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Abstract. Path planning concerns about finding a route
for an agent, such that this agent move along the
route from an initial to a final goal. Some additional
constraints may also have to be satisfied for the
agent, such as avoiding obstacles or collisions. Path
planning has been recently studied in the context of
linear temporal logic with great success. Expressive
constraint specifications involving temporal ordering can
be succinctly expressed by logic formulas, whereas
environments are abstracted as transition systems. The
plan is obtained by counterexample generation in a
model checking tool: finding a path, if any, such that
a given formula (constraints) satisfies a given model
(agent environment). Due to the expressive power of
linear temporal logic, only linear planning has mostly
been considered so far, that is, plans corresponding to
tasks to be performed in a linear successive order. In
this work, we study branching shaped (tree) plans in
the context of the µ-calculus, an expressive modal logic
which subsumes many program logics such as LTL, PDL
and CTL. Branching plans can be succinctly expressed
by logic formulas so that a team of mobile devices can
concurrently satisfy the plan. In the current work, we
provide a plan generator based on a model checking
algorithm for the µ-calculus. We show the algorithm is
sound and complete, that is, for any environment, there
a satisfying plan for a given set of constraints, if and only
if, the plan generator succeeds.

Keywords. Branching shaped (tree) plans, µ-calculus,
modal logic, plan generator, model checking.

1 Introduction

Path planning of agents (mobile devices including
autonomous robots) consists in finding a sequence
of motion tasks to reach a final goal in a known
environment. Usually, constraints such as avoiding
obstacles and collisions must also be satisfied.
Constraints or specifications are usually given in a
mathematical language, which traditionally has been a
geometric one. It is then a natural research direction
to study specification languages with more expressive
power in order to give more complex instructions to
agents.

Specifications involving sequentiality has recently
been studied with great success in the setting of linear
temporal logic [1, 23, 13, 14, 6, 25]. Specification
are written as linear temporal logic formulas, and plan
generation corresponds to counterexample generation in
a model checking tool: given a formula (specification)
and a model (environment), find a path in the model
not satisfying (the counterexample) the negation of a
formula.

In the context of mobile robotics, it is often required
to implement continuous trajectories. This is achieved
by first giving a discrete abstraction of the robot
environment, which can clearly be obtained by well
known efficient decomposition methods for polygonal
environments [21]. A discrete plan is then obtained
from the discrete abstraction of the environment and the
specification by means of model checking techniques. A
continuous implementation of the discrete plan can be
obtained with a hybrid control approach [11].
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As suggested by its name, linear temporal logic
(LTL) formulas can express linear plans only. In linear
plans, agents execute tasks in a linear sequential order.
Consider for instance the following formula in linear
temporal logic:

�p ∧ � (�q)

This expression requires a agent to visit p after one
step, and after two steps to visit q. Hence, in a
linear model, the above expression implies q is after
p. However, in many cases it may not be true, say
for instance that q is in a different path than p. Then,
the resulting plan has a two branch tree form. With
these kind of non-linear plans, more precisely branching
plans, it is then easy to see that a team of agents may
concurrently execute the plan, one agent each branch.
In addition, since plans are tree shaped, collision-free
plans are guaranteed and agents may be executed
asynchronously.

In the community of context-aware computing, it
has recently emerged the notion of context-aware path
planning [24], which concerns the path planning problem
with particular context variables included in the set of
constraints, as for instance, location, time, weather, and
community sense.

For instance, for this last variable, a well-known
scenario arises in the generation of evacuation plans.
It is often the case that evacuation plans need to
take in consideration a team of people (with an smart
phone each or some). In this scenario, it is desirable,
whenever possible, each (or at least some) people follow
a different evacuation plan in order to avoid bottlenecks
and expedite the evacuation. Branching tree planning
in the evacuation scenario offers several distinct and
collision-free evacuation plans.

In the current work, we study the µ-calculus, which is
an expressive modal logic, in the context of branching
path planning for mobile agents (devices, robots, etc.).
The µ-calculus is one of the most expressive, yet
computable, logic languages. The expressive power
of the µ-calculus corresponds the bisimulation invariant
fragment of monadic second order logic [5], and hence,
by the Rabin’s Tree Theorem [20], also corresponds to
tree automata and regular languages (grammars).

The µ-calculus is also known as the queen of the
program logics, because it subsumes the linear temporal
logic LTL, the propositional dynamic logic PDL, the
computational tree logic CTL, and many expressive
descriptive logics [7].

1.1 Motivations and Related Work

Planning or scheduling is one of the first fundamental
problems in the Artificial Intelligence research commu-
nity. This problem concerns the automation of strategies
or action sequences of intelligent agents or autonomous
robots. In this context, formal models described by action
languages has a long tradition which dates back to the
McCarthy’s situation calculus [18].

Although efficient reasoning algorithm associated
to modal languages are now mature enough at the
industrial level [8, 15], there has been surprisingly
relatively little research on planning in the setting of
modal logic [12]. The mobile robotics community is
another story, very recently, there is a major increasing
research interest on modal (temporal) languages as
specification language for path planning [1, 23, 13, 14,
6, 25].

Since linear temporal logic is not expressive enough
for denoting multi-branching, there are still few studies on
modal languages in the context of multi-agent systems,
particularly mobile robots [16, 23]. In [16], it is presented
a multi-agent approach to motion planning with respect
to a common global goal. Specifications are written
in linear temporal logic. Hence, robots cooperate to
achieve a common goal. However, specifications are
still restricted to produce linear plans. Another issue
is that this approach is not complete, that is, some
times a solution is not found even if it exists. In [23],
multi-agent motion planning is studied in the setting of
optimal plans. Specifications are also described in terms
of linear temporal logic formulas. The team of agents
is controlled by a timed automaton. Also, the team of
agents cooperate to achieve a common goal. In contrast
with the approach reported in [16], agents can move
asynchronously.

In this work, we take a different approach from
works in [16, 23], instead of complementing the linear
temporal logic formalism with a multi-robot solution, we
extend the expressive power of temporal logic so that
in a unifying framework, multi-agent and expressive
specifications can be handled. Models in µ-calculus
produce multi-branching plans that can be executed by
a team of agents, one each branch.

In contrast with other branching modal logics as
CTL, the µ-calculus subsumes LTL, which has been
largely studied and benchmarked before in the context
of planning [1, 23, 13, 14, 6, 25]. Moreover, due
to the correspondence of the µ-calculus and regular
languages [5, 20], many other complex specifications
not available in LTL, CTL and PDL, as for instance
regular (tree) expressions (well known in programming
languages), can be succinctly denoted.
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Previous studies of path planning in the setting of
LTL [1, 23, 13, 14, 6, 25] are based in counterexample
generation in a model checking tool. The model
checking problem consists in deciding whether a given
formula (specification) is satisfied by a given model
(agent environments). Counterexample generation
consists in finding a an example where the specification
fails to be satisfied. Hence, in the setting of
planning, a plan is obtained by a counterexample of
the specification negated. However, often in model
checking algorithms, counterexample generation is a
blind spot in the corresponding tools [10]. In the
current work, we propose a sequent based derivation
system for the model checking problem of the µ-calculus.
The planning algorithm, based on logical flow graphs,
extracts non-linear (multi-branching) plans directly from
the proofs produced by the derivation system.

1.2 Contributions and Outline

In Section 2 the propositional modal µ-calculus is
introduced. Also, we introduce a formal definition of
the problem of path planning in terms of logic formulas
and Kripke structures (transition systems). Intuitively,
Kripke structures are the discrete abstraction of agent
environments. We also show in this Section there is plan
for any satisfiable formula. This notion of planning is
used in the correctness proof the path planner proposed
in Section 3.

In a contribution of independent interest, we also
introduce in Section 3 a sequent based derivation
system for the model checking problem of the
alternation-free fragment of the modal µ-calculus. The
planning algorithm extracts, using logical flow graphs,
branching plans directly from the proofs produced by the
derivation system. It is also shown our proposal is sound
and complete, that is, the planner returns a satisfying
path, if and only if, there is a solution. We conclude in
Section 4 with a discussion of the current work and a
brief summary of further research perspectives.

2 A Modal Logic for Path Planning

In this Section, we present the propositional modal µ-
calculus, which is an expressive modal logic equipped
with least and greatest fixed-points. We also show how
to use logic formulas as specifications for path planning.
It is also formally defined the problem of path planning
in terms of logic formulas and Kripke structures (graph
models).

Through this paper, we consider countable sets only,
hence, when written set, we denote countable set.

2.1 Syntax and Semantics

An alphabet or signature is a pair (P ,X), such that

— P is a set of propositional variables; and

— X is a set of variables.

Unless otherwise stated, we consider a fixed alphabet.

Definition 1 (Syntax). Given an alphabet, the set of µ-
calculus formulas is given by the following grammar:

φ :=p | ¬φ | φ ∨ φ | �φ | x | µx.φ

Formulas are interpreted as sets of nodes in Kripke
structures (Definition 2). Intuitively, Kripke structures are
graphs with labeled nodes, sometimes called transition
systems. Propositions are true or false at each
node, whereas negation and disjunction of formulas are
interpreted as set complement and the union of sets,
respectively. Modal formulas �φ hold at nodes, such
that there is at least one adjacent node where φ is
true. µx.φ formulas are interpreted as least fixed-points.
Intuitively, least fixed-points are used as operators for
finite recursion.

Consider for instance formula �p3. In a graph model,
this expression denotes nodes, such that there is at least
one accessible node where p3 is satisfied. Graphical
representation of this example is depicted in Figure 1.
�p3 holds in n1 because n3 is accessible from n1 and
p3 is satisfied by n3. Now consider the fixed-point
formula µx.p1 ∨ �x. This formula is true at nodes where
p1 holds or at nodes that can access, through finite
recursive navigation on edges, to at least one node
where p1 is true. In Figure 1, µx.p1 ∨ �x holds at
nodes n1,n2, . . . ,nk. If we now consider formulas as
specifications for mobile agents, then µx.p1 ∨ �x may
be interpreted as a task for an agent, such that it must
visit p1 no matters how far p1 is. Then the path traced
by the formula can be seen as the path plan for the
agent. However, it is natural to ask for another task, as
for instance, also visit p2 no matters how far it is, that
is, µx.p2 ∨ �x. This two requirements may be easily
expressed by conjunction:

(µx.p1 ∨ �x) ∧ (µx.p2 ∨ �x)

But it may also be the case that p2 is not on the path
to p1, or the other way around (see Figure 1), that is, the
plan is not linear. These two tasks may be performed
by a team of two agents. In Figure 1, this conjunction
of tasks holds at n1 only, but µx.p2 ∨ �x is satisfied by
n1,n3, . . . ,nl. This is the path to p2 from n1. Both paths,
the one to p1 and the one to p2, form the non-linear plan
required to do the tasks. Through this paper, we will
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n1

�p3,φ1 ∧ φ2

n2 . . . nk

p1

n3

p3

. . . nl

p2

Fig. 1. The interpretation of �p3, φ1 = µx.p1 ∨ �x, and
φ2 = µx.p2 ∨ �x

show how to compute non-linear path plans. First, we
give a formal description of formula semantics on Kripke
structures.

Given an alphabet (P ,X), a Kripke structure is a tuple
(N ,R,L), such that

— N is a non-empty set of nodes;

— R : N ×N is a binary relations of nodes; and

— L : N 7→ 2P \ ∅ is a total label function.

A total Kripke structure is a Kripke structure where each
node is connected by at least one transition relation, that
is, for every node n ∈ N there is a relation R and a node
n′ ∈ N , such that (n,n′) ∈ R. In this work, we consider
total Kripke structures only.

Before giving an operational semantics of µ-calculus
formulas, we need some notation. A valuation in a Kripke
structure K is a function from the set of variables to the
power set of nodes in K, that is, V : X 7→ 2N . We write
V
[
S/x

]
, when V (x) = S.

Definition 2 (Semantics). Given a Kripke structure K =
(N ,R,L) and a valuation V , formulas are interpreted as
follows.

[[p]]KV = {n ∈ N | p ∈ L(n)}

[[x]]KV = V (x)

[[¬φ]]KV = N \ [[φ]]KV

[[φ ∨ ψ]]KV = [[φ]]KV ∪ [[ψ]]KV

[[�φ]]KV =
{
n ∈ N | ∃n′ ∈ N : R(n,n′),n′ ∈ [[φ]]KV

}
[[µx.φ]]KV =

⋂{
S ⊆ N

∣∣∣[[φ]]K
V [S/x] ⊆ S

}
If [[φ]]KV 6= ∅, we say K satisfies φ. The model checking

problem consists in automatically deciding whether or
not a given Kripke structure satisfies a given formula.
We say that a formula is satisfiable, if there is a Kripke
structure satisfying the formula. In case there is no

Kripke structure satisfying the formula, then it is said that
the formula is unsatisfiable. When a formula is satisfied
by any Kripke structure, the formula is valid.

Other traditional logic operators are defined as follows:

φ ∧ ψ = ¬ (¬φ ∨ ¬ψ)

⊥ = p ∧ ¬p
�φ = ¬ � ¬φ

φ U ψ = µx. (ψ ∨ [φ ∧ �x])

φ R ψ = ¬ (¬φ U ¬ψ)

Conjunction is interpreted as expected, as set
intersection. ⊥ is a contradiction. �φ holds at nodes
where each adjacent node satisfies φ. Consider for
instance formula �p2, which denote nodes such that all
its accessible nodes satisfies p2.

In Figure 2, �p2 does not hold at n2, because although
n5 and n4 are accessible nodes from n2 and they satisfy
p2, there is one accessible node where p2 is not satisfied
and it is n3.

A greatest fixed point can also be defined as dual of
the least fixed point.

νx.φ = ¬µx.¬φ [¬x/x]

This operator is intuitively used for non-finite recursion.
Consider for instance formula νx.p1 ∧ �x. This formula
denotes paths (finite or infinite) where p1 is always true.
In the context of path planning, it is natural to require a
task to be performed permanently, such as surveillance.
In Figure 2, νx.p1 ∧ �x denotes the cycle composed by
n1,n2,n3, . . . ,nk.

Due to Knaster and Tarski we know µ and ν formulas
are fixed points. Before describing this well known result,
we need some notation.

Definition 3 (Finite expansions). We define the finite
expansion (approximants) of fixed-points as follows, for
a natural number k.

µ0x.φ := φ
[
⊥/x

]
µkx.φ := φ

[
µk−1x.φ/x

]
ν0x.φ := φ

[
>/x

]
νkx.φ := φ

[
νk−1x.φ/x

]

We now recall the Knaster-Tarski Theorem in terms of
finite expansions.
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n1

p1

n2

p1

n3

p1

. . .nk

p1

n4

p2

n5

p2

Fig. 2. Infinite recursion: the interpretation of νx.p1 ∧ �x

Theorem 1 (Knaster-Tarski Fixed-Point Theorem [22,
17]). For any Kripke structure K = (N ,R,L) and a
valuation V ,

[[µx.φ]]KV =

|N|∨
i=0

µix.φ

K
V

[[νx.φ]]KV =

|N|∧
i=0

νix.φ

K
V

Other known operators in LTL and CTL can also be
easily defined.

φ U ψ = µx. (ψ ∨ [φ ∧ �x])

φ R ψ = ¬ (¬φ U ¬ψ)

The until formula φ U ψ holds in each node of paths
(adjacent nodes) where φ is true in all but he last node,
where φ is satisfied. Release formula φ R ψ holds in
nodes of paths where ψ is true in all but the last node,
where φ is true. Also, release formula holds in each node
of non-finite paths where ψ is always true.

2.2 Plans

Path plans for mobile agents are defined as the resulting
trees of nodes satisfying a formula and its subformulas
in a given Kripke structure. Consider for example the
following formula:

p0 ∧ � (p1 ∧ �p2) ∧ � (p3 ∧ �p4)

This expression denotes a plan with two sub-tasks, the
first one consists in, starting from p0, visiting p1 and p2,
in that order, whereas the second task also starts from
p0, but requires to visit p3 and p4, also in that order. In
Figure 3, the Kripke structure satisfies the formula, the

tree is the plan extracted from the Kripke structure that
satisfies the formula together with its subformulas.

As another example, consider now formula νx.p1 ∧
�x and its model displayed in Figure 2. The plan
of the formula is then the one branched infinite tree
composed by the infinite occurrence of paths composed
by n1,n2,n3, . . . ,nk.

That a satisfiable formula is satisfied by a tree shaped
Kripke structure is a well known result.

Theorem 2 (Tree model property [7]). If a formula φ is
satisfiable, that is, there is a Kripke structure K, such
that for any valuation V we have that [[φ]]KV 6= ∅, then φ
is satisfied by a tree shaped Kripke structure K′, that is,
[[φ]]K

′

V 6= ∅.

Before defining a path plan in terms of Kripke
structures and formulas, we need some notation.

Definition 4. A tree on a Kripke structure K =
(N ,R,L), written TK , is inductively defined as follows:

— the empty tree ∅ is a tree; and

— the tuple (n,T1,T2, . . . ,Tk) is a tree, such that

– n ∈ N is a node called the root,

– for i = 1, . . . , k, Ti are trees, and

– in case Ti is not empty, then R(n,ni), where
ni is the roots of Ti, respectively.

When clear from context, we often simply write T for a
tree.

We now define the notion of plan. Intuitively, a plan
is a tree whose nodes satisfy, following the paths of the
tree, a formula together with its subformulas.

Definition 5 (Plan). Given a Kripke structure K =
(N ,R,L) and a valuation V , we say a tree TK on K
is a plan for a formula φ if and only if TK |= φ, such that
relation |= is inductively defined as follows.

(n,T1, . . . ,Tk) |= p if and only if p ∈ L(n)

T |= ¬φ if and only if T 6|= φ

T |= φ ∨ ψ if and only if T |= φ or T |= ψ

(n,T1, . . . ,Tk) |= �φ if and only if n ∈ [[�φ]]KV ,

∃ni∈{1,...,k} ∈ N : R(n,ni),

ni is the root of Ti, and Ti |= φ

T |= µx.φ if and only if T |=
|N|∨
i=0

µix.φ
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n1

p0

n2

p1

n5

q

n3

q

n6

p2

n8

q

n4

p3

n7

p4

(a) Kripke structure

n1

p0

n2

p1

n6

p2

n4

p3

n7

p4

(b) Plan

Fig. 3. A Kripke structure satisfying p0 ∧ � (p1 ∧ �p2) ∧ � (p3 ∧ �p4), together with its corresponding plan

Relation 6|= is defined as follows.

(n,T1, . . . ,Tk) 6|= p if and only if p 6∈ L(n)

T 6|= ¬φ if and only if T |= φ

T 6|= φ ∨ ψ if and only if T 6|= φ and T 6|= ψ

(n,T1, . . . ,Tk) 6|= �φ if and only if n ∈ [[�φ]]KV ,

∀ni=1,...,k ∈ N : R(n,ni)

ni is the root of Ti, and Ti 6|= φ

T 6|= µx.φ if and only if T 6|=
|N|∨
i=0

µix.φ

Because of the tree model property of µ-calculus
(Theorem 2), we know that if there is model satisfying
a formula, then there is also a plan (tree) satisfying the
formula.

Corollary 1. If a formula φ is satisfiable, that is, there is
a Kripke structure K, such that for any valuation V we
have that [[φ]]KV 6= ∅, then there is a plan TK for φ, that is,
TK |= φ.

3 Path Planning

In this Section, we introduce a sequent-like system for
the model checking problem, that is, given a formula
and a Kripke structure, decide whether or not the Kripke
structure satisfies the formula. Plans can be extracted
from the proofs produced by the sequent system. It is
also proven that the system is sound and complete.

The sequent system considered in this Section works
with fixed-point alternation-free formulas in negation
normal form. Occurrences of greatest and least

fixed-points cannot then alternate. The negation normal
form of a formula is defined as follows.

nnf(p) = ¬p nnf(x) = ¬x
nnf(φ ∨ ψ) = nnf(φ) ∧ nnf(ψ) nnf(�φ) = �nnf(φ)

nnf(µx.φ) = νx.nnf(φ) [x/¬x]

For the rest of the paper, when we refer to the negation of
a formula ¬φ, we mean its negation normal form nnf(φ).

The set of subformulas of a formula is inductively
defined as follows: if φ is a proposition, a variable
or constant >, then subformula(φ) = {φ}; if
φ is a conjunction ψ ∧ ψ or a disjunction ψ ∨
ϕ, then subformula(φ) = {φ} ∪ subformula(ψ) ∪
subformula(ϕ); and if φ is a modal formula �ψ or �ψ,
or a negation ¬ψ, or a fixed point formula µx.ψ or νx.ψ,
then subformula(φ) = {φ} ∪ subformula(ψ). The set
of formulas in a modality is inductively defined as follows:
mod(p) = mod(x) = mod(top) = {}; mod(�φ) =
mod(�φ) = subformulas(φ); mod(φ ∨ ψ) = mod(φ ∧
ψ) = mod(φ) ∪ mod(ψ); mod(¬φ) = mod(µx.φ) =
mod(ν(.φ)) = mod(φ).

We say a formula φ occurs under the scope of a
modality in another formula ψ, whenever φ ∈ mod(ψ).
The set of free variables in a formula is inductively
defined as follows: free(x) = {x}; free(>) = free(p) =
{}; free(¬φ) = free(�φ) = free(�φ) = free(φ);
free(φ ∨ ψ) = free(φ ∧ ψ) = free(φ) ∪ free(ψ); and
free(µx.φ) = free(νx.φ) = free(φ) \ {x}, provided x
occurs in φ. We say a variable x occurs free in a formula
φ, whenever x ∈ free(φ). Without loss of generality, we
consider formulas where variables can only occur under
the scope of a modality, and not free [5].

Sequents are defined as pairs, written n ` ∆, where
n is a node and ∆ is a (possibly empty) set of formulas.
Intuitively, node n syntactically satisfies each formula in
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∆. We say a sequent is empty if its set of formulas is
empty.

Rules are pairs (C,A), where C is a set of sequents,
called consequent, and A is a family of sequent sets,
called premises. Rules are usually written as follows:

A

C

Intuitively, from premisesA, we derive C. IfA contains
only empty sequents, then we say A is empty and there
are no premises. If a rule has no premises, then we say
this rule is an axiom. A derivation system is composed
by a set of rules.

Definition 6 (Planning derivation system). Given a
Kripke structure K = (N ,R,L), we define the following
rules with respect to a given formula.

p ∈ L(n);n ` ∆; Λ

n ` p, ∆; Λ

p 6∈ L(n);n ` ∆; Λ

n ` ¬p, ∆; Λ

n ` φ, ∆; Λ n ` ψ, ∆; Λ

n ` φ ∨ ψ, ∆; Λ

n ` φ,ψ, ∆; Λ

n ` φ ∧ ψ, ∆; Λ

∃n′ : R(n,n′);n′ ` φ;n ` ∆; Λ

n ` �φ, ∆; Λ

∀n′ : R(n,n′);n′ ` φ;n ` ∆; Λ

n ` �φ, ∆; Λ

n `
∨|N|
i=0 µ

ix.φ, ∆; Λ

n ` µx.φ, ∆; Λ

n `
∧|N|
i=0 ν

ix.φ, ∆; Λ

n ` νx.φ, ∆; Λ

Please note that for readability we use commas for
the union of formulas in sequents, and for the union of
sequents we use semi-colons. That is, for a formula φ
and a set of formulas ∆, we write φ, ∆ instead of {φ}∪∆,
and for a sequent n ` ∆ and a set of sequents Λ, we
write n ` ∆; Λ instead of {n ` ∆} ∪ Λ.

Before defining derivation trees formally, consider
the following formula evaluated in the Kripke structure
displayed in Figure 3:

p0 ∧ � (p1 ∧ �p2) ∧ � (p3 ∧ �p4)

The corresponding derivation tree is the depicted in
Figure 4. Inference goes bottom-up, so the formula in the
bottom is concluded from the axiom (empty sequents).
We thus read that n0 ` p0 ∧ � (p1 ∧ �p2) ∧ � (p3 ∧ �p4)
is concluded from n0 ` p0, � (p1 ∧ �p2) ∧ � (p3 ∧ �p4) by
applying the inference rule corresponding to conjunction
of formulas. This last expression is concluded from n0 `
� (p1 ∧ �p2) ∧ � (p3 ∧ �p4) by applying the inference rule
corresponding to propositions.

n6 `; n2 `; n7 `; n4 `; n0 `
n6 `; n2 `; n7 ` p4; n4 `; n0 `
n6 `; n2 `; n4 ` �p4; n0 `

n6 `; n2 `; n4 ` p3, �p4; n0 `
n6 `; n2 `; n4 ` (p3 ∧ �p4); n0 `
n6 `; n2 `; n0 ` � (p3 ∧ �p4)
n6 ` p2; n2 `; n0 ` � (p3 ∧ �p4)
n2 ` �p2; n0 ` � (p3 ∧ �p4)

n2 ` p1, �p2; n0 ` � (p3 ∧ �p4)
n2 ` p1 ∧ �p2; n0 ` � (p3 ∧ �p4)
n0 ` � (p1 ∧ �p2) , � (p3 ∧ �p4)
n0 ` � (p1 ∧ �p2) ∧ � (p3 ∧ �p4)

n0 ` p0, � (p1 ∧ �p2) ∧ � (p3 ∧ �p4)
n0 ` p0 ∧ � (p1 ∧ �p2) ∧ � (p3 ∧ �p4)

Fig. 4. A proof tree for p0 ∧ � (p1 ∧ �p2) ∧ � (p3 ∧ �p4) in
the Kripke structure of Figure 3

In this case, we know that p0 ∈ L(n0). It is now
applied again the rule for conjunction, so for the premise
we obtain n0 ` � (p1 ∧ �p2) , � (p3 ∧ �p4) Then, we apply
the rule for diamond formulas, so the premise is n2 `
p1 ∧ �p2; n0 ` � (p3 ∧ �p4). This is because we know
that R(n0,n2).

Using conjunction rule, then the premise is now n2 `
p1, �p2; n0 ` � (p3 ∧ �p4), which is concluded from n2 `
�p2; n0 ` � (p3 ∧ �p4) due to the proposition rule, in
particular, because p1 ∈ L(n2).

Using again the diamond rule, the premise is then
n6 ` p2; n2 `; n0 ` � (p3 ∧ �p4), because R(n2,n6).
For the next step we obtain the axiom n6 `; n2 `;
n0 ` � (p3 ∧ �p4), because of proposition rule, more
precisely, because p2 ∈ L(n6).

Analogously as just described above, we now apply
successively the diamond, the conjunction and the
diamond rule over n0 ` � (p3 ∧ �p4) to finally obtain as
premise n6 `; n2 `; n7 `; n4 `; n0 `, which turns to be
an axiom.

As another example, consider the corresponding proof
tree in Figure 5 for νx.p1 ∧ �x in the Kripke structure in
Figure 2.

In order to formally define derivation trees, we will
consider trees of sequents, that is, trees with sequents
instead of nodes. Formally, given a sequent Λ and
a derivation system, a derivation tree of Λ is a tree
(Λ,T1,T2, . . . ,Tk), such that
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— T1, . . . ,Tk are all derivation trees of their respective
sequent roots Λ1, . . . , Λk, and

— Λ1 Λ2 ... Λk
Λ

is an instance of a rule in the derivation
system.

nk `; . . . ;n2 `;n1 `
...

nk ` ν1x.p1 ∧ �x; . . . ;n2 `;n1 `
...

n3 `;n2 `;n1 ` ν4x.p1 ∧ �x, . . . , νkx.p1 ∧ �x
n3 ` >;n2 `;n1 ` ν4x.p1 ∧ �x, . . . , νkx.p1 ∧ �x
n2 ` �>;n1 ` ν4x.p1 ∧ �x, . . . , νkx.p1 ∧ �x

n2 ` p1, �>;n1 ` ν4x.p1 ∧ �x, . . . , νkx.p1 ∧ �x
n2 ` p1 ∧ �>;n1 ` ν4x.p1 ∧ �x, . . . , νkx.p1 ∧ �x

n2 ` p1 ∧ �>;n1 ` p1, . . . , νkx.p1 ∧ �x
n2 `;n1 ` p1, �(p1 ∧ �>), . . . , νkx.p1 ∧ �x
n2 `;n1 ` ν1x.p1 ∧ �x, . . . , νkx.p1 ∧ �x
n2 ` >;n1 ` ν1x.p1 ∧ �x, . . . , νkx.p1 ∧ �x
n1 ` �>, ν1x.p1 ∧ �x, . . . , νkx.p1 ∧ �x

n1 ` p1, �>, ν1x.p1 ∧ �x, . . . , νkx.p1 ∧ �x
n1 ` (ν0x.p1 ∧ �x) ∧ . . . ∧ (νkx.p1 ∧ �x)

n1 ` νx.p1 ∧ �x

Fig. 5. A proof tree for νx.p1 ∧ �x in the Kripke structure
in Figure 2

We are now ready to formally define derivation trees
satisfying a sequent for a given Kripke structure. Proof
trees are derivation trees for a given sequent, such that
a given Kripke structure satisfies the formula, intuitively,
a proof tree containing finite branches with at least one
ending with axioms.

Definition 7 (Proof tree). Consider the planning
derivation system, a proof tree of a sequent Λ is a
derivation tree of Λ, such that there is at least one branch
ending with only empty sequents.

We are now ready to state the main result of this
work, which is that the derivation system is sound and
complete. This means that whenever there is a Kripke
structure satisfying a formula, the derivation system
obtains a proof tree.

Theorem 3 (Model Checking). A formula φ is satisfiable
by a Kripke structure K, if and only if, there is a proof
tree of n ` φ, such that n is a node in K.

To prove the sequent system is correct, we need to
show both directions of the double implication.

Theorem 4 (Completeness). If a formula φ is satisfiable
by a Kripke structure K, then there is a node n in K,
such that there is a proof tree of n ` φ.

Proof. The proof goes by structural induction on the
input formula.

First consider the input formula is a proposition p. We
then know p ∈ L(n). Hence, n ` p.

For the case of negation, recall formulas are negated
normal form, hence, the scope of the negation symbol
can only involve a proposition, say p. Since we know n
satisfies ¬p, then p 6∈ L(n), then n ` p.

In case the input formula is a disjunction with form
ψ ∨ ϕ, we know at least one of ψ or ϕ is satisfied by
n. Without loss of generality, assume ψ is satisfied by n.
Then by induction we know n ` ψ, and hence n ` ψ ∨ϕ.

The case when the input formula is a conjunction is
proven analogously as the case for disjunction.

Assume now the formula has the form �ψ. Since n
satisfies �ψ, then there is at least one node n′ satisfying
ψ, such that R(n,n′). By induction we obtain n′ ` ψ and
hence n ` �ψ.

The for modal formulas is proven analogously as the
case of diamond formulas �ψ.

We consider now the case when a least fixed-point
µx.ψ is satisfied by n. By the Knaster-Tarski Fixed-Point
Theorem 1, we know µx.ψ is equivalent to its finite
expansion

∨k
i=0 µ

ix.ψ, where k is the number of nodes
in K (Definition 3). We then obtain n satisfies the finite
expansion. Hence, there is some i, such that n satisfies
µix.ψ. A second induction on the structure of µix.ψ is
applied in order to obtain n ` µix.ψ. These cases are
identical as the ones already proven above. We then
obtain n `

∨k
i=0 µ

ix.ψ, hence n ` µx.ψ.
Finally, for the case of greatest fixed points we

proceed analogously as for least fixed points. By the
Knaster-Tarski Fixed-Point Theorem 1, we know νx.ψ is
equivalent to its finite expansion

∧k
i=0 ν

ix.ψ, where k is
the number of nodes in K (Definition 3). In order to show
there is a proof tree of the finite expansion we proceed by
induction on i (the number of conjuncts). For each step
of the induction on i, we also apply another induction on
the structure of ψ. By assumption, we know n satisfies
ν0x.ψ, the base cases (when ψ is a proposition or a
negated proposition) are trivial. Consider now ψ is of
the form 〈m〉ϕ, then there is a m-connected node n′ to
n satisfying ψ, by induction we obtain n′ ` ψ. n ` 〈m〉ψ
follows immediately. Since variables only occur under
the scope of a modality and not free, and the fixed-points
cannot alternate, other cases go smoothly by structural
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induction. We now consider the inductive step on i. In
order to show n ` νix.ψ, we again proceed by structural
induction on ψ. Base cases are immediate. If ψ is
〈m〉ϕ, it is not hard to see there is a m-connected node
n′ to n, such that n′ ` ϕ

[
νi−1x.ϕ/x

]
, which clearly

implies n ` 〈m〉ϕ
[
νi−1x.ϕ/x

]
. n′ ` ϕ

[
νi−1x.ϕ/x

]
is

obtained by induction on ϕ. In the base case, n′ `
x
[
νi−1x.ϕ/x

]
follows from n′ ` νi−1x.ϕ, which is known

by induction. Other inductive cases goes straightforward
by considering all possible occurrences of x. We then
conclude n `

∧k
i=0 ν

ix.ψ.

We now show the converse, that is, if we have a
proof tree, then the formula is satisfiable by the Kripke
structure.

Theorem 5 (Soundness). Given a Kripke structure K
and a formula φ, if there is a proof tree of n ` φ for some
node n in K, then n ∈ [[φ]]KV for any valuation V .

Proof. We proceed in this proof also by structural
induction on the input formula.

If the formula is a proposition p, we then know p ∈
L(n), then n satisfies p.

When the formula is a negation, then it has the form
¬p (recall formulas are in negated normal form). We then
know p 6∈ L(n), and then n does not satisfy p, hence n
satisfies ¬p.

Consider the case of n ` ψ ∨ ϕ. The proof tree has
then the following form:

T1
n`ψ

T2
n`ϕ

n ` ψ ∨ ϕ

By induction we know that n ∈ [[ψ]]KV or n ∈ [[ψ]]KV for
any V , then n ∈ [[ψ ∨ ϕ]]KV .

Conjunction is proven analogously as disjunction.
If the input formula is �ψ, then the proof has the form

T1
n1`ψ

T2
n2`ψ

. . . Tk
nk`ψ

n ` �ψ

for all n1, . . . ,nk ∈ N , such that R(n,ni). Then by
induction, ni=1,...,k ∈ [[φ]]KV for any V , and hence n ∈
[[�ψ]]KV .

When the input is a diamond formula we proceed
analogously as with box formulas.

Now, consider the case of µx.ψ. The proof has the
following form:

T
n`µ0x.ψ ... n`µkx.ψ

n`
∨k

i=0 µ
ix.ψ

n`µx.ψ

for natural number k, which is the cardinality of set of
nodes in K. We know there is some i, such that n `
µix.ψ. However, we cannot use direct induction to show
that n ∈

[[
µix.ψ

]]K
V

for any valuation V , because µix.φ
is not a subformula of µx.φ. We then proceed to use a
second induction, now on the structure of µkx.φ. These
cases are proven as the ones already proven above.
Finally, we obtain n ∈ [[µx.φ]]KV .

The case for greatest fixed-points is proven in an
analogous manner as the case for least fixed points. We
know by assumption

T
n`ν0x.ψ,...,µkx.ψ

n`
∧k

i=0 ν
ix.ψ

n`νx.ψ

for natural number k, which is the cardinality of set of
nodes in K. We proceed by a second induction, now on
the structure of νix.φ, in order to show n ∈

[[
νix.ψ

]]K
V

for all i. These cases are proven as the ones already
proven above (recall fixed points cannot alternate). We
then conclude n ∈ [[νx.φ]]KV .

Since nodes are syntactically represented in proof
trees, and node transitions are denoted by derivation
rules corresponding to modal formulas (diamond and
box), it is not hard to see that plans can be extracted
from proof trees. Consider for instance the proof tree in
Figure 4. The nodes involved in the plan are n0, n2, n6,
n4 and n7. Transitions are denoted by the application of
rules involving modal subformulas, hence we obtain that
R(n0,n2), and R(n2,n6), in that order, and R(n0,n4)
and R(n4,n7).

It is then easy to see that the plan is a two-branch
tree composed by n0, n2, and n6, and n0, n4, and n7. A
graphical representation of the branching plan over the
proof tree of Figure 4 is depicted in Figure 6, where the
bold transitions (diamond rules) defines the topology of
the branching plan. In case there are not finite branches
to extract a plan, we then extract the plan from the branch
producing a ν-cycle. For instance, in Figure 5, from the
branch producing the cycle is easy to extract the plan,
which involves n1,n2, . . . ,nk, in that order.

In order to formalize the plan extraction process from
proof trees, inspired from the notion of logical flow
graphs [9], we now define a similar notion for nodes
occurring in proof trees. From this logical graphs, we
are then going to be able to directly obtain plans in the
name of tree paths.

Definition 8 (Logical graphs). Given a proof tree of a
certain formula, we define a logical graph as a tuple
(N ,E), such that
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n6 ` ; n2 ` ; n7 ` ; n4 ` ; n0 `

n6 ` ; n2 ` ; n7 ` p4; n4 ` ; n0 `

n6 ` ; n2 ` ; n4 ` �p4; n0 `

n6 ` ; n2 ` ; n4 ` p3, �p4; n0 `

n6 ` ; n2 ` ; n4 ` p3 ∧ �p4; n0 `

n6 ` ; n2 ` ; n0 ` � (p3 ∧ �p4)

n6 ` p2; n2 ` ; n0 ` � (p3 ∧ �p4)

n2 ` �p2; n0 ` � (p3 ∧ �p4)

n2 ` p1, �p2; n0 ` � (p3 ∧ �p4)

n2 ` p1 ∧ �p2; n0 ` � (p3 ∧ �p4)

n0 ` � (p1 ∧ �p2) , � (p3 ∧ �p4)

n0 ` � (p1 ∧ �p2) ∧ � (p3 ∧ �p4)

Fig. 6. A logical flow graph for � (p1 ∧ �p2) ∧ � (p3 ∧ �p4): Kripke structure of Figure 3, proof tree of Figure 4

— N is a set containing the nodes occurring in the
proof tree, and

— E is a binary relation N × N , such that for each
derivation step in the proof tree, if the step has the
form:

– n`ψ,∆;Λ
n`φ,∆;Λ

, then (n,n) ∈ E; and

– n′`φ,∆;Λ
n`�φ,∆;Λ

or n′`φ,∆;Λ
n`�φ,∆;Λ

, then (n,n′) ∈ E.

The logical graph of the proof tree displayed in
Figure 3 is shown in Figure 6.

A tree path is simply the resulting tree of a logical
graph without considering repetitions.

Definition 9 (Tree path). Given a logical graph (N ,E) of
a proof tree of a formula φ, such that n ` φ is the root of
the proof tree, we inductively define a tree path φ starting
from n as follows:

— the root is n;

— if a node n′ is in the tree path, (n′,n′′) ∈ E, and
n′ 6= n′′, then n′ is the parent of n′′.

The tree path corresponding to the logical graph of
proof tree in Figure 3 is graphically represented by the
bold transitions in Figure 6.

Now, it is easy to imply from Theorem 3 that tree paths
(Definition 9) are also plans (Definition 5).

Theorem 6 (Path planning). If there is a proof tree of a
formula φ, then a tree path of φ is also a plan.

Proof. The proof goes by induction on the structure of
the input formula φ.

If the input formula is a proposition p, then we know
there is a node n, such that n ` p. Hence, p ∈ L(n), and
then n |= p.

Negation, since it only occurs in front of propositions,
is proven analogously as the case of propositions.

Consider now the input formula is a disjunction ψ ∨ ϕ.
We then know that there is a proof tree for either n ` ψ
or n ` ϕ. Without loss of generality assume there is a
proof tree for n ` ψ. By induction we then obtain there
is plan (n,T1, . . . ,Tk) for ψ, that is, (n,T1, . . . ,Tk) |= ψ.
By definition of plan (Definition 5), then (n,T1, . . . ,Tk) |=
ψ ∨ ϕ.

The proof for the case of conjunctions is analogous as
the proof for the case of disjunctions.
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If the formula in question is �ψ, and we know
n ` �ψ, then there is a node n′ ` ψ, such that
R(n,n′). By induction, it is known there is a plan T ′ =
(n′,T1, . . . ,Tk) |= ψ. Then, by Definition 5, we obtain a
plan (n,T ′) |= �ψ.

Due to the well known equivalence (Theorem 1, for
the case of least fixed points µx.ψ, we prove for the
corresponding finite expansion

∨k
i=0 µ

ix.ψ, where k is
the number of nodes of the Kripke structure satisfying
the input formula. By assumption we know there is some
i, such that n ` µix.ψ. A plan (n,T1, . . . ,Tm) |= µix.ψ
is obtained by applying a second structural induction
on µix.ψ. This proof is the same as the cases
already proven above. Now, by Definition 5, we obtain
(n,T1, . . . ,Tm) |=

∨k
i=0 µ

ix.ψ.
Similarly as it is proven the least fixed point case, it is

for the greatest fixed point.

4 Conclusions

Branching path planning for mobile agents are studied in
the setting of the modal µ-calculus. In contrast with linear
plans, where tasks are performed in a linear sequential
order, in branching plans, several linear plans can be
performed concurrently and asynchronously by a team
of agents. Since plans are tree shaped, it is then
guaranteed agents never collide. Since the µ-calculus is
one of the most expressive, yet computable, formalisms,
complex specifications for agents can be denoted by
logic formulas. In particular, specifications involving finite
and infinite recursion are nicely capture by the least
and greatest fixed-points of the µ-calculus. In contrast
with traditional plan generation in the context of temporal
logics, where plans are obtained from counterexample
generation in model checking tools, in the current work,
we develop a model checking algorithm based on a
sequent derivation system. This system produces proof
trees whenever a formula is satisfied by the model. Plans
are then directly extracted from the proof trees with
the use of logical flow graphs. We provide correctness
proofs for both, model checking and plan generation.

The inference system proposed in the current work
is a general approach for non-linear plan generation. It
can then be applied in motion planning for mobile robots
by means of well-known discrete abstraction of the
continuous environments typically occurring in robotics
applications. We are also interested in the study of the
application of our proposal in the setting of context-aware
navigation systems for mobile devices.

Other further immediate research perspectives con-
cerns the study and development of implementation
techniques for the sequent system provided in this paper.

In particular, we are interested in the representation of
models based in binary decision diagrams [19]. We also
expect to extend the approach proposed in the current
paper, for the case of more expressive logics involving
arithmetical constraints [4, 3, 2].
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