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Abstract. The Wind Farm Layout Problem (WFLP)
consists in the placement of eolic generators (either
in a grid, or at any position) into a delimited terrain.
Several factors are taken into account to solve the WFLP,
which include produced energy, costs - environmental,
installation, maintenance, etc-, average useful life
of turbines, among other. Likewise, optimization
techniques involve the use of one or more objective
functions, considering traditional as well as evolutionary
approaches. Differential Evolution (DE) is an algorithm
proposed for global optimization, whose operators are
both simple to program and to utilize, still providing good
convergence properties. The original authors of DE
suggested its first five variants, which are: best/1/bin,
best/2/bin, current− to− best/1/bin, rand/1/bin, and
rand/2/bin. In this article it is proposed the comparison
of five DE variants when they are used to solve 25
different instances of the WFLP; experimental results
show that DE/best/1/bin outperforms the remaining
algorithms in terms of convergence velocity as well as
in the quality of the obtained wind-farm.

Keywords. Evolutionary algorithm, differential evolution,
optimization, wind farm layout problem.

1 Introduction

Several human activities depend directly on fossil
fuels [37]; the continuity of such activities is
endangered by two main problems: first, the fact
that oil and its derivatives are finite resources
(with a maximum reserve for 150 years [37]),
and second, that they have a high environmental

impact [24]. Accordingly, since recent years [13]
research efforts are focused on making a better
exploitation of renewable resources, such as: sun’s
radiation [46, 44, 6, 57], geothermic energy [10, 36,
50], wind energy [29, 1], tidal energy [2], among
others.

From the aforementioned, wind is the most
abundant renewable resource, found at every
corner on the world [26]; therefore, improving the
capture of wind energy is an actual and important
issue of energy conversion [2].

One way to harness wind energy is by using
conversion systems which include eolic turbines,
that are capable of transforming mechanic energy
into electricity. Usually, those turbines are placed
over two kind of physical places: terrain or sea [5].

Such locations are commonly restricted by
physical space, environmental and/or economical
issues, interference among turbines, etc [34, 9].
Finding the optimal layout of wind farms, or Wind
Farm Layout Problem (WFLP), is an open problem
in scientific research [11, 35, 22, 4], because it
belongs to the NonPolinomial (NP) - class [55].

There are several factors considered in the
objective functions utilized to optimize the Wind
Farm Layout Problem (WFLP) [9]; the most
common are the costs associated with installation,
operation, and maintenance [34], used to find the
minimum cost of energy. Besides the use of an
objective function, it is also common to consider
restrictions in an optimization problem. In that
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sense, a restriction to optimize the WFLP is the
turbines location, due to the wake effect [48, 9].
Several models for the wake effect have been
proposed, with the Jensen model being the most
common [27], due to its mathematical simplicity,
it is easily programmed, and also because it
represents relatively well the wake decay effect,
when it is compared against more complicated
models [30].

In order to maximize the energy production it is
necessary to increase the utilization of the eolic
resource in the wind farm, while the restrictions
are kept. One way to tackle this kind of problems
is by using metaheuristic algorithms; this class
of algorithms is nature-inspired, population-based,
and is capable to find, relatively fast, good solutions
for optimization problems in reasonable times [59].
The utilization of such techniques to solve the
WFLP is a promising research area, as it was
stated by [4]. In accordance with such study,
several metaheuristic algorithms have been used
to solve such problem.

In that sense, it is considered that Genetic
Algorithm (GA) is the most used [9]; for example,
in [23], a simple GA is utilized to find the best
allocation of wind turbines into an equally spaced
grid. Authors in [18] proposed a modification to
individual codification in a GA in order to improve
the disposition of wind turbines into a similar grid,
while a weighted objective function is minimized.

Several researchers utilize similar grids, while
are introduced GA’s with improvements [21]. Other
metaheuristics were utilized in similar studies,
such as Ant Colony Optimization [20], Simulated
Annealing [51], Firefly algorithm [40], Coral Reef
Optimization [54], Imperialist Competitive algoritm
[32], Binary Differential Evolution (DE) [28], as well
as multiobjective Evolutionary Algorithms (EA) [34,
31]. In all the reviewed literature, every algorithm
was independently proposed to solve the WFLP;
however, authors in [31] state that there is a lack
of comparative studies for algorithms applied to
solve that problem; in such sense, in this work it
is proposed an advance in that direction, because
to the best of our knowledge, this has not been
addressed in the literature, at least for the variants
of DE utilized in this paper. In general terms, DE in
its several variants (e.g. canonical, hybridizations,

single, and multi-objective), as has been applied
to solve various problems not only in scientific but
also in industrial areas [15]. Considering the above
mentioned, in this work are used five variants of
the canonical DE for the offshore WFLP: best/1,
rand/1, current-to-best/1, best/2, and rand/2, with
all of them using the binomial crossover as well
as synchronous population update; it is important
to clarify that those versions were proposed in the
seminal work of Storn and Price [56, 16].

The remainder of this paper is as follows: in
section 2 is explained the wake effect model
proposed by Jensen [27]. Section 3 clarifies the
differences among the used algorithms, whereas
section 4 gives experimental setup and results,
which include some statistical results. Finally, in
section 5 are drawn some conclusions as well as
future work.

2 Wake Effect Modeling

Even though there are several wake effect models,
one of the simplest is the one proposed by [27];
in that model some assumptions are considered,
such as same height hubs, entrainment constant,
turbine radii, among others. Also, that model is
easy to program [48], which makes it one of the
most preferred. A simple representation of the
wake effect model is given in Figure 1, where the
first turbine’s wake is not affecting the second
turbine.
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Fig. 1. The Jensen model
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The reduced wind velocity, or the wake effect, is
given by next equation:

uij = u0 ·

(
1−

(
2 · a

(1 + γ · (xij/rij))2

))
, (1)

where u0 is the free wind speed, and it is
considered that rij is the radius of the wake at the
distance xij alongside the wake center:

rij = γ · xij + r0, (2)

with the axial induction factor represented by:

a =
1−
√

1− CT
2

, (3)

where CT is the thrust coefficient and γ is the
entrainment constant, or the wake decay constant,
calculated with:

γ =
0.5

ln (z/z0)
, (4)

where z is the hub height of the turbine, and z0 is
the surface roughness corresponding to the wind
farm terrain. The simplest case is when the second
turbine is completely immersed into the wake of
only one turbine, where the mean velocity is thus
given by Equations 1-4. However, this is not always
the case (Figure 2):

Ashadow,i

��
��

A0

zij

r0rij

d1 d2

Dij

radical

line

Aw

Fig. 2. Partial wake area

As it can be seen in this image, three cases could
be considered regarding the wake effect:

1. rij > Dij + r0,
2. rij ≤ Dij + r0 && rij ≥ Dij − r0,
3. rij < Dij − r0,

where Dij , is the distance between the wake
center and the center of the affected turbine and
r0 the turbine radius. For the first case, it happens
that Ashadow,i = A0, and therefore the velocity
received by the turbine j its proportional to the the
velocity leaving the turbine i. The third case is
the easiest, because the wake from turbine i is not
affecting the turbine j, and accordingly, Ashadow,i =
0. In the second case, in order to calculate
the area Ashadow,i, it is necessary to make some
trigonometric computations, considering the wake
area as well as the second turbine area:

Ashadow,i = r2ij ·
(
θω −

sin (2 · θω)

2

)
+

r20 ·
(
θτ −

sin (2 · θτ )

2

)
, (5)

or alternatively with:

Ashadow,i = r2ij · cos−1
[
d1
rij

]
+

r20 · cos−1
[
Dij − d1
rij

]
−Dij · zij , (6)

considering that:

θω = cos−1

[
D2
ij + r2ij − r20
2 ·Dij · rij

]
, (7)

θτ = cos−1

[
D2
ij + r20 − r2ij
2 ·Dij · r0

]
, (8)

A0 = π · r20, (9)
d1 = rij · cos (θω) , (10)

zij = 2 · rij · sin (θω) . (11)

A highlight is the fact that Dij is the distance
between the wake center and the center of the
affected turbine; considering that, as the wind
direction changes, such distance changes as well
(Figure 3).

Once that Ashadow,i and uij have been
calculated with the Equations 1 and 7, the next
step is to determine the velocity received by the
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Di 2

Fig. 3. Distances from wake center to second turbine
center

turbine j:

ūj = u0·

1−

√√√√ Nj∑
i=1,i 6=j

(
Ashadow,i

A0

)
·
(

1− uij
u0

)2


(12)

where Nj represents the number of turbines
affecting turbine j and A0 the circular area of each
turbine.

Finally, to calculate the power generated by a
turbine with a specific wind direction:

pk(ūj) =


0 ūj ≤ 2.3m/s,

0.3ūj
3 2.3 < ūj ≤ 12.8m/s,

630 12.8 < ūj ≤ 18m/s,
0 ūj > 18m/s.

(13)

In the consulted literature (e.g. [48], [9], [19]), in
order to estimate the energy produced by the wind
farm, three cases were considered:

Case 1: Uniform wind speed and direction:
k = 1, u0 = 8m/s.

Case 2: Uniform wind speed and variable
direction:
0 < k ≤ 360, u0 = 8m/s, fk = 0.02778.

Case 3: Variable wind speed and direction: See
Table 1.

In the interest of giving a more realistic scenario,
the experiments developed in this work only
consider the third case. Also, as the final power
obtained by the wind farm depends mainly on
the entrance velocity for each turbine, and such
velocities are at the same time dependent on the
shadow area of the wake, we propose to minimize
the next objective function:

g(y) = min (1 + λ2)

·

 Nt∑
j=1

Nj∑
i=1,i6=j

Nj · λ1 ·
(
Ashadow,i

A0

)
·
(
r0
rij

)2
 ,

(14)

where:

λ2 =

{
0 if @ d ≤ 400,
10 ∗ λ1 otherwise.

(15)

With respect to λ1, this is a factor empirically
selected to penalize the value of the objective
function g every time that any other turbine is closer
than a security distance to the other turbines in
the wind farm (usually, a standard value for such
distance is ten times the turbine radius [48]).

Table 1. Functions of probability density wind distribution

u0 = 8m/s u0 = 12m/s u0 = 17m/s
k fk fk fk

0 - 270 0.0042 0.0084 0.0112
280 0.0042 0.0107 0.0135
290 0.0042 0.0126 0.0163
300 0.0042 0.0149 0.0191
310 0.0042 0.0149 0.0302
320 0.0042 0.0195 0.0358
330 0.0042 0.0149 0.0307
340 0.0042 0.0149 0.0191
350 0.0042 0.0126 0.0163
360 0.0042 0.0102 0.0135

3 Differential Evolution

Since the appearing of Genetic Algorithms (GA)
[25], several Evolutionary Algorithms (EA) have
been proposed including several versions of
global optimization (mono-objective), and also
for the optimization of problems that include
several objective functions; some of those
algorithms are the Non-dominated Sortign Genetic
Algorithm II (NSGA-II) [38], the NSGA-III [39],
the Multiple Objective Particle Swarm Optimization
(MOPSO) [42], the Cellular Genetic Algorithm
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for Multiobjective Optimization (MOCell) [45], and
others. Every one of those algorithms are called
evolutionary in the sense that their operators are
inspired in the evolution theory, which was first
proposed by Darwin and later enhanced by Mendel
studies [52].

In this article, five variants of an EA, called
Differential Evolution (DE), are used to solve
the Wind Farm Layout Problem (WFLP). Some
comparisons are also presented in order to find
which one gives the best result for a given family of
problems [58], that are related to the performance
and quality of previously found solutions. The
DE algorithm was proposed by [56] as a global
optimization problem solver, and it has some
interesting characteristics: it holds few parameters
to tune, it is population-based, it does not use
gradient information, and its operators are inspired
by evolution, just to mention some of them [16].

3.1 Initialization

The first step in this algorithm consists in the
initialization of a population of Np individuals:

yi = yl + rand() ·
(
yu − yl

)
; i = 1, ...,Np, (16)

where yi ∈ RD and {yu, yl} ∈ RD. yi is a
vector that represents a candidate solution and
{yu, yl} the upper and lower limits of search space.
rand() is a vector of uniformly generated random
numbers.

After the initialization, the operators that are
proposed for each version make different path
searches over the solution space [16]. In the next
paragraphs some specific operators that belong to
each version are explained.

3.2 Mutation Variations

After the initialization, for each individual in the
population a mutant vector is generated. This is

achieved in several ways:

ymi = ybest + F ·
(
yr1 − yr2

)
;

DE/best/1/bin

ymi = yr1 + F ·
(
yr2 − yr3

)
;

DE/rand/1/bin

ymi = yi + F ·
(
ybest − yi + yr1 − yr2

)
;

DE/current− to− best/1/bin
ymi = ybest + F ·

(
yr1 − yr2 + yr3 − yr4

)
;

DE/best/2/bin

ymi = yr1 + F ·
(
yr2 − yr3 + yr4 − yr5

)
;

DE/rand/2/bin (17)

considering that r1 6= r2 6= r3 6= r4 6= r5 6= i are
integer numbers, that are randomly obtained from
a uniform distribution. ybest is the best candidate
solution found so far. The value of F is used as a
scaling factor to weight the difference between the
selected parents.

These equations represent the five canonical
variations proposed by [56]. Even tough there are
several other variants of Differential Evolution (DE)
[15], a more extensive comparison that considers
all of them is out of the scope of this work.

3.3 Crossover

Once the mutant vector is acquired, the next step
consists in completing a trial vector:

ycj =

{
ymj if rand() ≤ Cr ‖ j == jrand,
yij otherwise,

(18)
where 0 < Cr ≤ 1.0, and jrand is an integer
random number that ensures that at least one gene
from the candidate solution has changed. This
scheme is known as binomial crossover; other
two crossover versions are the exponential, and
the arithmetic recombination. Only the binomial
crossover scheme, given by Equation 18, is
actually employed in this article.
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3.4 Population Update

The final operator of this technique is called
selection:

yi =

{
yc if g(yc) < g(yi),
yi otherwise,

(19)

in which the trial vector is evaluated and compared
against the original individual. This step is applied
over the whole population (synchronous update);
in other words, at each iteration both a mutant
population, and a trial population are generated.
Finally, the operator called population update is
applied over the trial population.

The mentioned operators given by Equations
Equation 17 - 19 are applied to each individual of
the population until a certain criterion is reached,
which it is usually a maximum iteration number.

4 Numerical Experiments

4.1 Problem Instances of the WFLP

The methodology adopted in this article, that was
used to compare the Differential Evolution (DE)
variants, is similar to the one utilized in [33]. In that
sense, 25 instances of the WFLP were considered:
Nt ∈ [10, 20, 30, 40, 50], with physical terrain limits
given by yu ∈ [1000, 1500, 2000, 2500, 3000]. As it
can be seen from Nt, the size of the candidate
solution changes as the number of turbines
changes; this is because each candidate solution
is composed by the (pij ,qij) coordinates. For
example, consider a problem instance withNt = 10
and yu = 1000, and therefore D = 20; in this case,
a possible candidate solution is composed as:

yi = [pi1, pi2, pi3, ..., pi10, qi1, qi2, qi3, ..., qi10],

or alternatively as:

yi = [pij , qij ], i = 1, ...,Np; j = 1, ...,Nt,

whereas the box restrictions are:

yu = [1000, 1000, 1000, ..., 1000]; yl = [0, 0, 0, ..., 0];

and in a more general representation:

yu = [yuj ]; yl = [ylj ]; j = 1, ..., 2 ∗Nt.

Again, it is necessary to remark that the
problem’s dimension increases in a twofold
proportion with respect to the number of turbines
placed into each instance of the wind farm;
consequently, the WFLP instances considered
in this paper are of 20, 40, 60, 80, and 100
dimensions.

4.2 Parameters Optimization

The term ’meta-optimization’ (also called self-
adaptive methodology [47]) is considered a
relatively new concept, that consists in using a
high level optimization technique to obtain the best
tuning parameters of lower level optimization(s)
algorithm(s) [14], [60]. By following such idea,
in this article the Differential Evolution (DE)
version best/1/bin is utilized as the meta-algorithm,
and which was manually tuned by following the
suggestions given in [41], whereas the lower level
algorithms are the five DE variants examined
in this work. The fitness function utilized for
the meta-optimization is simply the sum of best
individuals [60] found after each iteration of the
meta-algorithm:

f(F1,Cr1,F2,Cr2,F3,Cr3,F4,Cr4,F5,Cr5) =

min

5∑
i=1

g(yibest), (20)

since the limits of the search space are:

yu = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0];

and

yl = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1];

F1, ...,F5 and Cr1 , ...,Cr5 , represents the scaling
factor of difference and the crossover factor
respectively, of each DE variant.

In the meta-optimization process, each candi-
date solution is a possible combination of the
tuning parameters for each DE variant; therefore,
the search space has 10 dimensions (D =
10). A simple graphic explanation of the
meta-optimization process, utilized in this work, is
given in Figure 4. As can be seen, in order to
evaluate the fitness function f , every of the five
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DE algorithms is executed once (200 iterations,
Nt = 46 and yu = 2000 [60], with the fitness
function g) with the actual candidate solution (e.g.
the tuning parameters), and the best individual
evaluations are added every run per algorithm
(Equation 20). Such process is repeated until the
best configuration of parameters is found (Table 2).

End

Begin

Initialization

Mutation

Crossover

Population 

update

ybest

Stopping 

criterion?

yes

no

yi

f(yi)

yc

f(yc) < f(yi)

(a) A flux diagram of a generic
DE

best/1/bin

yi

f(yi)

rand/1/bin

current2best/1/bin

best/2/bin

rand/2/bin

best/1/bin

yc

f(yc)

rand/1/bin

current2best/1/bin

best/2/bin

rand/2/bin

(b) The fitness function f

Fig. 4. A simple meta-optimizer

Table 2. Tuning Parameters

DE variant F Cr
best/1/bin 0.38 0.5
rand/1/bin 0.86 0.15
current− to− best/1/bin 0.84 0.15
best/2/bin 0.3 0.8
rand/2/bin 0.58 0.1

4.3 Wind Farm Considerations

In this article it is taken into account the fact that the
collocation of each turbine could be anywhere in
the offshore wind farm (e.g. [53, 47, 9]) as opposed
to other cases where it is divided in an equally
spaced grid of cells (e.g. [7, 8, 10]).

As mentioned before, with the idea of making
simulations as real as possible, in this paper it is
only considered the case when the wind speed

and direction are variable [12], according to a
certain probability density function. The wind farm
remaining parameters are standard values, usually
given by other authors in similar studies (e.g. [48]);
those values are: z0 = 0.3, z = 60, and CT = 0.88.

0 500 1500 2000x-coordinates
0

2000

y-
co

or
di

na
te

s

Fig. 5. A wake affecting other two turbines

Moreover, the objective function is mainly related
with the minimization of the shadow areas and
its accumulated penalties; in other words, the
main idea behind this objective function is to
minimize the number of turbines affecting to
each turbine in the wind farm. Lets consider
a possible configuration, as shown in Figure 5.
In this case, two turbines are both partially, and
completely immersed into the wake of a third
turbine; therefore, the shadow area of the first
turbines are respectively accumulated, together
with a penalization factor.

0 5 10 15 20 30 35 40 45 50Iteration

520

540

600

620

640

f(
x*

)

DE/best/1
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DE/current-to-best/1

DE/best/2

DE/rand/2

Fig. 6. Convergence of the algorithms after one run
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Table 3. Average best individuals for the 25 problem instances of the WFLP (in kWh)

Nt WF size best/1 rand/1 curtobest/1 best/2 rand/2
10 1000X1000 8846.81 8842.90 8848.45 8812.75 8839.03
10 1500X1500 8907.04 8908.09 8907.26 8891.01 8910.96
10 2000X2000 8944.64 8948.59 8943.72 8927.31 8948.54
10 2500X2500 8970.86 8970.45 8969.51 8957.80 8971.97
10 3000X3000 8989.90 8986.20 8988.10 8978.11 8987.19
20 1000X1000 16847.52 16845.48 16848.12 16724.52 16867.48
20 1500X1500 17318.15 17269.29 17289.16 17240.88 17308.15
20 2000X2000 17552.24 17511.51 17508.70 17463.40 17504.18
20 2500X2500 17665.67 17634.01 17633.32 17617.76 17617.71
20 3000X3000 17739.49 17721.21 17713.19 17708.64 17731.32
30 1000X1000 23887.42 23824.83 23815.34 23415.82 23834.04
30 1500X1500 25089.43 24938.36 24985.92 24878.41 24985.90
30 2000X2000 25669.91 25578.55 25555.24 25486.11 25571.06
30 2500X2500 25988.81 25906.26 25897.38 25885.10 25947.96
30 3000X3000 26180.01 26128.43 26117.32 26109.38 26164.00
40 1000X1000 29485.65 29457.23 29380.95 28777.05 29361.93
40 1500X1500 31956.53 31871.57 31879.86 31583.46 31925.59
40 2000X2000 33203.87 33074.22 33116.09 32976.35 33130.64
40 2500X2500 33873.82 33735.19 33734.12 33738.25 33796.71
40 3000X3000 34249.54 34206.96 34235.98 34180.89 34210.11
50 1000X1000 33726.53 33967.76 33948.51 32780.35 33931.54
50 1500X1500 37944.01 37942.27 37863.35 37387.27 37823.94
50 2000X2000 40088.87 40046.81 39997.65 39814.76 40071.16
50 2500X2500 41333.62 41117.88 41191.57 41016.10 41338.35
50 3000X3000 42051.30 41929.66 41950.96 41864.38 41945.04

4.4 Evaluation and Comparison of Algorithms

In this section are given the considerations with
respect to the evaluations of the performance for

the five Differential Evolution (DE) variants prior to
the experiments made in this work; for example,
the utilized algorithms were programmed in Matlab
9.0.0, run on a PC with an Intel i7 multicore
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Table 4. List of symbols for the WFLP

Name Description
a Axial induction factor
A0 Circular area of each turbine
Ashadow,i Area of the intersection between Aw and Ao
Aw Wake area at distance xij
CT Thrust coefficient
Dij Distance between the wake center and the affected turbine’s center
d Distance between turbine i center and turbine j center
Dij Distance between the wake center and the affected turbine’s center
d1 Distance between the wake center and the radical line center
d2 Distance between the affected turbine’s center and the radical line center
fk Probability density of wind distribution for wind direction k
k Wind direction
Nj Number of turbines affecting turbine j
Nt Number of turbines in the wind farm
pk(uj) Power generated by turbine j at wind direction k
r0 Turbine radius
rij Wake radius at distance xij
u0 Free wind speed
uij Reduced wind speed between turbine i and turbine j
uj Wind speed received by turbine j
xij Distance along the wake between turbine i and turbine j
z Turbine hub height
z0 Surface roughness
zij Height of Ashadow,i over the radical line
γ Entrainment constant, also called wake decay constant
θω Angle between rij and Dij

θτ Angle between r0 and Dij

λ1 Penalization factor related with a security distance among turbines

processor to 3.4 GHz, and with 16GB of RAM
memory.

In terms of the methodology, every algorithm was
executed 30 times for each problem instance (200
iterations per run, Figure 6), after which the best
results were averaged [33], obtaining 25 results per
DE version (Table 3); in order to determine the best
algorithm for the WFLP, those results were later
statistically compared by means of the Wilcoxon
non-parametric test [3, 43].

This test is used when the distribution of data is
unknown [17], and also to statistically probe two
hypotheses: on one hand, the null hypothesis,
which establishes that two samples came from
the same experiment, and on the other hand, the
alternative hypothesis, that considers that those

specimens are significantly different and, therefore,
they came from different experiments.

4.5 Results and Discussion

In this section are presented the results obtained
by each algorithm. A simple graphic representation
of those outcomes is depicted in Figure 7.

For the first 10 instances, it is clear that each
algorithm behaves in a similar fashion; in this
case, it is relatively easy for every algorithm
to place 10 and 20 turbines into each wind
farm, particularly when the terrain’s size increases,
which is the case for every Wind Farm Layout
Problem (WFLP) instance. However, as the
turbines’ number extends to 30, 40, and 50,
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Table 5. List of symbols for DE

Name Description
Cr Crossover factor
D Problem dimension
f Meta-optimization objective function
F Scaling factor of difference
g Shadow objective function
Np Population of candidate solutions
(p, q) Coordinates where a single turbine is placed
rand() Vector of uniformly generated random numbers
yi Vector that represents a candidate solution
yu, yl Upper and lower limits of the search space
ybest Best candidate solution found so far
yr1,r2,...,r5 Candidate solutions randomly taken from population
ymi Mutated vector
yci Trial vector

Table 6. Wilcoxon p-values for DE/rand/2/bin against the
other DE variants

best/1 vs. p-value Observation
rand/1 0.00054 Different
currenttobest/1 0.00049 Different
best/2 1.22903× 10−5 Different
rand/2 0.0022 Different

Table 7. Wilcoxon p-values for DE/best/1/bin against the
other DE variants

rand/2 vs. p-value Observation
rand/1 0.07800 Failure to reject

the null hypothesis
currenttobest/1 0.08265 Failure to reject

the null hypothesis
best/2 1.38980× 10−5 Different

the problems then become more complicated,
and therefore the differences of the algorithms
are more evident. From the same graphic,
it can be seen that in many instances, the
DE/best/2/bin has the poorest performance. Yet,
in order to give a detailed statistical explanation
to the depicted results (shown in Table 3),
the outcomes of the Wilcoxon non-parametric
test are displayed in Table 6. As it can be
seen after reviewing Table 3, the best technique
seems to be the DE version best/1/bin, and

therefore, it is statistically compared against the
remaining algorithms; according to those results,
that algorithm is the best to solve the WFLP, at
least for the considered problem instances. In
other words, for every pair of algorithms and
based on the Wilcoxon non-parametric test, it
can be concluded with a confidence of 5% that
the algorithm DE/best/1/bin outperforms every
other algorithm in the given experimental set,
and therefore is the most adequate to tackle
the offshore WFLP, at least under the conditions
mentioned in this article. Finally, the second best
algorithm was selected, which according to Table
3 is the so-called rand/2. That algorithm was
compared against the remaining three (Table 6);
the results suggest that the performance of the
algorithms rand/2, rand/1, and current-to-best/1, is
quite similar. In that sense, it can be considered,
with a confidence of the 5%, that every algorithm
behaves in a similar way for the problem at hand.
For the WFLP, it can be considered that DE/best/2
has the poorest efficiency (Table 3-6).

5 Conclusions and Future Work

In this paper is proposed a comparison among five
different DE algorithms that are utilized to solve the
Wind Farm Layout Problem (WFLP). After running
the algorithms several times, it can be statistically
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stated that the version DE/best/1/bin finds the best
results regarding to the quality of the obtained
solution. As it has been stated, a possible future
venue in the area of Offshore Wind Farm Layout
Optimization could be the contrast between other
variants of DE, such as hybridizations in order to
find the most appropriate algorithm that delivers a
better solution for the aforementioned problem.

Even though it has been only mentioned in
this article, another established research area in
renewable energy is the use of parallel as well as
multiobjective optimization approaches [4], [53]; in
that sense, a possible extension for this work is
the application of several multi-objective algorithms
such as the NSGA-II [38], the NSGA-III [39], the
MOPSO [42], the MOCell [45], etc., for the WFLP
optimization, assuming the objective function that
has been proposed in this work. Likewise, the
Net Present Value [53], the Energy Yield [49],
the Cost of Energy [9], and others can also
be considered. Moreover, in order to produce
further improvements, the use of more than two
objective functions could be potentially achieved
by means of using the first two as the functions
being optimized, while the remaining are kept as
restrictions for the WFLP.
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(2005). Nonparametric rank-based statistics and
significance tests for fuzzy data. Fuzzy Sets and
Systems, Vol. 153, No. 1, pp. 1–28.

18. Emami, A. & Noghreh, P. (2010). New approach
on optimization in placement of wind turbines
within wind farm by genetic algorithms. Renewable
Energy, Vol. 35, No. 7, pp. 1559–1564.

19. Emami, A. & Noghreh, P. (2010). New approach
on optimization in placement of wind turbines
within wind farm by genetic algorithms. Renewable
Energy, Vol. 35, No. 7, pp. 1559–1564.

20. Eroglu, Y. & Seckiner, S. U. (2012). Design of wind
farm layout using ant colony algorithm. Renewable
Energy, Vol. 44, No. C, pp. 53–62.

21. Feng, J. & Shen, W. (2015). Solving the wind farm
layout optimization problem using random search
algorithm. Renewable Energy, Vol. 78, pp. 182–192.
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