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Abstract. Due to its multiple applications, parameter 
identification for fractional-order chaotic systems has 
attracted the interests of several research communities. 
In the identification, the parameter estimation process 
is transformed into a multidimensional optimization 
problem where fractional orders, as well as functional 
parameters of the chaotic system are considered the 
decision variables. Under this approach, the complexity 
of fractional-order chaotic systems tends to produce 
multimodal error surfaces for which their cost functions 
are significantly difficult to minimize. Several algorithms 
based on evolutionary computation principles have 
been successfully applied to identify the parameters of 
fractional-order chaotic systems. However, most of 
them maintain an important limitation; they frequently 
obtain sub-optimal results as a consequence of an 
inappropriate balance between exploration and 
exploitation in their search strategies. This paper 
presents an algorithm for parameter identification of 
fractional-order chaotic systems. In order to determine 
the parameters, the proposed method uses the 
evolutionary method called Locust Search (LS), which 
is based on the behavior of swarms of locusts. Different 
to the most of existent evolutionary algorithms, it 
explicitly avoids the concentration of individuals in the 
best positions, eliminating critical flaws such as the 
premature convergence to sub-optimal solutions and 
the limited exploration-exploitation balance. Numerical 
simulations have been conducted on the fractional-
Order Van der Pol oscillator to show the effectiveness 
of the proposed scheme. 

Keywords. Locust search, fractional-order systems, 
evolutionary computation, parameter identification, Van 
der Pol oscillator. 

1 Introduction 

A fractional order model is a system that is 
characterized by a fractional differential equation 

containing derivatives of non-integer order. 
Several engineering problems, such as 
transmission lines [1], electrical circuits [2] and 
control systems [3], can be more accurately 
described by fractional differential equations than 
integer order schemes. For this reason, in the last 
decade, the fractional order systems [4–8] have 
attracted the interests of several research 
communities. 

System identification is a practical way to 
model a fractional order system. However, 
because the mathematical interpretation of 
fractional calculus is lightly distinct to integer 
calculus, it is difficult to model real fractional order 
systems directly based on analytic mechanisms 
[9]. For classical integer order system, once the 
maximum order of the system has been defined, 
the parameters of the model can be identified 
directly. However, for a fractional order system, 
because identification requires the choice of the 
fractional order of the operators, and the 
systematic parameters, the identification process 
of such systems is more complex than that of the 
integer order models [10]. Under such conditions, 
most of the classical identification methods 
cannot directly applied to identification of a 
fractional order systems [11]. 

The problem of estimating the parameters of 
fractional order systems has been commonly 
solved through the use of deterministic methods 
such as non-linear optimization techniques [12], 
input output frequency contents [13] or 
operational matrix [14]. These methods have 
been exhaustively analyzed and represent the 
most consolidated available tools. The interested 
reader in such approaches can be referred to [15] 
for a recent survey on the state-of-the-art. 
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As an alternative to classical techniques, the 
problem of identification in fractional order 
systems has also been handled through 
evolutionary methods. In general, they have 
demonstrated, under several circumstances, to 
deliver better results than those based on 
deterministic approaches in terms of accuracy 
and robustness [16]. Under these methods, an 
individual is represented by a candidate model. 
Just as the evolution process unfolds, a set of 
evolutionary operators are applied in order to 
produce better individuals.  

The quality of each candidate solution is 
evaluated through an objective function whose 
final result represents the affinity between the 
estimated model and the actual one. Some 
examples of these approaches used in the 
identification of fractional order systems involve 
methods such as Genetic Algorithms (GA) [17], 
Artificial Bee Colony (ABC) [18], Differential 
Evolution (DE) [19] and Particle Swarm 
Optimization (PSO) [20]. Although these 
algorithms present interesting results, they have 
an important limitation:  

They frequently obtain sub-optimal solutions 
as a consequence of the limited balance between 
exploration and exploitation in their search 
strategies. This limitation is associated to their 
evolutionary operators employed to modify the 
individual positions. In such algorithms, during 
their operation, the position of each individual for 
the next iteration is updated producing an 
attraction towards the position of the best particle 
seen so-far or towards other promising 
individuals. Therefore, as the algorithm evolves, 
such behaviors cause that the entire population 
rapidly concentrates around the best particles, 
favoring the premature convergence and 
damaging the appropriate exploration of the 
search space [21, 22]. 

This paper presents an algorithm for 
parameter identification of fractional-order chaotic 
systems. In order to determine the parameters, 
the proposed method uses a novel evolutionary 
method called Locust Search (LS) [23, 31, 32] 
which is based on the behavior of swarms of 
locusts. In the proposed algorithm, individuals 
emulate a group of locusts which interact to each 
other based on the biological laws of the 
cooperative swarm. 

The algorithm considers two different 
behaviors: solitary and social. Depending on the 
behavior, each individual is conducted by a set of 
evolutionary operators which mimics different 
cooperative conducts that are typically found in 
the swarm. Different to most of existent 
evolutionary algorithms, the behavioral model in 
the proposed approach explicitly avoids the 
concentration of individuals in the current best 
positions. Such fact allows avoiding critical flaws 
such as the premature convergence to sub-
optimal solutions and the incorrect exploration-
exploitation balance. Numerical simulations have 
been conducted on the fractional-Order Van der 
Pol oscillator to show the effectiveness of the 
proposed scheme. 

The paper is organized as follows. In Section 
2, the concepts of fractional calculus are 
introduced. Section 3 gives a description for the 
Locust Search algorithm. Section 4 gives a brief 
description of the fractional-order Van der Pol 
Oscillator. Section 5 formulates the parameter 
estimation problem. Section 6 shows the 
experimental results. Finally some conclusions 
are discussed in Section 7. 

2 Fractional Calculus 

Fractional calculus is a generalization of 
integration and differentiation to non-integer order 
fundamental operator. The differential-integral 
operator, denoted by q

a t
D  takes both the 

fractional derivative and the fractional integral in a 
single expression which is defined as: 
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1, 0,

( ) , 0,

q

q

q

a t

t

q

a

d
q

dt

D q

d qτ


 >



= =

 <

∫

 (1) 

where a and t represents the operation bounds 

whereas q∈ℜ . The commonly used definitions 

for fractional derivatives are the Grünwald-
Letnikov, Riemann-Liouville [24] and Caputo [25]. 
According to the Grünwald-Letnikov 
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approximation, the fractional-order derivative of 
order q is defined as follows: 
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In the numerical calculation of fractional-order 
derivatives, the explicit numerical approximation 

of the q-th derivative at the points , ( 1,2,...)kh k =

maintains the following form [26]: 
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where mL  is the memory length kt kh= , h, is the 

time step and ( )1
j q

j
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 are the binomial 

coefficients. For their calculation we can use the 
following expression: 
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Then, the general numerical solution of the 
fractional differential equation is defined as 
follows: 

( )

1

( ) ( ( ), ) ( ).
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3 Locust Search (LS) Algorithm 

In the operation of LS [23], a population k
L

1 2({ , , , })…
k k k

N
l l l  of N locusts (individuals) is 

processed from the initial stage (k=0) to a total 

gen number iterations (k= gen ). Each individual k

i
l  

( [ ]1, ,i N∈ … ) symbolizes an n-dimensional vector 

{ },1 ,2 ,, , ,k k k

i i i n
l l l… where each dimension represents 

a domain variable of the optimization problem to 
be solved. The set of variables represents the 

valid search space { },

k n k

i d i d d
lb l ub= ∈ ≤ ≤S l ℝ , 

where d
lb  and d

ub represents the lower and 

upper bounds for the d dimension, respectively. 

The quality of each element k

i
l  (candidate 

solution) is evaluated by using the objective 

function ( )k

i
f l . In LS, at each iteration consists of 

two operators: (A) solitary and (B) social. 

3.1 Solitary Operation (A)  

In the solitary operation, a new location i
p (

[ ]1, ,i N∈ … ) is generated by modifying the current 

element location k

i
l with a change of position i

∆l  

( )k

i i i
= + ∆p l l .  i

∆l  is the result of the individual 

interactions experimented by k

i
l as a consequence 

of its biological behavior. Such interactions are 
pairwise computed among k

i
l and the other N-1 

individuals in the swarm. Therefore, the final force 

exerted between k

jl  and k

i
l  is computed by 

considering the following model: 

( , ) ( ) (1, 1),m k k

ij i j ij ij
s r randρ= ⋅ ⋅ + −s l l d  (6) 

where ( ) /k k

ij j i ijr= −d l l is the unit-vector, pointing 

from k

i
l to k

jl . Furthermore, rand(1,-1) is an number 

randomly produced between 1 and -1. The factor

( )
ij

s r represents the social relation between k

jl  

and k

i
l , which is calculated as follows: 

/
( ) .ij ijr L r

ij
s r F e e

− −
= ⋅ −  (7) 

Here, 
ij
r  is the distance between k

jl  and k

i
l , F 

represents the strength of attraction whereas L is 
the attractive length factor. It is assumed that F<1 
and L>1 so that repulsion is stronger in a shorter-
scale, while attraction is applied in a weaker and 

longer-scale. ( , )k k

i jρ l l  is a function that 

calculates the dominance value of the best 

element between k

jl  and k

i
l . In order to operate

( , )k k

i jρ l l , all the individuals from k
L (

1 2{ , , , }
k k k

N
l l l… ) 

are arranged in terms of their fitness values. 
Therefore, a rank is assigned to each element, so 
that the best individual obtains the rank 0 (zero) 
whereas the worst individual receives the rank N-

1. Under such conditions, the function ( , )k k

i jρ l l  is 

defined as follows: 
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where rank(α) delivers the rank of the α-element. 

According to Eq. 8, ( , )k k

i jρ l l gives a value within 

[0,1]. Fig. 1 shows the behavior of ( , )k k

i jρ l l

considering 100 elements. In the Figure, it is 

assumed that k

i
l represents one of the 99 

individuals with ranks among 0 and 98 whereas 
k

jl is fixed to the worst individual (rank 99). 

Then, the resultant force m

i
S  on each element 

k

i
l  is computed as the superposition of all of the 

pairwise interactions exerted on it: 

1

.

N

m m

i i j

j
j i

=
≠

= ∑S s  
(9) 

Finally, i
∆l is assumed similar to the social 

force experimented by k

i
l as the superposition of 

all of the pairwise reciprocal forces. 

Consequently, i
∆l  is represented as follows: 

.
m

i i
∆ =l S  (10) 

After calculating the new locations  
P 1 2({ , , , })…

N
p p p  of the population 

k
L

1 2({ , , , })…
k k k

N
l l l , the final locations  

F( 1 2{ , , , }
N

f f f… ) must be computed. This 

procedure can be summarized by the following 
formulation (in terms of a minimization problem): 

if  ( )< ( ), 

otherwise.

k

i i i

i k

i

f f
= 


p p l
f

l
 (11) 

3.2 Social Operation (B)  

The social operation is a discriminating operation 
which considers only to a subset E  of the final 

positions F (where ⊆E F ). In the process first is 

necessary to order F in terms of their fitness 
values and collect the individuals in a temporal 

population { }1 2, , , N=B b b b… . The individuals of B 

are arranged so that the best element is located 

in the first position 1b { }1,1 1,2 1,, , ,…
n

b b b whereas the 

worst individual is situated in the last location N
b . 

Under such conditions, E is composed by the first 
g position of B (the best elements). Then, a 
subspace 

j
C  is defined around each selected 

element
j
∈f E . The size of 

j
C  depends on the 

distance d
e which is determined as follows: 

( )
1

,

n

q q

q

d

ub lb

e
n

β
=

−

= ⋅

∑
 

(12) 

where 
q

ub  and 
q

lb  are the upper and lower limits 

of the q-th dimension, n  is the number of 
dimensions of the optimization problem, whereas 

[ ]0,1β ∈  is a tuning factor. Therefore, the bounds 

of 
j

C  are modeled as follows: 

,

,

,

,

q

j j q d

q

j j q d

uss b e

lss b e

= +

= −
 (13) 

where q

juss and q

jlss  are the upper and lower limits 

of the q-th-dimension for the subspace 
j

C ,  

respectively. Once creating the subspace 
j

C  in 

the neighborhood of the element
j
∈f E , a set of h 

new elements ( { }1 2, , ,h h

j j j j
=M m m m… ) are 

randomly produced within the limits defined by 
Eq. 13. Considering the h samples, the new 

 

Fig. 1. Behavior of  ( , )
k k

i jρ l l  considering 100 individuals 
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individual 1k

j

+l  of the next population 1k +L must be 

extracted. In order to select 1k

j

+l , the best element 
best

jm , in terms of fitness value from the h samples 

(where best

jm ∈
1 2, , , h

j j j
  m m m… ), is examined. If 

best

jm is better than jf according to their fitness 

values, 1k

j

+l is updated with best

jm , otherwise the 

position of jf is assigned to 1k

j

+l . The elements of 

F that have not been considered by the 
procedure (

w
∉f E ) transport their corresponding 

values to 1k +L without variation.  

The social operation is used to exploit only 
favorable solutions. According to the social 
operation, inside each subspace

j
C , h random 

samples are produced. Since the number of 
selected elements in each subspace is very small 
(typically 4h < ), the use of this operator cannot be 
considered computational expensive. 

4 Fractional-order Van der Pol 
Oscillator 

The Van der Pol Oscillator model has been 
extensively studied as a complex example of non-
linear system. It provides important models for a 
wide range of dynamic behaviors for several 
engineering applications [26, 27]. The classical 
integer-order Van der Pol Oscillator is described 
by a second-order non-linear differential equation 
as follows: 

1 1

2

2 1 2

0 1
,

1 ( ( ) 1)

y y

y y t yε

     
=     − − −     

ɺ

ɺ
 (14) 

where ε is a control parameter that reflects the 
nonlinearity degree of the system. On the other 
hand, the fractional-order Van der Pol Oscillator 
model of order q is defined by the following 
formulation [28]: 

1

2

0 1 2
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0 2 1 1 2

( ) ( ),
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q

t
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D y t y t
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Considering the Grünwald-Letnikov 
approximation (see Eq. 5), the numerical solution 

for the fractional-order Van der Pol Oscillator is 
given by: 

1 1

2 2
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1 2 1 1

1
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2 1 1 2 1 2

1

( ) ( ) ( ),
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k
q q
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j

k
q q

k k k k j k j

j

y t y t h c y t

y t y t y t y t h c y t

 (16) 

5 Problem Formulation 

In the proposed approach, the identification 
process is considered as a multidimensional 
optimization problem. In the optimization process, 
the parameters of a new fractional-order chaotic 

system E
FOC  are determined by using the LS 

method from the operation of the original 

fractional-order chaotic system O
FOC .  

The idea is that E
FOC  presents the best 

possible parametric affinity with O
FOC . Under 

such circumstances, the original fractional-order 

chaotic system O
FOC can be defined as follows:  

( , , ),
a t
D Y F=q

0
Y Y θ  (17) 

here
1 2[ , ,..., ]

T

m
y y y=Y denotes the state vector of 

the system,
0

Y symbolizes the initial state vector, 

1 2[ , ,..., ]
T

m
θ θ θ=θ represents the original 

systematic parameter set, 
1 2[ , ,..., ]

T

m
q q q=q for 

0 1
i

q< <  ( [1, , ])i m∈ … corresponds to the 

fractional derivative orders and F is a generic non-
linear function. On the other hand, the estimated 
fractional-order chaotic system 

E
FOC  can be 

modeled as follows: 

ˆ

0
ˆˆ ˆ( , , )a tD Y F=q

Y Y θ , (18) 

where Ŷ , θ̂and q̂denotes the estimated state 

system, the estimated systematic parameter 
vector and the estimated fractional orders, 

respectively. Since the goal is that EFOC  

presents the best possible parametric affinity with

OFOC , the problem can be approached as an 

optimization problem described by the following 
formulation:  
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ˆ ˆ( , )
, arg  m in ( ( , )),q J qθ θ

∈Ω
=

Y q
 (19) 

where , qθ  denotes the best possible parametric 

values obtained by the optimization process, Ω  
symbolizes the search space admitted for 

parameters ( Ŷ and q̂) whereas J represents the 

objective function that evaluates the parametric 
affinity between OFOC and EFOC . This affinity 

can be computed as follows: 

2

1

1 ˆ( , ) ( ( ) ( )) ,
M

k

J q k k
M

θ
=

= −∑ Y Y  (20) 

where ( )kY  and ( )kYɶ represent the state values 

produced by the original and estimated systems, 
respectively. On the other hand, k denotes the 
sampling time point and M represents the length 
of data used for parameter estimation. According 
to the optimization problem formulated in Eq. 19, 
the parameter identification can be achieved by 

searching suitable values of Ŷ and q̂  within the 

searching space Ω, such that the objective 
function has been minimized.  

Fig. 2 shows the graphic representation of the 
identification process. Since the fractional-order 
Van der Pol oscillator has been chosen to test the 
performance of the proposed approach, the 
fractional-order system maintain two different 

fractional derivative orders  
1 2[ , ]

T
q q=q  (m=2) 

and one systematic parameter ε . 

6 Experimental Results 

To verify the effectiveness and robustness of the 
proposed approach, the fractional-order Van der 
Pol oscillator is chosen to test its performance. 
The simulations has been conducted by using 
MATLAB (Version 7.1, MathWorks, Natick, MA, 
USA) on an Intel(R) Core(TM) i7-3470 CPU, 3.2 
GHz with 4 GB of RAM. In order to calculate the 
objective function, the number of samples is set 
as 300 and the step size is 0.01.  

In this section, the results of the LS algorithm 
have been compared to those produced by the 
Genetic Algorithms (GA) [17], Particle Swarm 
Optimization (PSO) method [20], the Differential 
Evolution (DE) [19], and the proposed method. In 
all comparisons, the population has been set to 
40 (N=40) individuals. The maximum iteration 
number for all functions has been set to 100. Such 
stop criterion has been selected to maintain 
compatibility to similar works reported in the 
literature [16].  

The parameter setting for each of the 
algorithms in the comparison is described as 
follows: 

1. GA: The population size has been set to 70, 
the crossover probability with 0.55, the 
mutation probability with 0.10 and number of 
elite individuals with 2. The roulette wheel 
selection and the 1-point crossover are 
applied. 

2. PSO: In the method,  1 2 2c c= =  whereas the 

inertia factor (ω) is decreased linearly from 
0.9 to 0.2. 

3. DE: The DE/Rand/1 scheme has been 
employed. The parameter settings follow the 
instructions suggested in [30]. The crossover 
probability is CR=0.9 whereas the weighting 
factor is F=0.8. 

4. In LS, F and L are set to 0.6 and L, 
respectively. Similarly, g is fixed to 20 (N/2), 
h=2, 0.6=β  whereas gen and N are set to 

1000 and 40, respectively. Once such 
parameters have been experimentally 
determined, they are considered for all 
experiments in this section. 

In the experiments, the fractional-order Van 
der Pol Oscillator to be estimated has been 

Σ
J

+

−

0Y

1 2, ,...,
m

Y Y Y

1 2
ˆ ˆ ˆ, ,..., mY Y Y

 

Fig. 2. Evolutionary Algorithm for Fractional-order 
System Parameter Estimation 
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configured such that 1 1.2q = , 2 0.8q =  and 1ε = . 

Similarly, the initial state has been set to 
[0.02- 0.2]. 

The statistical results of the best, the mean 
and the worst estimated parameters with the 
corresponding relative error values over 100 

independent runs are shown in Table 1. From 
Table 1, it can be easily seen that the estimated 
values generated by the proposed LS algorithm 
are closer to the actual parameter values, which 
means that it is more accurate than the standard 
GA, PSO and DE algorithms.  

Table 1. Simulation result of the algorithms GA, PSO, DE and LS 

 Parameter GA PSO DE LS 

BEST 

ε  0.9021 0.9152 0.9632 0.9978 

1

1

ε −
 0.0979 0.0848 0.0368 0.0022 

1q  1.3001 1.2810 1.2210 1.2005 

1 1.2

1.2

q −
 0.0834 0.0675 0.0175 0.0004 

2
q  0.8702 0.8871 0.8229 0.8011 

2 0.8

0.8

q −
 

 

0.0877 0.1088 0.0286 0.0013 

WORST 

ε  0.1731 0.1176 0.3732 0.7198 

1

1

ε −
 0.8269 0.8824 0.6268 0.2802 

1q  2.1065 0.3643 1.8532 1.3075 

1 1.2

1.2

q −
 0.7554 0.6964 0.5443 0.0895 

2
q  0.1219 1.7643 1.2154 0.9101 

2 0.8

0.8

q −
 

 

0.8476 1.2053 0.5192 0.1376 

MEAN 

ε  1.2131 1.2052 1.1701 1.0186 

1

1

ε −
 0.2131 0.2052 0.1701 0.0186 

1q  0.9032 1.0974 1.3421 1.2654 

1 1.2

1.2

q −
 0.2473 0.0855 0.1186 0.0545 

2
q  0.9052 0.7229 0.7832 0.8089 

2 0.8

0.8

q −
 0.1315 0.0963 0.0210 0.0111 
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Likewise, it can also be clearly found that the 
relative error values obtained by the LS algorithm 
are all smaller than those of the standard GA, 
PSO and DE algorithms, which can also prove 
that the LS algorithm has a higher performance in 
terms of accuracy. Therefore, the estimated 
parameters can be closer to the true values than 
the GA, PSO and DE algorithms.  

With this evidence, it can be concluded that 
the LS algorithm can more efficiently identify a 
fractional-order systems than the other algorithms 
used in the comparisons.  Therefore, the 

estimated parameters can be closer to the true 
values than the GA, PSO and DE algorithms.  

With this evidence, it can be concluded that 
the LS algorithm can more efficiently identify a 
fractional-order systems than the other algorithms 
used in the comparisons. In order to show the 
proficiency, of the proposed approach, Figure 3 
presents the phase diagrams of the Van der Pol 
Oscillator by using the mean estimated 
parameters for each method. 

The convergence curves of the parameters 
and fitness values estimated by the set of 

  

(a) (b) 

  

(c) (d) 

Fig. 3. Phase diagrams of the Van der Pol Oscillator by using the mean estimated parameters for (a) GA, (b) PSO, (c) 
DE and (d) the proposed approach 
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algorithms are shown in Figures 4-6 in a single 
execution. From Figures 4-6, it can be clearly 
observed that convergence processes of the 
parameters and fitness values of LS algorithm are 
better than other algorithms. Additionally, the 
estimated parameter values obtained by the LS 
algorithm fall faster than the other algorithms. 

Furthermore, Table 2 shows the average best 
solution obtained by each algorithm. The average 
best solution (ABS) expresses the average value 
of the best function evaluations that have been 
obtained from 100 independent executions. A 
non-parametric statistical significance test known 
as the Wilcoxon’s rank sum test for independent 
samples [30, 31] has been conducted with an 5% 
significance level, over the “average best-
solution” data of Table 2.  

Table 3 reports the p-values produced by 
Wilcoxon’s test for the pair-wise comparison of 
the “average best-solution” of two groups. Such 
groups are formed by LS vs. GA, LS vs. PSO and 
LS vs. DE. As a null hypothesis, it is assumed that 
there is no significant difference between mean 
values of the two algorithms.  

The alternative hypothesis considers a 
significant difference between the “average best-
solution” values of both approaches. All p-values 
reported in the table are less than 0.05 (5% 
significance level) which is a strong evidence 
against the null hypothesis, indicating that the LS 
results are statistically significant and that it has 
not occurred by coincidence (i.e. due to the 
normal noise contained in the process). 

On the other hand, the time spent by all 
methods in the estimation of the parameter set is 
evaluated. Evolutionary methods are, in general, 
complex pieces of software with several operators 
and stochastic branches. Therefore, it is difficult 
to conduct a complexity analysis from a 

Table 2. Average best solution obtained by each 
algorithm GA, PSO, DE and LS 

GA PSO DE LS 

0.2251 0.2016 0.0982 0.0126 

Table 3. p-values produced by Wilcoxon’s test that 
compares LS vs GA, LS vs PSO and DE over the 
“average best-solution” values from Table 3 

 p-values 

LS vs. GA 0.00021 

LS vs. PSO 0.00098 

LS vs. DE 0.00123 

Table 4. Average Number of Function Evaluations 
(NFE) obtained by each algorithm GA, PSO, DE 
and  LS 

GA PSO DE LS 

97,378 95,366 68,446 55,933 

 

 
Fig. 4. Estimated parameter 1

q (fractional order). 

 

 
Fig. 5. Estimated parameter 2

q (fractional order). 

 

 
Fig. 6. Estimated systematic parameter ε . 
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deterministic perspective. Therefore, the number 
of function evaluations (NFE) is commonly used 
in order to evaluate the computational effort. 
Table 4 presents the NFE values obtained by 
each approach. The Table reports the averaged 
value considering 100 different executions. From 
the table, it can be seen that the proposed LS 
method present the best performance. 

7 Conclusions 

Due to its multiple applications, parameter 
identification for fractional-order chaotic systems 
has attracted the interests of several research 
communities. In the identification, the parameter 
estimation process is transformed into a 
multidimensional optimization problem where 
fractional orders, as well as functional parameters 
of the chaotic system are considered the decision 
variables. Under this approach, the complexity of 
fractional-order chaotic systems tends to produce 
multimodal error surfaces for which their cost 
functions are significantly difficult to minimize. 
Several algorithms based on evolutionary 
computation principles have been successfully 
applied to identify the parameters of fractional-
order chaotic systems. However, most of them 
maintain an important limitation, they frequently 
obtain sub-optimal results as a consequence of 
an inappropriate balance between exploration 
and exploitation in their search strategies. 

In this paper, an algorithm for parameter 
identification of fractional-order chaotic systems 
has been presented. In order to determine the 
parameters, the proposed method uses a novel 
evolutionary method called Locust Search (LS) 
[R1] which is based on the behavior of swarms of 
locusts. In the proposed algorithm, individuals 
emulate a group of locusts which interact to each 
other based on the biological laws of the 
cooperative swarm.  

The algorithm considers two different 
behaviors: solitary and social. Depending on the 
behavior, each individual is conducted by a set of 
evolutionary operators which mimics different 
cooperative conducts that are typically found in 
the swarm. Different to most of existent 
evolutionary algorithms, the behavioral model in 
the proposed approach explicitly avoids the 

concentration of individuals in the current best 
positions. Such fact allows to avoid critical flaws 
such as the premature convergence to sub-
optimal solutions and the incorrect exploration-
exploitation balance. 

In order to test the proficiency and robustness 
of the presented method, it has been compared to 
other algorithms based on evolutionary principles 
such as GA, PSO and DE. The comparison 
examines the identification of the fractional Van 
der Pol Oscillator. The results show a high 
performance of the proposed descriptor in terms 
of precision and robustness. 
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