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Abstract. Several real-life decision scenarios are
hierarchical, which are commonly modeled as bi-level
optimization problems (BOPs). As other decision
scenarios, these problems can be dynamic, that is,
some elements of their mathematical model can change
over time. This kind of uncertainty imposes an extra
level of complexity on the model, since the algorithm
needs to find the best bi-level solution over time.
Despite the importance of studying these problems,
the literature reflects just a few works on dynamic
bi-level optimization problems (DBOPs). In this context,
this work addresses the solution of DBOPs from the
viewpoint of metaheuristic methods. Our hypothesis is
that, by hybridizing successful solving approaches from
both bi-level and dynamic optimization fields, an effective
method for DBOPs can be obtained. In this regard, we
propose a hybrid method that combines a coevolutionary
approach and a self-adaptive, multipopulation algorithm.
Experimental results assert our hypothesis, specially for
certain information exchange mechanisms.

Keywords. Dynamic Bi-level Optimization, Coevolutio-
nary algorithms, Differential Evolution, Self-adaptation,
Hybrid metaheuristics

1 Introduction

A bilevel optimization problem has two levels
of single or multi-objective optimization problems
such that the optimal solution of the lower level
problem determines the feasible space of the upper
level optimization problem. In general, the lower
level problem is associated with a variable vector
xl and a fixed vector xu.

However, the upper level problem usually
involves all variables X = (xu,xl) [26].

From the economic viewpoint they can be seen
as decision making scenarios where an upper-level
leader is optimizing a strategic (main) model, while
a lower-level follower reacts to the leader decisions
by optimizing a related subproblem. In other words,
they are “mathematical programs with optimization
problems in the constraints” [7]. BOPs have been
extensively studied in the past (e.g. location routing
problems [19], relief operations after a disaster
[5], Stackelberg games [27], engineering problems
[14], among others). Even in more simple cases
(e.g. models with linear objective functions and
constraints) BOPs are hard to solve by traditional
optimization techniques [11, 12].

Nowadays, the use of metaheuristic methods to
deal with bilevel optimization problems is gaining
increasing attention [30]. One of the reasons
behind this interest is their ability to obtain
near optimal solutions in a reasonable amount
of time [3]. Moreover, as these methods are
derivative-free, they could be applied to solve
non-differentiable problems.

As in other optimization scenarios, uncertainty
may exist, being one source of it, the dynamic
nature of data involved in the mathematical model.
Examples of these dynamic BOPs (DBOPs), could
be location routing problems with variable number
of depots or clients over time, or aid distribution
in recurrent disasters, among others. This feature
increases the complexity of BOPs, since now the
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goal of any solving strategy is to find the optimal
bi-level solution (or the best possible achievable
solution with the available resources), at every time
step. Despite the importance of studying these
special scenarios, the literature reflects just a few
works addressing this topic.

For example, in [29] a genetic algorithm is used
to solve a dynamic traffic signal problem. The
authors were focused on modeling the decision
scenario of dynamic traffic signal optimization
in networks with time-dependent demand and
stochastic route choice. Here, the upper-level
problem represented the decision-making behavior
(signal control), of the system manager, while the
user travel behavior is represented at the lower
level.

[18] proposed a general model for dynamic
bi-level multi-objective problems. The authors
analyzed the interaction between the upper and
lower levels over time and described the benefits
of bi-level dynamic multiobjective optimization
through the examination of an industrial case in
which the design of a paper mill (upper level)
and the mill operation (lower level), are optimized.
As solution method, the authors considered a
differential evolution algorithm.

Another study on dynamic bi-level optimization
was conducted by [6]. Authors addressed the
modelization and solution of a multi-period portfolio
selection problem in stochastic markets with
bankruptcy risk control. They assumed that the
investor wants to find an investment strategy to
maximize his terminal wealth, while the bankruptcy
risk in each period needs to be controlled.
Essentially, a bi-level programming algorithm is
employed for deriving analytical solutions for the
each period-wise optimization problem.

In this context, we propose to deal with
these complex scenarios by exploiting the current
advances on metaheuristics methods from the
fields of bi-level [30] and evolutionary dynamic
optimization [1]. To the best of our knowledge,
there are no research works related to this topic.

More specifically, in this paper we address the
solution of dynamic bi-level optimization problems
by hybrid metaheuristics. Our hypothesis is
that, by hybridizing successful solving approaches
from both bi-level and dynamic optimization fields,

an effective method for solving DBOPs can be
obtained. We will focus on coevolutionary and
multipopulation methods, which are successful
strategies for tackling bi-level and dynamic
problems, respectively [30, 16].

The rest of the paper is organized as follows:
Section 2, gives the necessary background on
DBOPs. Section 3 describes the proposed method
for solving DOPs, which is validated through
computational experiments in Section 4. Finally,
some concluding remarks and future works are
outlined in Section 5.

2 Background and Related Works

This section is devoted to the fundamentals
of dynamic bi-level optimization problems. In
order to better understand the formulation of
DBOPs, we start by defining bi-level and
dynamic optimization problems. Furthermore, we
summarize some available metaheuristic based
solution approaches. The section ends with
the definition of the dynamic bi-level optimization
problems.

2.1 Bi-level Optimization Problems

A bi-level optimization problem is defined as
follows:

BOP :=


max

x∈Ω,y∈Γ
F (x, y),

subject to

max
y∈Γ

f(x, y),

(1)

where Ω ⊆ Rn and Γ ⊆ Rm are the feasible search
spaces for x (upper-level) and y (lower-level)
decision variables, respectively. Besides, F , f :
Rn × Rm → R are the objective functions
for the upper-level and lower-level sub-problems,
respectively. One important feature of BOPs is
the relationship between the upper and the lower
models.

For example, for a given value of x in the upper
model it could be possible to obtain a different
optimization problem at the lower level, which in
turn must be solved for y. As a consequence, it
may happen that in the upper level model the y
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part of the optimal solution is not the same as the
one obtained at the lower level. So, independently
solving both models does not necessarily lead to
the true optimal solution for the bi-level problem.
In other words, the optimal reactions of the lower
decision maker could not be the same as the one
expected for the upper counterpart.

We will now illustrate a real-life BOP model
through an example. We consider the Stackelberg
competition model described by [26] in the context
of game theory.

Example 1 (Stackelberg competition) Two
firms (l and f ) compete in order to maximize their
profits according to the following model:

ExBOP :=



max
ql,qf ,Q∈R+

∏
l = P (Q)ql − C(ql),

subject to

max
qf∈R+

∏
f = P (Q)qf − C(qf ),

ql + qf ≥ Q,

(2)
where ql y qf are the production levels and Q is
the required quantity (demand). Functions P and
C represent the price of the goods sold and the
production cost of each firm, respectively. Besides,
it is worth noting that the model has just one
functional constraint ensuring that all demand is
satisfied.

Solving this model implies for the leader firm l,
finding the so-called Stackelberg equilibrium. In
other words, the optimal solution corresponds to
the best production level that firm l must to achieve,
taking into account the optimal reaction of the
follower firm f .

Now suppose that both firms sell homogeneous
goods and their corresponding price functions P
have a linear form as inverse of the demand Q:

P (Q) = α− βQ, (3)

where α and β are two positive constants.
Furthermore, we assume that the cost functions
for both firms are given by convex quadratic
expressions:

C(ql) = δlq
2
l + γlql + cl, (4)

C(qf ) = δfq
2
f + γfqf + cf , (5)

where γl, γf , δl, δf are positive constants and cl, cf
are fixed costs.

[26] shows that it is possible to analytically
compute the optimal solution, which is given by:

ql∗ =
2(β + δf )(α− γl)− β(α− γf )

4(β + δf )(β + δl)− 2β2
, (6)

qf∗ =
α− γf

2(β + δf )
−

β(α− γl)− β2(α−γf )
2(β+δf )

4(β + δf )(β + δl)− 2β2
, (7)

Q∗ = q∗l + q∗f . (8)

We can interpret these values as the optimal
strategies of the leader and follower at Stackelberg
equilibrium.

From the viewpoint of metaheuristic met-
hods, BOPs can be solved using the following
approaches [30]: (1) nested sequential, (2)
single-level transformation, (3) multi-objective, and
(4) coevolutionary.

The first one is the most intuitive but the most
computationally expensive, since for every single
evaluation of the upper-level objective function,
the lower-level problem needs to be solved. To
cope with such complexity, other authors transform
the bi-level problem into suitable models that can
be solved by other metaheuristics (e.g. genetic
algorithms, multi-objective evolutionary algorithms,
etc.), which is the case in the second and third
approaches.

However, note that these approaches can be
applied under the following conditions: 1) an
explicit model of the problem is known and 2) there
exist some proof that such transformations lead to
the true (or near), optimal solution of the problem.

Finally, the more general approach is to use
coevolutionary algorithms (CoEAs). Here, the
algorithm evolves two populations (sets) of solu-
tions for both, the upper-level and the lower-level
problems. In addition, CoEAs must implement
some exchange mechanisms for guiding the
search process. Defining such mechanisms is a
key issue in the algorithm performance on BOPs.
We will return to this topic in Sec. 3.
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2.2 Dynamic Optimization Problems

A dynamic optimization problem (DOP), is formally
defined as:

DOP :=
{

max
x∈Ω

F (x,φ, t), (9)

where Ω ⊆ Rn is the search space, t ∈ N0

is the real-world time, φ ∈ Φ are the system
control parameters and F : Rn × Φ × N0 → R,
is the objective function. These system control
parameters determine the solutions’ distribution in
the landscape, for instance, the objective function
parameters, the search space dimension, etc. So,
model’s dynamism comes from a change in φ after
a time period. Hence, the algorithm is faced with
different environments during the run.

In this dynamic context, the main goal of a
metaheuristic is to find the best solution at every
time step. Between changes, the problem is
“static” thus allowing the algorithm to perform the
optimization process. So, keeping a suitable level
of diversity in the population is a challenge when
using population-based metaheuristics in dynamic
environments. A proper management of diversity
allows for avoiding premature convergence in
previous environments and for tracking the new
optima after the change.

Regarding of how this challenge has been
addressed in the past, [13] and [8] observed
four strategies: 1) enhancing diversity after
the change, 2) maintaining diversity during run,
3) memory-based approaches and 4) multi-
population approaches. More recently [21] pointed
out that another alternative is to implement
self-adaptive strategies [20] to cope with changes.
This latter approach provides the algorithm,
the ability to intelligently react to environment
variations, as was shown by [22, 24].

2.3 Dynamic Bi-level Optimization Problems

From the previous definitions (1) and (9), it is
straightforward to derive a general formulation for
dynamic bi-level optimization problems:

DBOP :=


max

x∈Ω,y∈Γ
F (x, y,φu, t),

subject to

max
y∈Γ

f(x, y,φl, t),

(10)

Here, note that there are two sets of system control
parameters, φu and φl, corresponding to the upper
level and lower level models, respectively. It means
that different dynamics could be present in both
models, including the case in which one of models
is not dynamic. In other words, according to the
presence or not of dynamism at the upper and/or
lower level objective functions, we have the four
cases depicted in Fig 1. They are:

1. BOPs where both subproblems are stationary,

2. DBOPs with dynamism only in the upper -level
problem,

3. DBOPs with dynamism only in the lower -level
problem and

4. DBOPs with dynamism at both levels.

Fig. 1. Possible bi-level optimization problems according
the type (stationary or dynamic), of the lower-level and
upper-level problems

The most difficult scenario arises when both
subproblems are dynamic.

In order to illustrate a DBOP, we derive the
dynamic version of the problem described in
Example 1 from Sec. 2.1.

Example 2 (Dynamic Stackelberg competition)
From model (2), suppose that firm l has
time-varying reactions as a consequence of the
market conditions related to the production costs.
So, by considering that the positive constants of
cost function C are dynamic we have the following
model:
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EDBOP :=



max
ql,qf ,Q∈R+

∏
l = P (Q)ql − C(ql),

subject to

max
qf∈R+

∏
f = P (Q)qf − C(qf ,φC , t),

ql + qf ≥ Q,

(11)
where φC = (δf , γf , cf )T are the system control
parameters, which are subject to change. Suppose
that they change according to the following
transition rule:

φC(t+ 1) = φC(t) + r · sev, (12)

where sev ≥ 0 is a vector composed by the change
severity of each parameter and r represents a
vector of random numbers drawn from the standard
normal distribution.

One important question here is how the optimal
solution of the model is affected when these
system control parameters change over time. By
using the general expressions (6 - 8), for the
optimal solutions, we can have an idea of how
it can be affected. In that sense, Figure 2,
shows what happens in a hypothetical scenario, in
which the model changes 10 times and the other
parameters takes fixed values as follows: α =
82.51, β = 10.74, δl = 9.33, γl = 3.76 and cl = 5.96.
Besides, sev = (1.0, 1.0, 0.2)T .

Figure 2, shows the effect of varying δf , γf and
cf (plot Fig. 2-a)) on the optimal solution (plot
2-b)) and on the corresponding objective function
values for the optima solution 2-c)). According to
our DBOPs classification this model corresponds
to a DBOPs with dynamism just in the lower-level
subproblem. However, as Fig. 2-c) shows, the
upper-level objective function is also affected by
the changes in the lower-level subproblem. This is
because the interaction between variables of both
levels, which is stated by the functional constraint.

The reader must be aware that real-life DBOPs
can be more complex than this illustrative model.
For instance, models in higher dimension, with
stronger interactions among decision variables
[26], could not be solved by analytical or numeric
techniques. Besides, if the change function (e.g.

Eq. 12) and the frequency of such changes are
not known, then we must to rely on approximation
optimization methods for finding near optimal
solution quickly, that is, before the occurrence of
a new environment in the near future. In what
follows we explain our proposal to deal with such
scenarios.

3 Proposed Approach

As mentioned before, coevolutionary algorithms
(CoEAs), are among the most general approaches
for tackling BOPs. In this context, a successful
experience has been recently reported by [15]. Ba-
sically, a CoEA performed a pairwise optimization
process (coevolution), by exploiting the separable
structure of the problem at hand. Usually this is the
case in bi-level optimization problems.

On the other hand, in the context of dyn-
amic environments, using multi-population and
self-adaptive approaches have shown to be very
effective [9, 22, 24], specially, when combined with
the differential evolution metaheuristic [28]. While
the use of several populations enables a proper
exploration of the search space, self-adaptation
contributes to enhance the algorithm diversity and
the optimum tracking over time.

From these facts it is reasonable to expect
that a suitable method for solving DBOPs should
involve a combination of the above approaches.
In this sense, we propose a hybrid metaheuristic
that comprises a simple coevolutionary approach
based on the works of [25, 15] and the mSQDE
algorithm from [22]. Specifically, mSQDE is a
self-adaptive, multipopulation algorithm proposed
for dynamic optimization. We have based
our selection on the reported success of such
approaches in their respective domains.

Figure 3, outlines the general structure of the
proposed method, named CoEvoMSQDE. Note
that CoEvoMSQDE acts as a coordinator by deci-
ding what, when and how the coevolution process
is carried out. Two mSQDE algorithms/instances,
denotes as mSQDEu and mSQDEl, are used
for independently optimizing the upper-level and
lower-level subproblems.
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Fig. 2. Effects of changing system control parameters over time a), on decision variables b) and objective functions c),
for the optimal solution

Each mSQDE is composed by a set of
populations and every population comprises a set
of solutions to the problem at hand.

As pointed out by [30], stating what, when and
how is a key issue in designing CoEAs. So, here
we explore different mechanisms. Specifically,
regarding what information is exchanged, we
consider three alternatives:

1. The global best solution of mSQDE instances
(g),

2. The best solutions of sub-populations of
mSQDE instances (G) and

3. All solutions of the best sub-population of
mSQDE instances (P ).

Regarding how the exchange process is carried
out, we consider the following alternatives:

1. Exchange with preference in the upper-level
algorithm. We refer to this scheme as u.
The upper-level algorithm is updated with
the current best solution of the lower-level
algorithm. Then, all solutions of the
upper-level algorithm are evaluated and its
global best solution is updated. Finally, this
new global best solution of the upper-level
algorithm is sent to the lower-level algorithm.

Co-evolution

mSQDE
Upper-level instance

Sup-populations When?
What?
How?

mSQDE
Lower-level instance

Sup-populations

CoEvoMSQDE
(main algorithm)

Dynamic Bilevel 
Optimization

Problem

Upper-level
model

Lower-level
model

Fig. 3. Proposed hybrid approach for solving DBOPs

2. Exchange with preference in the lower-level
algorithm. Referred as l. It operates as the
previous scheme, but using the lower-level
algorithm first.

3. Exchange without preference. Referred as w.
The algorithms exchange their current best
solutions, without intermediary evaluation and
selection process.

With the aim of illustrating these alternatives,
Fig. 4, shows them through task diagrams over

Computación y Sistemas, Vol. 22, No. 2, 2018, pp. 639–656
doi: 10.13053/CyS-22-2-2557

Eduardo Samaniego, Pavel Novoa-Hernández644

ISSN 2007-9737



mSQDEu

Time

Information 

mSQDEl

a) With preference for the 
     upper-level instance (u)

Time

Information 

b) With preference for the 
     lower-level instance (l)

Time

Information 

c) Without preference (w)

Algorithm iteration Population update Population evaluation Best solution update

Fig. 4. Alternatives for the information exchange process in the CoEvoMSQDE algorithm

time. Please note that the operation involved in
these schemes are marked by different tonalities.

Finally, regarding when the exchange process
will be done, we simply do it after a predefined
number of iterations.

The main steps of the CoEvoMSQDE method
are depicted in Algorithm 1. Note that the first two
steps are devoted to set the problem definitions to
the instances mSQDEu and mSQDEl, which are
responsible for evolving two different populations
related to the upper-level and lower-level problems,
respectively. Further, the mSQDEu instance
initialize its population, by generating random
solutions in the search space, while the mSQDEl
do the same by copying the upper-level solutions.
It is important to note that we assumed that both
instances have populations of the same size. At the
main cycle (steps 5-11), the exchange condition
is checked first. In the case that it is met,
the exchange process is performed. Otherwise,
mSQDEu and mSQDEl iterate.

Specifically, the iterative process of algorithms
mSQDEu and mSQDEl include: a change
detection mechanism based on the re-evaluation
of the global best solution; an exclusion principle
to prevent two subpopulations exploring the same
region of the search space; the use of several
subpopulations for efficiently exploring the search
space; and a self-adaptive strategy to maintain a
proper balance of diversity in subpopulations.

Regarding to the self-adaptive strategy of
mSQDE it is important to state that it has been
defined as class of self-adaptation applied to the
mechanisms for DOPs [24]. More specifically, it
includes self-adaptation into the diversity during
the run mechanism. Such mechanism is based on
the generation of the so-called quantum individuals
proposed by [2]. In the original scheme, these
random individuals are generated in a hypersphere
with a predefined radius rcloud during the run.
So, the algorithm ability for tracking the optimum
depends on setting rcloud to a similar value of
the shift severity. However, this latter information
could be unknown in some real-world scenarios.
For solving this issue, [22] proposed that each DE
conventional individual (candidate solution), codify
in its representation a realization of parameter
rcloud, which allows for generating a quantum
individual.

Formally, be conventional individuals denoted as
yi = 〈xi, fi, rci〉, where xi is the vector of decision
variables, fi is the corresponding objective value
and rci is the realization of rcloud. Then, rci is
mutated as follows:

r̃ci ←
{
rand1 · λ · rexcl if rand2 < τ ,
rci otherwise,

(13)

where τ ,λ ∈ [0, 1] are the mutation rate and
the scaling factor, respectively. The rexcl is the
exclusion radius from the original approach of [2],
which is aimed to limit the exploration area of
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the subpopulations. Random numbers rand1 and
rand2 are generated uniformly.

It can be observed that a new r̃ci is obtained with
probability τ , from a variation of the product λ·rexcl.
So, the original rci is kept with probability 1− τ .

The above features are depicted by Algorithm 2.
For more details, the reader is referred to [22, 24].

// Initialization

1 Set the upper-level problem definition to
algorithm mSQDEu;

2 Set the lower-level problem definition to
algorithm mSQDEl;

3 Randomly initialize population of mSQDEu;
4 Copy the mSQDEu population in the
mSQDEl;

// Main cycle

5 while not stopping condition is met do
6 if exchanged condition is met then
7 Exchange information between

mSQDEu and mSQDEl according the
considered scheme: (u, l, or w);

8 else
9 Iterate mSQDEu and mSQDEl

according to the steps of Algorithm 2 ;
10 end
11 end

Algorithm 1: Main steps of the CoEvoMSQDE
algorithm

4 Computational Experiments and
Results

The main goals of the computational experiments
are: to study the information exchange mechanism
proposed and to analyze the performance of our
coevolutionary approach for solving BDOPs.

In order to evaluate our approach, we need test
problems that not only fit the model given in Eq.
10, but also involve the three scenarios identified
in Sec. 2.3. To the best of our knowledge, such
test problems are not available, thus we will use
existing dynamic functions for the upper level and
lower level subproblems.

1 Apply exclusion principle;
2 Detect changes in the environment;
3 if not change is detected then
4 for each subpopulation k do
5 Evolve conventional individuals

according the steps of differential
evolution metaheuristic;

6 Generate quantum individuals
according the self-adaptive strategy
proposed in [22] - (Eq. 13);

7 Update the global best solution of
subpopulation k;

8 Update the global best solution of the
algorithm;

9 end
10 end
11 else
12 for each subpopulation k do
13 Reevaluate subpopulation k

conventional individuals;
14 end
15 end

Algorithm 2: Iteration process of the mSQDE
algorithm.

In this sense, one suitable candidate is the
well-known Moving Peaks Benchmark (MPB) [4],
specially the so-called Scenario 2 which offers a
multimodal objective function composed of several
peaks.

In turn, every peak i is defined by a height (Hi), a
width (Wi) and a position (Xi), which change after
certain time steps. So, the objective function is
defined as follows:

MPB(x) = max
i

{
Hi −Wi · fp(Xi − x)}, (14)

where fp is the peak function, which gives a
specific shape to the peaks.

In general, fp is a minimization function with
optimal solution at x∗ = 0 and f(x∗) = 0. Note
that in the MPB, the system control parameters φ
are the heights, widths and positions of the peaks.
These features change after some ∆e function
evaluations and according to a predefined severity.
More details on the MPB can be found in [4].
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Based on the model of DBOPs given in (10) and
the MPB’s objective function of Eq. 14 we can
derive the following scenarios:

DBOPupper :=


max

x∈Ω,y∈Γ
MPBu(x, t) +MPBl(y),

subject to

max
y∈Γ

MPBl(y),

(15)

DBOPlower :=


max

x∈Ω,y∈Γ
MPBu(x) +MPBl(y, t),

subject to

max
y∈Γ

MPBl(y, t),

(16)

DBOPboth :=


max

x∈Ω,y∈Γ
MPBu(x, t) +MPBl(y, t),

subject to

max
y∈Γ

MPBl(y, t).

(17)
Here, objective functions MPBu and MPBl are
two different instances of Eq. 14, that is, with
different dynamics and system control parameters.
Note that the dynamism in the MPB functions is
denoted by including the time t as an argument.
So, the model of Eq. 15 (resp. Eq. 16)
represents a BDOP with a dynamic lower-level
(resp. upper-level) subproblem. On the other
hand, the model of Eq. (17) involves dynamic
objective functions at both subproblems. It is
worth noting that model DBOPlower is not dynamic
only at the lower-level subproblem, because the
dynamic MPBl is also present in the upper-level
objective function as a summand. However, we
have considered this case, since by adding the
lower-level MPBl to the upper-level function we
obtain a bi-level relationship between both models.
Otherwise, we would have two independent
models which can be solved independently.

4.1 Description of the Experiments

We divided the experiments in two groups
according to our goals:

1. The effect of the exchange mechanisms in the
three BDOPs scenarios and

2. The performance of the best variants of
CoEvoMSQDE algorithm in more complex
scenarios.

In the first group we tested the exchange
mechanisms previously described, in the scenarios
DBOPupper, DBOPlower and DBOPboth. Then,
the best CoEvoMSQDE variants from this analysis,
are tested in more complex scenarios.

Table 1 contains the parameters setting used for
the subproblem instances MPBu and MPBl that
are used in scenarios DBOPupper,DBOPlower and
DBOPboth.

Table 1. Parameters setting for subproblem instances
MPBu and MPBl in the DBOP scenarios.

Parameter Setting

Dimension (D) 5

Search space (Ω) [0, 100]5

Number of peaks 10

Peak heights (Hi) ∈ [30, 70]

Peak widths (Wi) ∈ [1, 12]

Peak function (fp) fcone(X) =
√∑D

d=1X
2
d

Shift severity (sev) 1.0

Change frequency
(∆e)

5000

Correlation coefficient
(λ)

1.0

Regarding the parameters setting of the CoE-
voMSQDE algorithm, note that we have two levels.
At the top level, we have the exchange mechanism
(that we will study next), while at the bottom
level, we have the mSQDE instances which will
use the same parameter settings suggested by
[22]. Specifically, the mSQDE instances will be
composed of 10 sub-populations, each having 10
individuals (i.e. 5 conventional and 5 quantum
ones). The scaling factor and the mutation
probability affecting the self-adaptive strategy, were
defined as λ = 0.3 and τ = 0.5, respectively.
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Defining a suitable performance measure for
assessing the behavior of an algorithm, in both
bi-level and dynamic optimization environments, is
currently an active research area. In the case
of bi-level optimization, [30] suggests employing
error rates for the upper-level and lower-level
objective functions in case the true optimums of
both functions are known. When the optimum
is not known, in [15] proposed rationality -based
measures.

On the other hand, in dynamic environments
several measures exist, the offline error [4] and
the best error before the change [17], being two
of the most employed. While the offline error
indicates the average performance of the algorithm
at every time step, the best error before the change
only takes into account the last time step before
a new change occurs in the environment. In
any case, choosing the right measure primarily
depends on the research goal. In our case, we are
focused on assessing the algorithm performance
in those time periods where the problem remains
unchanged, so the best error before the change
results appropriate. Formally, this measure is
defined as:

ebc =
1

C

C∑
c=1

|fopt(c)− fbest(c)|, (18)

where C is the number of changes in one run and
fopt(c) and fbest(c) are the objective function values
for the problem optimum and the best solution of
the algorithm before the change c, respectively.

We performed 30 runs for each pair of
problem-algorithm instance, using different random
seeds. Besides, we assumed that each problem
instance would change 100 times every ∆e
function evaluation.

4.2 Influence of the Exchange Mechanism

In this group of experiments, the goal is to analyze
the influence of the exchange mechanisms consi-
dered in the CoEvoMSQDE algorithm. Remember
that the exchange mechanisms are composed of
the when, the what and the how strategies.

Statistically speaking, such strategies will be the
factors of the experiments and we consider three

levels for these factors. In the case of the what
and how the strategies described in Sec. 3 were
selected, while for the case of when, the number of
iterations between exchanges will be 1, 10 and 20.
The combination of these levels lead to 3× 3× 3 =
27 algorithm instances or variants. Each one will
be noted as when+what+ how. For example, the
CoEvoMSQDE instance with an exchange process
performed after 1 iteration, using the global best
solution as exchanged information (g) and with
preference on the upper-level algorithm, will be
referred to as 1 + g + u.

These 27 variants were tested in scenarios
DBOPupper, DBOPlower and DBOPboth. Then
the results in terms of the error before the
change, were statistically analyzed using the
non-parametric Friedman test, according to the
suggestions of [10]. This test allows us to identify
differences among the algorithms and provides an
average rank for each algorithm, where that the
lower the rank, the better the algorithm.

Figure 5 shows the average ranks obtained by
the 27 variants that we considered. Note that
we have divided the analysis in four main groups:
results in scenario DBOPupper (Fig. 5-a), results in
scenario DBOPlower (Fig. 5-b), results in scenario
DBOPboth (Fig. 5-c) and results by considering all
problem instances (Fig. 5-d).

In these graphs we highlighted with a black bar
those variants with the best average rank. For
instance, in the scenario DBOPupper, the best
variant is 10+g+ l, while in the case of DBOPlower
there are 3 variants, i.e., those of the form 20 +
g + {u, l,w}. However, for scenario DBOPboth and
for all problem instances, the best ranked variant is
again the 10 + g + l. In order to analyze whether
these best variants are statistically different from
the rest, we relied on the Holm’s post-hoc test.
In this sense, graphs from Fig. 5 display, using
a lighter dark tonality, those variants that are not
different from the best. Observe that, in scenarios
like DBOPupper and DBOPlower there are 11
variants with similar performance.

Despite the relevance of these specific conclu-
sions, the major observation here is the influence
of what information is exchanged and when.
For example, when the exchange is made every
1 iteration, the variants performance is low,
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Fig. 5. Effects of different coevolutionary schemes for each BDOP type, in terms of the average ranking of the variants
according to the Friedman test (α = 0.05). Comparisons against the best algorithm are calculated using Holm’s test
(α = 0.05)
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regardless of the problem instance. This could be
an obvious fact if we take into account that both,
mSQDEu and mSQDEl instances do not have
enough time to improve their respective searches
and thus having their best solutions frequently
replaced.

On the contrary, variants with exchanges every
10 and 20 iterations are much better, since
the populations have more time to evolve. To
better understand this aspect, recall that the
problem instances we considered change every
5000 function evaluations. On the other hand,
our tested variants used 202 function evaluations
at every iteration (since mSQDEu and mSQDEl
count on a population size of 100 individuals and
an additional function evaluation is performed by
the change detection mechanism). Hence, the
number of performed iterations before the change
is 5000/202 ≈ 24. It means that variants with the
exchange process performed every 10 iterations,
have at most 24/10 ≈ 2 exchanges before the
change, while variants of the form 20 + ... only one
exchange. This also explains why 10 + ... variants
are better than 20 + ....

Similarly, the type of information exchanged has
a relevant impact on the algorithm’s performance.
From the results obtained, it is worth noting that
exchanging the global best solution (g) between
mSQDEu and mSQDEl instances is the best
strategy, followed by the P and G. To see such
a difference, Fig. 6 shows the evolution over 100
changes in the environment, of the best fitness
before the change for variants 10 + g+ l, 10 +G+ l
and 10 + P + l.

The plots in left column (e.g. Fig. 6-a, c
and e), correspond to the upper-level subproblem.
On the other hand, the plots in the right column
(e.g. Fig. 6-b, d and f), show the evolution
of this measure for the lower-level subproblem,
where the objective function is f(y) = MPBl(y).
From these graphs it can be observed that g
variant achieves the best approach to the problem
optimum over time. In the case of the P variant
note that it has a similar performance, but with
an oscillating behavior, being more pronounced for
the G variants. Such behavior is better observed
in scenario DBOPupper (Fig. 6-b), where the
lower-level subproblem is stationary along the run.

Finally, in contrast with the when and what
schemes analysis, results showed that no sub-
stantial differences exist regarding how to perform
the exchange. However, a slight advantage is
observed for the l strategy, that is, with preference
on the lower sub-algorithm. Note that this result
holds for all scenarios. So far, the above
conclusions are based on very basic scenarios.
So, it would be interesting to verify whether these
“best” variants are also successful in other, more
complex scenarios.

The experiments in the next section will focus on
this aspect.

4.3 Results in More Complex Scenarios

Based on the previous results, we will explore the
performance of successful variants of the proposed
method over more complex scenarios. Specifically,
we focus on the variants using: {10, 20} +
{g,P}+ {l,u}. The combination of these schemes
correspond to eight different variants, where the
best ones from the previous section have been
included.

In this experiments, we just focus on the
DBOPboth scenario. One easy way to derive
more complex problem instances from DBOPboth
is to use different peak functions and search space
dimensions in the subproblems.

We consider the following peak functions:

fsphere(X) =

D∑
d=1

X2
d , (19)

fquadric(X) =

D∑
d=1

( d∑
i=1

Xi

)2

, (20)

.fschwefel(X) =

D∑
d=1

|Xd|+
D∏
d=1

|Xd|. (21)

In the former case, we consider different
combinations of these functions (including fcone),
for the upper-level and lower-level subproblems,
thus we obtain 16 new different instances based
on the DBOPboth scenario. In these cases, the
problem size is 10 (with 5 variables in the lower
and upper levels).
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Fig. 6. Evolution of the best error before the change for variants of the form 10 + {g,G,P} + l for the upper-level and
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Fig. 7. Statistical results from Friedman and Holm tests (α = 0.05) for the variants of the form {10, 20}+ {g,P}+ {u, l}
in DBOPboth scenario, varying the peak function (16 different problems) and dimensions(also 16 different problems)

Next and using just the function fcone, we
consider different combinations of problems sizes
at the lower and upper level.

The possible dimensions are D = {2, 5, 8, 11},
thus leading to 16 problem instances.

The results in terms of the average best error
before the change are shown in Tables 2 and 3.

Similar conclusions to the previous experiments
can be drawn. For instance, note that the best
variant is 10 + g + l for both groups of problem
instances, even for the more complex ones (final
rows of the tables).

In order to statistically confirm these results, we
again apply the Friedman test. The average rank
for each method variant in both groups of problem
instances is given in Fig. 7-a) and b). Note that we
also extend the analysis by considering the results
in all the problem instances (Fig. 7-c)). In all
cases, the 10 + g + l variant is found as the best
algorithm. However, according to the Holm’s test,
its superiority is only statistically significant when
all problem instances are considered.

5 Conclusion and Future Works

In this paper a hybrid approach for solving
dynamic bi-level optimization problems (DBOPs) is
proposed. Specifically, we focused on combining

a coevolutionary scheme with a multipopulation
mSQDE algorithm specifically designed for dy-
namic environments. While the coevolutionary
algorithm deals with the bi-level feature of the
problem, the mSQDE deals with the dynamic
optimization of the upper-level and lower-level
subproblems.

Several mechanisms for performing the infor-
mation exchange between the mSQDE instances,
were studied. Overall, the results from the
computational experiments revealed that, for the
scenarios considered, the decisions stating what
kind of information and when the exchange
process is made, have a more important impact
in the algorithm performance than how the
information exchange is done.

In order to further promote the research in this
direction, we included the tested algorithms and
problems in the recently proposed tool DynOptLab
[23]. The reader can find the related source code
at DynOptLab website1.
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