describes several studies that take
advantage of these data to increase the quality of
the reconstruction. In one study [13], a non-local
method was introduced to selectively incorporate
anatomical information, making the method reliable
even when information is given by fused data from
another scanner.

In another study [11], the authors proposed the
incorporation of anatomical information through an
anatomical prior with characteristics determined by
the voxel intensity differences of the anatomical
image.

In yet another study [8], a sparse image
representation jointly determined by the prior
anatomical image and the data from the scanner
were used in reconstruction to preserve image
details and smoothness. The reviewed methods
incorporated anatomical information suggesting
new complex priors, which can slow down the
reconstruction process and cause instabilities.

In this paper, we explore the variational
framework for introducing anatomical data to the
reconstruction process, proposing a reconstruction
method with a hybrid potential function that
is applied to the gradient of the image and
incorporates anatomical information as constant
weights during the algorithm iterations, without
adding complexity to the reconstruction process.
To the best of our knowledge, such an approach
has not been reported in PET reconstruction to
date.

The rest of the content is organized as follows:
In Section 2, the PET reconstruction is revisited.
The proposed regularization scheme is discussed
in Section 3, results on simulated and real images
are presented in Section 4, and finally conclusions
and future works are discussed in Section 5.

2 Problem Formulation

PET reconstruction aims to obtain an image given
the radiotracer distribution within the body. To
accomplish this, the scanner has an array of

discrete detector elements that count the events
generated by the annihilation of positrons.

These counts are histogramed, by angle φ and
distance r, from the center of the scanner to obtain
the object projections Pφ(r); each projection is then
stacked to form sinograms (see figure 1).

Fig. 1. Parallel projection obtained from a ring detector
of a PET scanner system

The sinogram is the radon transform represen-
tation of the object scanned; thus, with enough
projections of the noise-free data, the object of
interest can be reconstructed accurately by finding
its inverse radon transform. However, due to the
physical limitations of the scanner sensors and
regulations on the radiotracer dose administered
to patients, the acquired data from the scanner
contain heavy noise and a limited number of
counts, thus requiring the application of alternative
reconstruction methods. The reconstruction of
PET images can be cast as a system of linear
equations:

y = Ax+ η, (1)

where x is a vector of size N representing the
image of the object that generated the sinogram
y, represented as a vector of size M , A is the
system matrix, and η is noise inherent to the
system. Because of the ill posed nature of (1), it
is necessary to regularize the problem to enforce
stability [22].
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3 Adaptive Regularization

The total variation (TV) model [17], has become
one of the most commonly used methods to solve
ill-posed problems by regularization.

The TV scheme achieves effective noise removal
and preservation of edges; however, it suffers from
undesired staircasing effects in the homogeneous
regions of the image [20]. The functional of the TV
model for the denoising problem is given by:

minx
1

2
||x−Hy||22 + λ||x||TV , (2)

where the minimum x is an estimate of the
unknown image to be recovered and y is the
observed data, the matrix operator H represents
degradation or transformation of the data, || · ||2
is the Euclidean norm, and || · ||TV is the TV
seminorm. The TV model has been adapted to
perform reconstruction in [22, 23]. In this paper,
we propose the inclusion of a Tikhonov term in
addition to the TV term as:

minx
1

2
||x−Hy||22 + λ||x||TV + (1− λ)||x||22. (3)

This model has been explored in several works
[10, 14] for denoising, debluring, and inpainting
problems. Here, the model was adapted to
perform reconstruction and deal with Poisson
noise. For this end, the model was derived
from a Bayesian framework by first formulating the
likelihood under Poisson noise for the sinogram
data y and accounting for the scanner with the
system matrix A:

P (y|x) =
M∏
i=1

e(Ax)i((Ax)i)
yi

yi!
. (4)

We then proposed the prior probability for the
image as a Gibbs distribution of the form:

P (x) = eλ||x||TV +(1−λ)||x||22 , (5)

Where λ is a parameter of the model. Once the
likelihood (4) and the prior (5) are defined, the
posterior probability is given by:

P (x|y) = P (y|x)P (x)
P (y)

. (6)

Note that in (6), the probability, P (y), is constant
because y is the observed image. The estimated
image, x̂, is found using a maximum a posteriori
(MAP) on (6):

x̂ = argmax
x

P (x|y), (7)

using the −log function to eliminate the exponen-
tials and cast the problem as a minimization, we
obtain:

x̂ = argmin
x
−ln(P (y|x))− ln(P (x)) + ln(P (y)),

(8)
the last term does not have effect in the
minimization, and the estimator x̂ can be found as
follows:

x̂ = argmin
x
−ln(P (y|x))− ln(P (x)). (9)

Finally substituting (5) and (4) in (9) we obtain:

x̂ = argmin
x
λ||x||TV + (1− λ)||x||22+
M∑
i=1

((Ax)i − yilog((Ax)i)).
(10)

Since the problem is convex, a solution can be
determined using gradient descent as follows:

x
(n+1)
j = x

(n)
j + τ((1− λ)(4x(n))j ,

+λ(5 · ( 5x
(n)

| 5 x(n)|
))j ,

+

M∑
i=1

(ai,j(1− yi/((Ax(n))i))) j = 1...N .

(11)

Here τ is a regularization parameter andN is the
number of pixels in the reconstructed image. We
proposed a find the parameters λ in equation (3)
by using anatomical data estimated from another
medical image modality, such as CT or MRI [2, 1].
To achieve this, we performed a blurred process on
the anatomical image [3]; an edge map was then
calculated using a labeled image. Thus, the edge
map, λ was estimated from anatomical image, I,
using:

λ = (|| 5G ∗ I||22), (12)
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where G is a Gaussian kernel with zero mean,
and for the standard deviation (STD), we suggest
to use a estimator of the STD of the image given
by the median absolute deviation (MAD) [9, 5]
defined as σ̂ = 1.4826·MAD, the resulting λ is
then normalized to have values in the [0..1] set.
Finally this anatomical information is incorporated
as weights of the regularization terms.

4 Results

This section delineates the results obtained after
applied the proposed method and provides com-
parisons with well-known reconstruction methods.
In all experiments, the proposed method ran with
15 iterations.

In a first experiment, aimed to evaluated the
resolution of the reconstructed images, we used
a phantom consisting of a circular case with four
rows of cylinders of 2, 3, 4, and 5 mm in diameter.
Each hole was filled with activity corresponding
to a background with an 18F -fluorodeoxyglucose
concentration of 1:8. The phantom described is
shown in Figure 2a. The reconstruction system
matrix size was of 16768× 8100.

A simulated PET scan was performed via the
use of the Simset (Simulation System for Emission
Tomography) software [6], and the resulting
data was reconstructed using the EM method.
Figures 2(d), and (e), shows the reconstructed
images using the EM and the method proposed,
respectively.

(a) (b) (c) (d)

Fig. 2. Points phantom. a) original phantom, b) edge
map c) EM reconstruction, and d) Proposed method

Figure 3, shows profiles across the cylinders.
The proposed method gives the better image
reconstruction for the different circle sizes per
row, as can be seen in the curves. We also
obtained quantitative comparative results in terms
of Peak signal-to-noise ratio (PSNR) and structural
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Fig. 3. Profiles of the phantom of Figure 2. a) 5 mm
diameter, b) 4 mm diameter c) 3 mm diameter, and d) 2
mm diameter

similarity (SSIM) [21], between the reconstructed
images and ground truth (GT) of Figure 2a, the
results are shown in Table 1. Low values of PSNR
and SSIM are expected, since the GT data go
through a process of scanner simulation before
reconstruction, which added heavy noise and blur.

In a second experiment, we aimed to test
the proposed method with anatomical structures
using a phantom (patient 1) from the PET
Simulation Of Realistic Tridimensional Emitting
Objects (PETsorteo) database [16].

Image reconstructions using the different met-
hods are shown in Figure 4; this includes filtered
back projection (FBP) [19, 15], EM, and the
proposed method. No corrections for scattering or
post filtering were applied to the images.

We evaluate the the percentage of standard
deviation (%STD) [12] on three regions with
different activity; the results (see figure 5) illustrate
that the proposed method attained a lower variation
and sharper images.

5 Conclusion and Future Work

This article presents a new reconstruction method
for PET data. We regularized the problem of
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Table 1. Results of PSRN and SSIM on Points phantom

PSNR SSIM
EM 12.19 0.29
proposed 12.55 0.51

(a) (b) (c) (d)

Fig. 4. PET Sorteo phantom patient 1. a) Edge Map b) FBP reconstruction, c) EM reconstruction, and d) Proposed
method

(a) (b) (c)

Fig. 5. Results of %STD evaluated on the enclosed
squares. a) FBP reconstruction, b) EM reconstruction,
and c) Proposed method

reconstruction by using a hybrid combination of
TV and Tikhonov potentials and proposed to
balance both terms by the use of anatomical
information incorporated through constant weights.
The phantom data results show that the proposed
method improves the reconstruction performance
more significantly than do EM or FBP.
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