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Abstract. The µ-calculus is an expressive modal
logic with least and greatest fixed-point operators. This
formalism encompasses many temporal, program and
description logics, and it has been widely applied in a
broad range of domains, such as, program verification,
knowledge representation and concurrent pervasive
systems. In this paper, we propose a satisfiability
algorithm for the µ-calculus extended with converse
modalities and interpreted on unranked trees. In contrast
with known satisfiability algorithms, our proposal is
based on a depth-first search. We prove the algorithm
to be correct (sound and complete) and optimal. We
also describe an implementation. The extension of the
µ-calculus with converse modalities allows to efficiently
characterize standard reasoning problems (emptiness,
containment and equivalence) of XPath queries. We also
describe several query reasoning experiments, which
shows our proposal to be competitive in practice with
known implementations.

Keywords. Calculus, automated reasoning, depth-first
search, XPath.

1 Introduction

The propositional µ-calculus is a modal logic
with least and fixed-point operators, expressively
corresponding to the monadic second order logic
MSO [9]. This logic is known to subsume many
temporal, program and description logics such as

Preliminary results were presented in [11, 12]

the Linear Temporal Logic LTL, the Propositional
Dynamic Logic PDL, the Computation Tree Logic
CTL and ALCreg, which is an expressive descrip-
tion logic with negation and regular roles [4]. Due
to its expressive power and nice computational
properties, the µ-calculus has been extensively
used as a reasoning framework in a wide range
of domains, such as program verification, kno-
wledge representation and concurrent pervasive
systems [4]. In concurrent pervasive systems,
logic-based reasoning frameworks have been
successfully tested in context-aware scenarios [2,
3]. In this paper, we propose a reasoning
(satisfiability), algorithm for the µ-calculus with
converse, where formulas are interpreted over
finite unranked tree models. The algorithm is
based on a depth-first search, and its complexity is
optimal, that is, exponential time with respect to the
input formula. We also describe an implementation
of the algorithm.

XPath is the standard query language for
semi-structured data (XML). This query language
also takes an important role in many XML
technologies, such as, XProc, XSLT and XQuery.
Although the full XPath query language is known to
be undecidable [15], the µ-calculus with converse
has been successfully used as a reasoning
framework for the navigation core of XPath, known
as regular path queries [5, 7]. We also describe
a logic characterization of regular path queries
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in terms of µ-calculus formulas. Since the
logic is closed under negation and the proposed
algorithm is optimal, our implementation can be
used for optimal standard reasoning (emptiness,
containment and equivalence), of regular path
queries.

1.1 Related Work

The validity/satisfiability problem of the µ-calculus
is in EXPTIME-complete [4]. Furthermore,
in [4], several µ-calculus extensions are studied:
converse programs (modalities), allows expressing
backwards (past) properties; nominals are special
formulas to denote individuals; and graded
modalities express numerical constraints on node
occurrences. The µ-calculus extended with either
converse and nominals, converse and graded
modalities, or nominals and graded modalities
are also complete in EXPTIME. However, the
extension consisting of all three features (nominals,
converse and graded modalities), known as the
fully enriched µ-calculus, leads to undecidability.

These results were obtained by the development
of corresponding automata machinery, which was
not reported to be implemented. Tableau-based
decision algorithms for the µ-calculus with con-
verse and nominals, converse and functional
modalities (restricted graded modalities), and
nominals and functional modalities are presented
in [13].

The complexity of these algorithms is also
single exponential time. Implementations of the
algorithms are also described. In contrast with this
work, where the logic formulas are interpreted over
Kripke structures (graphs), in the current paper, we
propose a satisfiability algorithm for µ-calculus with
converse over finite unranked trees.

A decision algorithm for the monadic second
order logic, equally expressive as the µ-calculus,
was proposed in [8]. This algorithm, based on
automata, was shown useful in practice on the
verification of hardware and programs, however its
complexity is non-elementary.

In [5], it is also introduced an automata
machinery for the µ-calculus with converse over
trees. This machinery supports model checking
in linear time and decidability in exponential

time. Also in this case, implementation is not
reported. Another EXPTIME decision algorithm
for this logic, the µ-calculus with converse over
trees, is presented in [7]. This algorithm is
based on a breadth-first search in the style of
Fischer-Ladner [6]. In the current paper, we also
propose a Fischer-Ladner algorithm, but based in a
depth-first search. Experiments show competitive
results with respect to the breadth-first search
algorithm.

XPath has been widely studied before from the
formal perspective [15, 5, 7].

Although it is known that the full language is
undecidable [15], several complexity results have
been obtained for decidable fragments. The
navigation core of XPath, containing all features
to allow multi-directional navigation (children,
siblings, ancestors, descendants, etc.), is known
as regular path queries. Emptiness, containment
and equivalence of regular path queries are known
to be in EXPTIME [5].

The sole known reasoning solver reported so
far for regular path queries can be found in [7].
In this paper, we also describe several reasoning
experiments for regular path queries. These
experiments show that our implementation is
competitive in running time with respect to the
other known implementation.

1.2 Outline

We first introduce the µ-calculus with converse
modalities in Section 2. Then in Section 3,
we introduce the notion of Fischer-Ladner trees,
which is the syntactic structure constructed by the
satisfiability algorithm, which is described in detail
in Section 4. Also in this section, it is shown that
the algorithm is correct (sound and complete) and
optimal (EXPTIME). In Section 5, we describe a
linear characterization of regular path queries in
terms of µ-calculus formulas. We also report in this
section several query reasoning experiments. We
conclude in Section 6, with a summary of the paper
together with a brief discussion of further research
perspectives.
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2 The µ-Calculus on Trees

In this section, we introduce the µ-calculus with
converse. Formulas are interpreted over finite
unranked trees. The alphabet is considered by two
sets, PROP and MOD, where PROP is a set of
proposition and MOD = {1, 2, 3, 4}, is the set of
modalities.

Definition 1 (Syntax). The set of µ-calculus
formulas is defined by the following grammar:

ϕ ::= p | X | ¬ϕ | ϕ ∨ ψ | 〈m〉ϕ | µX.ϕ

where p is a proposition, m a modality, and X is a
variable.

We assume variables can only occur bounded
and in the scope of a modality.

Formulas are interpreted as subset nodes in
unranked trees. Propositions are used as labels
for nodes, negation (¬), is interpreted as set
complement, disjunctions are interpreted as set
union. We write φ ∧ ϕ instead of ¬(¬φ ∨ ¬ϕ).

Modal formulas 〈m〉φ holds in nodes where there
is an m-adjacent node supporting φ. The least
fixed-point is intuitively interpreted as a recursion
operator.

We now present the tree structures defined in
style of kripke.

Definition 2 (Tree structure). A tree structure, or
simply a tree, is a tuple (N ,Rm,L) where:

— N is a set of nodes;

— Rm is a family of binary relations of nodes (N×
N) forming a tree structure; and

— L is a function labeling L : N 7→ 2PROP .

we give a formal description of the semantic of a
formula, where V ar is a set of fixed-point variables,
2N is the power set of nodes:

sust(V ,K,X,ϕ) :=V ′(Y ) = V (Y ) where Y 6= X.

sust(V ,K,X,ϕ) :=V ′(Y ) = JϕKKV where Y = X.

Definition 3 (Semantics). Consider a tree K and
a valuation V : V ar 7→ 2N , where V ar is a set of
variables. The semantics of the formula is defined
as follows:

n1

n2 n3

n4

p1

p2 p4

p3

Fig. 1. Tree model example where φ = µX.(p3 ∨ 〈1〉X),
then n1 = {φ, 〈1〉p2, p1}, n2 = {φ, p2} , n3 = {p4} and
n4 = {φ, p3}

JpKKV = {n | p ∈ L(n)},
J¬ϕKKV = N\JϕKKV ,

Jϕ ∨ ψKKV = JϕKKV ∪ JψKKV ,
J〈m〉ϕKKV = {n | R(n,m) ∩ JϕKKV 6= ∅},

JXKKV = V (X),
JµX.ϕKKV =

⋂
{N ′ | JϕKKV [µX.ϕ/X ] ⊆ N

′}.

A formula φ is satisfiable, if and only if, there is
a tree (model), such as the interpretation of φ over
the tree is not empty, that is JφKKV 6= ∅.

Example 1. In Figure 1, there is a graphical
representation of tree model. Consider for instance
the following formula:

〈1〉p2 ∧ p1,

This formula selects nodes names p1 with a child
named p2. In Figure 1, this formula holds in n1.
Recursive navigation can be expressed with the
fixed-point:

µX.(p3 ∨ 〈1〉X) ∧ 〈1〉p2 ∧ p1.

This formula holds in a p1 node with a descendant
p3 at node n4 and a child p2 at node n2. In Figure 1,
this formula also holds in n1.

3 Fischer-Ladner Trees

The satisfiability algorithm builds a syntactic
version of tree structures, called Fischer-Ladner
trees [6], where nodes are sets of subformulas. In
this Section, we define this notion of trees.
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There is a well-know bijection between n-ary
and binary trees: one relation is for the first-child
(parent), and the other for the following (previous)
sibling. In Figure 2, there is a graphical
representation of this bijection. Hence, without loss
of generality, for technical convenience, we work
on binary trees. Also, modal formulas should be
re-interpreted:

— 〈1〉ϕ holds in nodes where its first child
supports ϕ;

— 〈2〉ϕ is interpreted in nodes where ϕ holds in
its following (right) sibling;

— 〈3〉ϕ stands where ϕ is the parent; and

— 〈4〉ϕ where ϕ is the previous (left) sibling.

We also consider formulas in negation normal
form only: negation only occurs in front of
propositions and formulas 〈m〉>, where > stands
for p ∨ ¬p. We then define the following function.

nnf(X) = ¬X,
nnf(p) = ¬p,

nnf(ϕ ∨ ψ) = nnf(ϕ) ∧ nnf(ψ),
nnf(〈m〉ϕ) = 〈m〉nnf(ϕ) ∨ ¬〈m〉>,
nnf(µX.ϕ) = µx.nnf(ϕ)

[
X/¬X

]
.

We then define the negation normal form of a
formula, as the resulting formula of replacing
negations ¬ϕ with nnf(ϕ).

Some notions are required before introducing
Fischer-Ladner trees.

Definition 4. We define a binary relation RFL on
formulas with i = 1, 2 :

RFL(ϕ,nnf(ϕ)), RFL(ϕ1 ∧ ϕ2,ϕi),
RFL(〈m〉ϕ,ϕ), RFL(µX.ϕ,ϕ[µx.ϕ/X ]),

RFL(ϕ1 ∨ ϕ2,ϕi).

Definition 5 (Fischer-Ladner Closure). Given a
formula ϕ, the Fischer-Ladner closure of ϕ is
defined as FL(ϕ) = FL(ϕ)k, where k is the
smallest positive integer satisfying FL(ϕ)k =
FL(ϕ)k+1, where:

FL(ϕ)0 = {ϕ},
FL(ϕ)i+1 = FL(ϕ)i ∪ {ψ′ | RFL(ψ,ψ′),ψ ∈ FL(ϕ)i}.

n

n n

n . . . n

n . . . n

n

n n n . . . n

n . . . n

Fig. 2. Example the transformation of tree n-ary with the
binary tree [1]

We now define the lean set for the syntactic
nodes. This set is intuitively composed by the
propositions and modal subformulas of the input
formula. The propositions are used to name the
nodes, and modal subformulas give the topological
information of candidate trees.

Definition 6 (Lean). Given a formula ϕ and a
proposition p′ not occurring in ϕ, the lean of ϕ is
defined as follows for all m ∈MOD:

lean(ϕ) = {p, 〈m〉ϕ ∈ FL(ϕ)} ∪ {p′, 〈m〉>}.

Example 2. Consider the following formula:

ϕ = 〈1〉〈1〉¬p1∧〈1〉¬p1∧¬p1∧µX.(p1∨〈1〉X)∧〈2〉p2∧p3.

The lean of ϕ is defined as follows:

lean(ϕ) = {p1, p2, p3, 〈1〉¬p1, 〈1〉〈1〉¬p1, 〈1〉µX.(p1∨
〈1〉X), p′, 〈2〉p2, 〈1〉>, 〈2〉>, 〈3〉>, 〈4〉>}.

We are now ready to define nodes in Fischer-
Ladner trees.

Definition 7 (Nodes). Given a formula ϕ, a node
in Fischer-Ladner trees is defined as subset of
lean(ϕ), such as:

— it contains at least one proposition;

— if 〈m〉ψ occurs in it, also 〈m〉> does;

— both 〈3〉> and 〈4〉> do not occur in it.

Example 3. Consider the same formula and
corresponding lean as in Example 2. We then
define the following nodes:

— n1 : {p3, 〈1〉µX.(p1 ∨ 〈1〉X), 〈1〉¬p1, 〈1〉〈1〉¬p1,
〈2〉p2};

— n2 : {p′, 〈1〉¬p1, 〈1〉µX.(p1 ∨ 〈1〉X)};
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— n3 : {p′, 〈1〉µX.(p1 ∨ 〈1〉X)};

— n4 : {p1};

— n5 : {p2}.

And we now finally define Fischer-Ladner trees.

Definition 8 (Fischer-Ladner Tree). We inductively
define Fischer-Lader trees as follows:

— The empty tree ∅ is a Fischer-Ladner tree; and

— (n,X1,X2) is a Fischer-Ladner tree, provided
that n is a node (called the root), and X1 and
X2 are Fischer-Ladner trees.

when clear from context, we often write simply a
tree instead of a Fischer-Ladner tree.

Example 4. Consider the nodes in Example 3. We
then define the following tree:

T = (n1, (n2, (n3, (n4, ∅, ∅), ∅), ∅), (n5, ∅, ∅)),

Figure 3, ilustrates the tree.

4 Depth-First Search Based
Satisfability Algorithm

In this section we describe satisfiability algorithm
of µ-calculus based on depth-first search. The
Algorithm 1 decides whether a formula is
satisfiable or unsatisfiable. In the main function
the algorithm creates the required nodes. Then
the nodes are iterated. The satisfiability algorithm
builds the tree starting from the node that satisfies
the formula. This node is used as a candidate and
from it begins the construction of the tree. Once the
node is selected, the algorithm enters the search
function.

The Algorithm 2, shows the search function.
When the formula is p,>,¬p or ¬〈m〉>, then,
the algorithm evaluates the satisfiability of the
node and returns true. If it contains fixpoint,
then, algorithm makes its expansion and called
the function search. The cases for disjunction
and conjunction, the algorithm invokes the search
function on both sides. When the formulas have
the form of modality, it searches the next node. The
formula can contain modalities 〈1〉, 〈2〉, 〈3〉or〈4〉.

n1

n2 n5

n3

n4

p3

p′

p′

p1

p2

Fig. 3. Fischer-Ladner tree model for ϕ = 〈1〉〈1〉¬p1 ∧
µX.(p1 ∨ 〈1〉X)∧ 〈1〉¬p1 ∧¬p1 ∧ 〈2〉p2 ∧ p3, where n1 =
{p3, 〈1〉µX.(p1 ∨ 〈1〉X), 〈1〉¬p1, 〈1〉〈1〉¬p1, 〈2〉p2}, n2 =
{p′, 〈1〉¬p1, 〈1〉µX.(p1 ∨ 〈1〉X)}, n3 = {p′, 〈1〉µX.(p1 ∨
〈1〉X)}, n4 = {p1} and n5 = {p2}

The current node is deleted from the list of
nodes, the algorithm obtains a list of the following
nodes with the next function, the node list is
iterated and the tree is updated. It is called the
search function, if it returns false, thus, the next
node is removed from the tree. Each time a node is
added, it is passed to the status used and it can not
be reused in subsequent levels of the tree, avoiding
in such a way to build an infinite tree. If there
are not more nodes to search, then the algorithm
returns false. The algorithm ends when all nodes
have been traveled or the tree is built.

Now we define when a formula is satisfiable.

Definition 9. Given a formula φ and a node n, we
define the satisfiability n ` φ as follows:

n ` >
,

ϕ ∈ n
n ` ϕ

,
n ` ϕ

n ` ϕ ∨ ψ
,

n ` ψ
n ` ϕ ∨ ψ

,
ϕ /∈ n
n ` ¬ϕ

,
n ` ϕ n ` ψ
n ` ϕ ∧ ψ

,

n ` ϕ[µx.ϕ/x]

n ` µx.ϕ
.

The ∆m function is responsible for verifying the
union of one node with respect to another node
through a modality m. Where n′ is possible to join
node, n1 the current node, m are modalities 〈1〉 or
〈2〉, m̄ are reverse modalities 〈3〉 or 〈4〉 and 〈m〉ϕ
modal formula.
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Definition 10. Given two nodes n, n′ and formula
ϕ, it is determined that these nodes are consistent
with respect to the formula ∆m(n,n′) where
m ∈ {1, 2, 3, 4}, if and only if modal formulas
〈m〉ϕ1, 〈m̄〉ϕ2 ∈ lean(ϕ), it states the following:

— ∀〈m〉ϕ ∈ lean :〈m〉ϕ ∈ n⇔ n′ ` ϕ,

— ∀〈m̄〉ϕ ∈ lean :〈m̄〉ϕ ∈ n′ ⇔ n ` ϕ.

Example 5. Given the formula ϕ = 〈1〉〈1〉¬p1 ∧
〈1〉¬p1 ∧¬p1∧ µX.(p1 ∨ 〈1〉X) ∧ 〈2〉p2 ∧ p3 used in
Example 2 the unions are the following:

— ∆m(n1,n2),

— ∆m(n1,n5),

Algorithm 1 Depth-first search satisfiability algo-
rithm for µ-calculus with converse over trees

function MAIN(φ)
Y ← Nφ

T ← ∅
for all ni of Y do

if ni ` φ then
T ← (ni, ∅, ∅)
if search(ni,ni,φ) then

return true
else

T ← ∅
end if

end if
end for
return false

end function

— ∆m(n2,n3)

— ∆m(n3,n4)

where n1 = {p′, 〈1〉µX.(p1 ∨ 〈1〉X), 〈1〉¬p1,
〈1〉〈1〉¬p1, 〈2〉p2, p3}, n2 = {p′, 〈1〉¬p1, 〈1〉µX.(p1 ∨
〈1〉X)}, n3 = {p′, 〈1〉µX.(p1 ∨ 〈1〉X)}, n4 = {p1}
and n5 = {p2}.

These nodes are consistent because the child
nodes contain the witnesses of the modal formulas.

The next function obtains the set of nodes
subsequent to a candidate node. This function
is defined by a triplet of elements (n, 〈m〉ϕ,Y ).
Where n is the current node, 〈m〉ϕ modal formula,
Y the set of nodes unused and T is tree.

Definition 11 (Nodes). Given a tree T , the nodes
function is defined as follows:

— nodes(∅) = {},

— nodes((n,T1,T2)) = {n} ∪ nodes(T1) ∪
nodes(T2),

A node Tn is denoted as follows:

— Tn is a n ∈ nodes(T ).

Definition 12 (SubTree). The subtree T ′ of a given
tree T (T ′ ⊆ T ) is defined as follows:

— T ⊆ T ,

— T ⊆ (n,T1,T2) if T ⊆ T1 or T ⊆ T2,

Definition 13 (Root). The root(T ) function takes
the tree as input and returns a node root of the
tree.

— root(∅) = ∅,

— root((n,T1,T2)) = n.

Definition 14 (neighborhood). Given a tree T
and node n, the neighborhood function obtains
adjacent nodes. Considering that exist trees T ′,T1
and T2:

— parent(n,T ) = n′ such that, (n′,Tn,T ′) ⊆ T ,

— child(n,T ) = n′ such that, (n, (n′,T1,T2),T ′) ⊆
T ,

— ps(n,T ) = n′ such that, (n′,T ′,Tn) ⊆ T ,

— fs(n,T ) = n′ such that, (n,T ′, (n′,T1,T2)) ⊆
T ,

— neighborhood(n,T ) = {parent(n,T ),
child(n,T ), ps(n,T ), fs(n,T )}.

Definition 15 (Delete). Given a tree T and node n,
the node is removed of tree, the Delete function is
defined as follows:

— delete(∅,n)= ∅,

— delete((n,T1,T2),n)= (∅,T1,T2),
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Algorithm 2 Search function of the satisfiability
algorithm

function SEARCH(n0,n1,ϕ)
if ϕ = p then

if p ∈ n1 then
return true

end if
end if
if ϕ = ¬p then

if p /∈ n1 then
return true

end if
end if
if ϕ = ¬〈m〉> then

if 〈m〉> /∈ n1 then
return true

end if
end if
if ϕ = > then

return true
end if
if ϕ = φ1 ∧ φ2 then

if search(n0,n1,φ1) and
search(n0,n1,φ2) then
return true

end if
end if
if ϕ = φ1 ∨ φ2 then

if search(n0,n1,φ1) or
search(n0,n1,φ2) then
return true

end if
end if
if ϕ = 〈m〉φ then

Y ← Y \{n1}
X ← next(n1, 〈m〉φ,Y ∪ {n0},T )
for all nj of X do

T ← update(T ,n1,nj ,m)
if search(n1,nj ,φ) then

return true
else

T ← delete(T ,nj)
end if

end for
end if
if ϕ = µx.φ then

return search(n0,n1,φ[
µx.φ/x])

end if
return false

end function

— delete((n′,T1,T2),n)=
(n′, delete(T1,n), delete(T2,n)),

where n 6= n′.

Definition 16 (Update). Given a tree T , two
different nodes n and n′ and a modality m, the
Update function is defined as follows:
When n′ /∈ nodes(T ),
– update((n,T1,T2),n,n′, 3) = (n′, (n,T1,T2), ∅),
– update((n,T1,T2),n,n′, 4) = (n′, ∅, (n,T1,T2)),
– update((n, ∅,T2),n,n′, 1) = (n, (n′, ∅, ∅),T2),
– update((n,T1, ∅),n,n′, 2) = (n,T1, (n′, ∅, ∅)),
– update((n′′,T1,T2),n,n′,m) = (n′′, update(T1,n,
n′, m), update(T2,n,n′,m)),
– update(∅,n,n′,m)= ∅.
When n′ ∈ nodes(T ),
– update(T ,n,n′,m)= T ,
where m is modality, T is Tree and n is a node.

Definition 17 (Next). Given two nodes n,n′ and a
formula. We say that, these nodes are consistent
modally with regard to formula, it is denoted by
∆m(n,n′), if and only if, for all formulas 〈m〉φ,
〈m̄〉φ and T is tree, the next function is defined as
follows:

— next(n, 〈m〉ϕ,Y ,T ) = {n′ ∈ Y ∪
neighborhood(n,T ) | ∆m(n,n′)},
where m = 1, 2, 3, 4.

Theorem 1 (Soundness). If the satisfiability
algorithm returns true for the input formula φ, then
there is tree model satisfying φ:

Proof. By induction on the formula φ. If the
algorithm returns true, we know that there is a tree
T = (n,T1,T2). We will now construct a tree model
K(T ) = (N ,R,L).

— N = {n|n is a node in T};

— We now define the edges ofK. For every triple
(n,T1,T2) of T , we define R(n, 1) = n1 and
R(n, 2) = n2, thus R(n1, 3) = n and R(n2, 4) =
n, provided that n1 and n2 are the respective
roots of T1 and T2

— if a proposition p ∈ n and a node n ∈ N , then
L(n) = p.
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We now show that K(T ) satisfies φ by induction.

When the formula φ has the form: p,>,¬p or
¬〈m〉>, then, the algorithm stops and returns true.
Hence, there exists a node n to consider. The
tree model is T = (n, ∅, ∅) and T ` φ. From
Definition 9 of n ` φ, we know that φ is satisfiable.
The tree structure is K = ({n}, ∅,L(n)). Thus, in
the case p then p ∈ L(n). Now in the case ¬p
where p /∈ L(n). For the case > is valid in the node
without restriction. Finally, in the case ¬〈m〉> is
valid when 〈m〉> /∈ n. Therefore φ is satisfied by
K(T ).

The cases for disjunction and conjunction are
also easy. Thus, if it is a disjunction ϕ1 ∨ ϕ2, then
where at least one ϕ1 or ϕ2 is satisfied by n ` ϕ1

or n ` ϕ2. The structure tree is T = (n,T1,T2)
and T ` ϕ1 ∨ ϕ2. Now by induction K(T ) |= ϕ1

or K(T ) |= ϕ2, thus K(T ) |= ϕ1 ∨ ϕ2. Therefore
ϕ1 ∨ ϕ2 is satisfied by K(T ).

In the case of a conjunction ϕ1 ∧ϕ2, both ϕ1 and
ϕ2 are satisfied by n ` ϕ1 and n ` ϕ2 hence T `
ϕ1 ∧ϕ2, then by induction K(T ) |= ϕ1 and K(T ) |=
ϕ2. Therefore ϕ1 ∧ ϕ2 is satisfied by K(T ).

The case where φ is a modal formula 〈m〉ϕ.
As we know that n′ ` ϕ, thus there is a subtree
T ′ of T , then we apply induction in T ′ ` ϕ and
K(T ′) |= ϕ, where we define K1 = (N ′,R′,L′),
hence K0 = (N ,R,L) where N = N ′ ∪ {n}, R =
R′ ∪{(n,m,n′), (n, m̄,n′)} and L = L′ ∪{(n, p)|n `
p}. Therefore 〈m〉ϕ is satisfied by K(T ).

The case for φ is a fix-point formula µX.ϕ. Let
us recall that there exists an expansion equivalent
in fixed-point formula: JµX.ϕKKV = Jϕ[µX.ϕ/X ]KKV
shown in the article [14].We know that there is a
tree T ` ϕ[µX.ϕ/X ]. Recall variables can only
occur in the scope of a modality. Therefore, we
remember that this form only exists where the
formula is ψ1 ∨ ψ2, ψ1 ∧ ψ2 or 〈m〉ψ but they were
shown above.

Theorem 2 (Completeness). If a formula φ is
satisfiable, then the algorithm returns true.

Proof. By assumption, we know that given a tree
structure K that satisfies a formula φ. The
algorithm builds a tree that satisfies φ and return
true. This proof is divided in two steps. First we
build a tree of φ with K structure and we show how
a tree T satisfies φ. Second step we show how a
tree can be built where φ is satisfied.

We will now construct a K structure T (K) =
(n,T1,T2).

— for every node n inK, there is a corresponding
node n′ in T (K), such that for every ϕ in
lean(φ), if n ∈ JϕKK∅ , then ϕ ∈ n′; and

— for every node n0 in K, if RK(n0, 1) = n1
, RK(n0, 2) = n2, RK(n1, 3) = n0 and
RK(n2, 4) = n0, then (n′0,T1,T2) is a subtree
of T (K), where root(Ti) = n′i(i = 1, 2) and
n′1, n′2 and n′0 are the corresponding nodes,
defined in the previous step, of n1, n2 and
n0. When RK(n0, i)(i ∈ {1, 2}) is not defined,
then Ti = ∅.

We now show that T (K) satisfies the formula φ.
We consider a tree structure satisfying the

formula φ. By induction on a formula φ. When the
formula φ has the form: p,>,¬p or ¬〈m〉>, these
are the base cases. The tree structure satisfying φ
is a T = (n, ∅, ∅) where n is a candidate node. In
the case of p is in the lean, the T in T (K) satisfies
p. In the case when φ is >, then any T is fine. Now
in the cases where φ is ¬p and ¬〈m〉φ, none of
them belong to the lean. Thus φ is ¬p and ¬〈m〉φ
must satisfy the tree T , thus T (K) |= φ.

The cases for disjunction and conjunction are
also easy. Thus, if it is a disjunction ϕ1∨ϕ2, now by
induction T (K) |= ϕ1 or T (K) |= ϕ2, thus T (K) |=
ϕ1 ∨ ϕ2. otherwise , if it is a conjunction ϕ1 ∧ ϕ2,
now by induction T (K) |= ϕ1 and T (K) |= ϕ2, thus
T (K) |= ϕ1 ∧ ϕ2.

The case where φ is a modal formula 〈m〉ϕ.
Then we know that 〈m〉ϕ is in the lean, according
to T (K), then ϕ corresponding the corresponding
node n′ in T (K) of n contains 〈m〉ϕ, hence T (K) |=
〈m〉ϕ.

In the case when φ is a fix-point formula µX.ϕ.
Let us remember that there is an equivalent
expansion in fix-point formula: JµX.ϕKKV =
Jϕ[µX.ϕ/X ]KKV . We recall that X variables can
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only occur in the scope of a modality. Therefore,
we remember that only exist this form where the
formula is ψ1 ∨ ψ2, ψ1 ∧ ψ2 or 〈m〉ψ and they were
shown above. The variables in fix-point occur only
in the modalities, thus they never occur in this case.

We consider the tree structure K satisfying a
formula φ, and we follow by induction on φ. The
base case is easy, since K is (n, ∅, ∅). In the first
case all nodes are created. Then φ enter to the
search function and is evaluated in the base cases.
When the formula φ has the form: p,>,¬p or
¬〈m〉> it is immediate. In the cases of disjunction
and conjunction the search function is called with
each subformula. The case for φ is a fix-point
formula µX.ϕ, it calls the search function with
equivalent expansion in fix-point formula. When
φ has the form 〈m〉ϕ, the formula is evaluated in
φ = 〈m〉ϕ and called the next function, where
the following nodes are searched. After that,
the tree K is updated to the next node calling
the update function. We know that the update
function generates the relationship of two nodes
and updates the tree. Then by induction, we know
the tree T (K) has been produced by the algorithm
in search function. Therefore T (K) is built by the
algorithm.

Theorem 3 (Complexity). The satisfiability algo-
rithm is in EXPTIME.

Proof. Notice that, the lean has linear size K with
respect to the formula φ size. Notice the Nφ size
is exponential with respect to the lean size. The
next step is to initialize the tree. Hence, the first
loop is clearly at most exponential. The next step is
n ` φ, then the cost is linear. Assigning node to the
tree (T ← (ni, ∅, ∅)) is also a step. Now the search
function has distinct cases. In the case where φ is
p is a step, the next step p ∈ n the cost is linear.
Now in the case where φ is ¬p is a step, the next
step is ¬p /∈ n, then the cost is linear. In the case
where φ is ¬〈m〉> is also a step, the next step is
〈m〉> /∈ n, then the cost is linear. Finally when the
case where φ is > is a step. In the case where the
formula is φ1 ∨φ2 and φ1 ∧φ2, thus search function
is k-steps until the formula expands and ends in a
base case.

The formula is expanded when it obtains a
subformula of main formula. When the formula is

〈m〉φ is a step. Besides, when it removes the node
from the list (Y ← Y \{n1}), the cost is at most
exponential time because it iterates all the set of
nodes. The next function has an exponential time
cost. This function obtains nodes that can join
and the nodes are used in the next cycle. The
update function perform a assignation of tree, the
assignment is a step. But the search for Update
function in the tree is at most exponential. The next
step is to expand the formula and get the modal
formula. Then call the search function.

Now if the search function return false, the tree
is modified with the Delete function. The Delete
function reassigns the tree, this assignment is a
step but the search in the Delete function in the
tree is at most exponential. Now in case where
the formula is µX.φ, then µX.φ is exponential
and limits the number of nodes [10]. However if
the search function returns false, the algorithm
generates possible branches. Hence, the branch
created has backtracking when the search function
returns false. Consequently, the algorithm can be
generating false branches. Hence the number of
branches is: (1/2)n(n+ 1). Hence, the tree size is
at most exponential.

5 Regular Path Queries

In this section, we introduce the XPath queries.
XPath language is used to navigate XML
documents.

Definition 18 (Syntax). The set of queries is
defined as follows.

% := > | α | p | α : p | %/% | %[β]
β := β ∨ β | ¬β | ρ
ρ := % | /ρ | ρ ∩ ρ | ρ ∪ ρ | ρ\ρ
α := self | child | parent | descendant |

desc−or−self | desc−or−self |
ancestor | anc−or−self |
foll−sibling | prec−sibling |
following | preceding

Definition 19 (XPath semantics). The semantics
of XPath queries is defined by function J·K· with
respect to a structure K, to pairs of nodes in K.
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J>KK = N ×N
JpKK = {(n,n) | p ∈ L(n)}
JαKK = {(n1,n2) | n1

α→ n2}
Jα : pKK = {(n1,n2) ∈ JαKK | p ∈ L(n2)}

J%1/%2KK = J%1KK ◦ J%2KK
J%[β]KK = {(n1,n2) ∈ J%KK | n2 ∈ J[βK]K}

J[%K]K = {n2 | (n1,n2) ∈ J%KK}
J[¬βK]K = N\J[βK]K

J[β1 ∨ β2K]K = J[β1K]K ∪ J[β2K]K
J/%KK = {(r,n) ∈ J%KK | r is the root }

Jρ1 ∩ ρ2KK = Jρ1KK ∩ Jρ2KK
Jρ1 ∪ ρ2KK = Jρ1KK ∪ Jρ2KK
Jρ1\ρ2KK = Jρ1KK\Jρ2KK

where the function J[·K]· is used for the qualifiers or
filters and it is distinguished from the interpretation
of the path J·K·.

Example 6. Let us consider the following example:

/descendant : q

where we select the descendant node with the
proposition q. The path is evaluated from the root
and find the node with proposition q. Another
example, let us consider the following path:

descendant : q/parent : p

The path select the descendant q and this contains
a parent p.

Figure 4 shows the query for two previous
examples. Then, the query /descendant : q select
the n3 and the query descendant : q/parent : p
select the n2.

Definition 20 (Reasoning problems). We define
the containment, emptiness and equivalence in the
context of regular path queries.

— A query ρ is empty, if and only if, for every tree
K, its interpretation is empty, that is, JρKK = ∅;

— A query ρ1 is contained in a query ρ2, if and
only if, for every tree K, each pair of nodes in
the interpretation of ρ1 is in the intepretation of
ρ2, this is, Jρ1KK ⊆ Jρ2KK ; and

n1

n2

n3

root

p

q

Fig. 4. Model of the queries:/descendant : q and
descendant : q/parent : p

— Two queries ρ1 and ρ2 are equivalent, if and
only if, for every tree K, ρ1 is contained in ρ2
and vice versa, that is, Jρ1KK ⊆ Jρ2KK and
Jρ2KK ⊆ Jρ1KK .

Regular queries can be expressed as µ-calculus
formulas. Now we show the characterization of the
formulas Xpath to terms of the µ-calculus inspired
by [7].

Definition 21 (XPath queries into µ-calculus
formulas). Given a context formula C, the
translation F from regular path queries into
µ-calculus is defined as follows:

F (self ,C) = C
F (child,C) = µZ.〈3〉C ∨ 〈4〉Z

F (foll−sibling,C) = µZ.〈4〉C ∨ 〈4〉Z
F (prec−sibling,C) = µZ.〈2〉C ∨ 〈2〉Z

F (parent,C) = 〈1〉µZ.C ∨ 〈2〉Z
F (descendant,C) = µZ.〈3〉(C ∨ Z) ∨ 〈4〉Z

F (desc−or−self ,C) = µZ.C ∨ µY .〈3〉(Y ∨ Z)

∨〈4〉Y
F (ancestor,C) = 〈1〉µZ.C ∨ 〈1〉Z ∨ 〈2〉Z

F (anc−or−self ,C) = µZ.C ∨ 〈1〉µY .Z ∨ 〈2〉Y
F (following,C) = F (desc−or−self ,n1)
F (preceding,C) = F (desc−or−self ,n2)

n1 = F (foll−sibling,n3)
n2 = F (prec−sibling,n3)
n3 = F (anc−or−self ,C)
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F (α : p,C) = F (α,C) ∧ p
F (%1/%2,C) = F (%2,F (%1,C))

F (%[β],C) = F (%,C) ∧ F←(β,C)
F (/%,C) = F (ρ,C ∧ (¬〈3〉>∧

¬〈4〉>))
F (ρ1 ∩ ρ2,C) = F (ρ1,C) ∧ F (ρ2,C)
F (ρ1 ∪ ρ2,C) = F (ρ1,C) ∨ F (ρ2,C)
F (ρ1\ρ2,C) = F (ρ1,C) ∧ ¬F (ρ2,C)
F←(¬β,C) = ¬F←(β,C)

F←(β1 ∨ β2,C) = F←(β1,C) ∨ F←(β2,C)
F←(%1/%2,C) = F←(%1,F←(%2,C))
F←(%[β],C) = F←(%,C ∧ F←(β,>))
F←(α : p,C) = F←(α,C) ∧ p
F←(self ,C) = C
F←(child,C) = 〈1〉µZ.C ∨ 〈2〉Z

F←(foll−sibling,C) = µZ.〈2〉C ∨ 〈2〉Z
F←(prec−sibling,C) = µZ.〈4〉C ∨ 〈4〉Z

F←(parent,C) = µZ.〈3〉C ∨ 〈4〉Z
F←(descendant,C) = 〈1〉µZ.C ∨ 〈1〉Z ∨ 〈2〉Z

F←(desc−or−self ,C) = µZ.C ∨ 〈1〉µY .Z ∨ 〈2〉Y
F←(ancestor,C) = µZ.〈3〉(C ∨ Z) ∨ 〈4〉Z

F←(anc−or−self ,C) = µZ.C ∨ µY .〈3〉(Y ∨ Z)
∨〈4〉Y

F←(following,C) = F←(desc−or−self ,n←1 )
F←(preceding,C) = F←(desc−or−self ,n←2 )

n←1 = F←(foll−sibling,n←3 )
n←2 = F←(prec−sibling,n←3 )
n←3 = F←(anc−or−self ,C)

Example 7. We consider the following path
showed in Example 6:

/descendant : q

then, the query is translated as follows:

µZ.(〈3〉(C ∧ (¬〈3〉> ∧ ¬〈4〉>) ∨ Z) ∨ 〈4〉Z) ∧ q

Another example is the following path:

/descendant : q/parent : p

then, the query is translated as follows:

F1 = µZ.(〈3〉((C ∧ (¬〈3〉>∧¬〈4〉>)∨Z)∨〈4〉Z)∧ q

F2 = 〈1〉µY .C ∨ 〈2〉Y ∧ p
Now the formula F1 is passed as context C to
formula F2.

〈1〉µY .(µZ.(〈3〉(C∧(¬〈3〉>∧¬〈4〉>)∨Z)∨〈4〉Z)∧q)

∨〈2〉Y ∧ p

Now we show reasoning problems with XPath
queries. The problems are solved using the logic
as a reasoning framework, and they are emptiness,
containment and equivalence of queries.

Theorem 4. (Query reasoning [7]). For any XPath
queries ρ, ρ1, ρ2, tree K and valuation V , the
following holds:

— JρKK = ∅ if and only if JF (ρ,>)KKV = ∅;

— Jρ1KK ⊆ Jρ2KK if and only if JF (ρ1,>) ∧
¬F (ρ2,>)KKV = ∅; and

— F (ρ,>) has linear size with respect to ρ
and ¬F (ρ1,>) ∧ F (ρ2,>) has linear size with
respecto to ρ1 and ρ2.

We now show a set of queries to be evaluated in
reasoning problems.

XPath Decision Problem
e1 /self::a[ child::b [child::c /child::d] /child::b

[ descendant::d/descendant::d ] /child:: b
[child::c/child::d] ]

e2 /self::a[ child::b [child::c /child::d] /child::b
[ descendant::d/child::e] /child:: b
[descendant::c/child::d] ]

e3 child::a/descendant::b/child::d
[preceding-sibling::c]/child::e

e4 child::a/descendant::b/ descendant::c /
following-sibling::d / descendant::e

e5 descendant::a/descendant::b/following::d
/descendant::e

e6 descendant::a/descendant::b[descendant::c]
/following::d/descendant::e ∩ descendant::a/
descendant::d[preceding::c]/descendant::e

XPath Decision Problem [7]
q1 /a[.//b[c/*//d]/b[c//d]/b[c/d]]
q2 /a[.//b[c/*//d]/b[c/d]]
q3 a/b//c/foll-sibling::d/e
q4 a/b//d[prec-sibling::c]/e
q5 a/c/following::d/e
q6 a/b[//c]/following::d=e ∩ a/d[preceding::c]/e

These experiments were performed to determine
the containment of a query. In [7] an algorithm
based on breadth-first search in the style of
Fischer-Ladner is presented. They present results
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Table 1. Result of experiments.

XPath Decision Problem Time (ms) Lean size
e1 ⊆ e2 107.0 46
e2 * e1 106.0 46
e3 ⊆ e4 52.0 28
e6 ⊆ e5 90.0 27
e5 * e6 74.0 27
q1 ⊆ q2 and q2 * q1 353.0 46
q3 ⊆ q4 45.0 34
q6 ⊆ q5 and q5 * q6 41.0 45
e1 66 27
e2 70 28
q1 55.0 36
q2 111.0 30

of reasoning problems such as the containment,
emptiness and equivalence of a query. We now
show experiments similar to those presented in
article [7]. They are similar with respect to lean
size. Where lean is the delimiter of the complexity
of the algorithm. We used Xpath queries in
non-abbreviated syntax. In Table 1, we observe
the results obtained by the algorithm based on a
depth-first search. The results presented by these
authors are very similar to ours. Time is given in
milliseconds. In each experiments the context C
is >.

This algorithm was implemented in Java
language. The experiments were executed on
the computer with the following features: Windows
8 operating system, AMD processor A6 2.7GHz.,
8Gb of RAM.

This algorithm is found online at the following
url1.

6 Conclusion and Future Work

In the current paper, we proposed a satisfiability
algorithm for the µ-calculus for trees with converse
modalities. In contrast with known satisfiability
algorithms, our proposal is based on a depth-first
search algorithm. The algorithm is showed correct
and optimal. Practical experiments in the setting of
XPath reasoning are also described. Experiments

1https : //148.226.81.4 : 8181/AlgoritmoWeb/

show competitive results with respect to the other
known implementation [7].

We believe the µ-calculus with converse
modalities can be used as a reasoning framework
in context-aware systems [2, 3]. We are
also interested in the development and efficient
implementation of satisfiability algorithms for
decidable extensions of the µ-calculus, such as
counting [1].
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