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Abstract. Recognizing Textual Entailment (RTE) is
a Natural Language Processing task. It is very
important in tasks as Semantic Search and Text
Summarization. There are many approaches to RTE,
for example, methods based on machine learning, linear
programming, probabilistic calculus, optimization, and
logic. Unfortunately, no one of them can explain
why the entailment is carried on. We can make
reasonings, with Natural Logic, from the syntactic part of
a natural language expression, and very little semantic
information. This paper presents an Automatic Theorem
Prover for Natural Logic that allows to know precisely the
relationships needed in order to reach the entailment in
a class of natural language expressions.

Keywords. Textual entailment, automatic theorem
proving, natural logic.

1 Introduction

The main objective of Automatic Theorem Proving
is that given an expression of some logical system,
a computer program can decide if that expression
follows from a set of axioms and inference rules.

There are many procedures to reach this goal,
for example, Resolution, Semantic Tableaux, Hilber
Systems, Natural Deduction, Davis-Putnam, and
Sequent Calculus.

This work is in the line of Sequent Calculus, in
the sense that after applying an inference rule the
size of the original expression decreases, which is
called subformula property.

Intuitively, it means that the truth of an
expression depends only on its constituent
elements. Of course, the type of axioms
and inference rules change from one system to
another.

For example, in AB grammars, the words of
an expression in English can be considered as
axioms, if after applying modus ponens to them
we get an expression of type t, it means that the
expression in English is a sentence

A collateral objective in Automatic Theorem
Proving is to say why an expression does not follow
from the axioms. This is called, the explanatory
power of the Automatic Theorem Prover. We
are going to use this kind of tools to develop an
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automatic theorem prover for Natural Logic with
emphasis on textual entailment.

Recognizing Textual Entailment is essential
for other Natural Language Processing tasks
such as: Semantic Search, Question Answering,
Text Summarization, and Information Extraction.
Different methods have been used to solve the RTE
problem [7], those methods are based on machine
learning, linear programming, probabilistic calcu-
lus, optimization, and logic.

The logical methods used in RTE, although
they use an inference mechanism, decide on the
entailment through machine learning algorithms or
some kind of optimization. In such a situation, it is
not possible to know what relationships, among the
subexpressions of the text and the hypothesis, are
avoiding the entailment.

Natural Logic was developed to reason in natural
language without having to use some kind of logical
form [22, 18]. Natural Logic only uses lexical,
syntactic, and basic semantic information of a
language. Natural Logic can be viewed as the
joint of some kind of Categorial Grammar, with
modus ponens as the unique inference rule, and
reasoning with polarity.

In this paper, we are going to present an
Automatic Theorem Prover for Natural Logic. Its
main features are: it can make entailments
on more than one subexpression, and it finds
precisely the subexpressions that do not permit the
entailment.

We explain briefly in section 2 four approaches to
RTE that use some kind of inference mechanism,
and one that is based on Natural Logic. We deal
with Natural Logic in section 3, section 4 is devoted
to construct the algorithms needed for the proof
theory of an extension of AB grammars. Section
5 contains an adaptation of the algorithm of van
Benthem to compute polarity in AB grammars, and
an Automatic Theorem Prover for Natural Logic is
developed. Later, section 6 shows some examples
of the Automatic Theorem Prover. Finally, section 7
gives our conclusions, and future work directions.

2 Approaches based on an Inference
Mechanism

The methods discussed in this section use some
kind of inference mechanism to recognize textual
entailment, excepting for the one of MacCartney
and Manning, which is included because it is based
on Natural Logic.

2.1 COGEX

The system of Hodges et al. [9] transforms the
input text and hypothesis into logical forms. The
transformation process includes part-of-speech
tagging, parse tree generation, word sense
disambiguation and semantic relations detection.

In order to use the logic prover COGEX, a list of
clauses called ”set of support” is required, this is
used to begin the search for inferences. Another
list, called the usable list, contains clauses used
by COGEX to produce inferences. The axioms are
about knowledge of the world, linguistic rewriting
rules, and synsets of WordNet.

The clauses in the set of support are weighted,
a clause with a lesser weight is prefered to
participate in the search. The negated hypothesis
(COGEX proves by refutation) is added to the set
of support with the largest weight, this guarantees
that the hypothesis will be the last clause used in
the search.

If a refutation is found the prover ends, if
there is not a refutation the predicate arguments
are relaxed. If despite arguments relaxation a
refutation is not found, predicates are dropped from
the negated hypothesis until a refutation is found.

When a refutation is found, a score for it is
computed, beginning with a perfect score and
subtracting points for axioms used, arguments
relaxed, and predicates dropped.

If the score for a refutatiion is greater than a
threshold, then it is considered that the entailment
is true, otherwise it is considered false.
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2.2 OTTER

In the proposal of Akhmatova [2] the meaning of
a sentence is represented by the set of atomic
propositions contained in it, then the sentences
are compared by means of their associated
propositions.

A syntax-driven semantic analysis is used to
get the atomic propositions associated with a
sentence. The output of the parser is used as input
for the semantic analyser; from the output of the
analyser, the representation of the sentence in first
order logic, which is called the logic formula, can
be derived.

For Akhmatova, there are many ways to describe
meaning through logical form, but they are rigid
and hard to produce. Because of that, a simplified
representation is proposed.

The simplified representation is build from: three
types of objects Subj(x), Obj(x) and Pred(x), a
meaning attaching element iq(x,<meaning of x >
), and two variants of relationships attr(x, y) and
prep(x, y).

Later, usign WordNet, a relatedness score
between words is computed from the paths
between the senses of the words, the longer the
path, the lesser is the relatedness. This score
together with knowledge rules are given to the
automatic theorem prover OTTER.

If for every proposition in the hypothesis
sentence phi there is one proposition in the text
sentence ptj , such that ptj → phi , then the
entailment holds, otherwise the entailment does
not hold.

2.3 Abduction

Raina et al. [17] begin constructing a syntactic
dependency graph using a parser, hand written
rules are used to find the heads of all nodes in
the parse tree. The relations represented in the
dependency graph are translated into a logical
formula representation. Each node in the graph is
converted into a logical term and it is assigned a
unique constant.

Later, abductive theorem proving is realized
by the resolution method, where each abductive
assumption, and its degree of plausabilty is
quantified as a nonnegative cost using the

assumption cost model. The objective is to
find the proof of minimun cost, which is chosen
automatically by a machine learning algorithm.

2.4 Vampire and Paradox

The approach of Bos and Markert [4, 5] is based on
what they call shallow semantic analysis and deep
semantic analysis.

Four features are obtained from the shallow
semantic analysis, the overlap between words in
text and hypothesis, the length of text, the length
of hypothesis, and the relative length of hypothesis
with respect to the text.

To achieve the deep semantic analysis, they use
a robust wide-coverage parser, which produces
proof trees of Combinatory Categorial Grammar
[19]. Afterwards, the proof trees are used to
build discourse representation structures, these
are the semantic representations from Discourse
Representation Theory. Later, the semantic
representations are translated into first order logic
expressions.

The model checker Paradox and the automatic
theorem prover Vampire are used to prove wheter
or not the text implies the hypothesis. Bos and
Markert take two features from the automatic
theorem prover, and six from the model checker.

A decision tree is trained with the twelve
features, and it is used to decide if the text implies
the hypothesis.

2.5 Natural Logic

MacCartney and Manning [13, 12] use Natural
Logic to avoid logical forms, their system is
called NatLog. They begin with a linguistic
pre-processing, the text and the hypothesis are
parsed with the Stanford parser, the main purpose
of this step is monotonicity marking; nevertheless,
they do not use polarity (see section 3) as an
inference mechanism.

The second step consists of an alignment
between the text and the hypothesis, alignments
are represented by sequences of atomic edits over
words.

Finally, taking as features the monotonicity
infromation and the sequences of edits, a decision
tree is trained.
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2.6 Brief Analysis of the Methods

As it can be seen in Table 1, the methods based
on some inference mechanism use first-order logic
(FOL) as a form to represent the text and the
hypothesis.

For us, it is unclear the decision mechanism that
follows the system of Akhmatova, a relatedness
score is computed, but its role in the decision
process is never mentioned.

The other methods use a decision process
different to the inference mechanism, as it has
been explained, hiding why the entailment was not
carried out.

Table 1. Summary of the main characteristics of some
logical approaches

First Author Inference Mechanism Logic BK Challenge Decided by
Hodges COGEX FOL WordNet RTE-2 Optimization
Akhmatova OTTER FOL WordNet RTE-1 Unclear
Raina Abduction FOL RTE-1 Machine Learning
Bos Vampire y Paradox FOL WordNet RTE-1 Machine Learning
MacCartney WordNet RTE-3 Machine Learning

3 Natural Logic

Sánchez in his Ph. D. dissertation [18] formalizes
the ideas of van Benthem about Natural Logic
and monotonic reasoning [20, 21]. Even though
the origins of Natural Logic go back to Aristotle
[22, 11]; the central idea, in the program of
Natural Logic of van Benthem et al., is that natural
language, besides communicating ideas, serves to
reason without having to use formal systems, as
predicate calculus or high order logics. The idea
is to use the syntactic structure of a sentence,
semantic properties of their lexical constituents,
and a functor constructor.

According to Icard and Moss [10], van Benthem
[20] and Sánchez [18] define proof systems to
reason about entailment using monotonicity in high
order languages.

Both van Benthem and Sánchez use, for the
syntactic analysis of a sentence, a version of
categorial grammars called calculus of Ajdukiewicz
[1, 3, 14]. This is based on basic types e (for
entities), and t (for truth values), more complex
types of the categorial language are constructed
recursively by the creation of functors, formally:

Definition 3.1. The calculus of Ajdukiewicz. The
categorial language of the calculus of Ajdukiewicz
LL is given by:

1. e and t belong to LL,

2. If α and β belong to LL, then (α,β) also
belong to LL.

The unique inference rule in the calculus of
Ajdukiewicz takes the form:

(α,β) α

β
(1)

and it does not matter if the type α appears either
on the left, or on the right of the functor (α,β).

It is assumed that each word in the lexicon
has a type, for example: common nouns have
type (e, t), transitive verbs have type (e, (e, t)),
intransitive verbs have type (e, t), adjectives and
adverbs have type ((e, t), (e, t)), noun phrases
have type ((e, t), t), and determiners have type
((e, t), ((e, t), t)).

Hence to know whether a sentence is well
formed, the inference rule (1) is used to build a
proof tree, if its root is t, then the sentence is well
formed, otherwise the sentence is ill-formed.

Nevertheless, as there are words that play
different roles (for example, white could either be
an adjective, or a noun, or a verb), if a sentence
contains words of this kind, the algorithm that
constructs the proof tree for such a sentence would
have to try with the different types of each word
until the type t has been derived.

We have a proof tree in Figure 1 for the sentence
Dobie didn’t bring every ball. In this figure, it
is worth noting that: the type of every has its
first argument on the right; the type of every ball
has its argument on the left; the type of Dobie
has its argument on the right, and the type t has
been derived from both of them, indicating that the
expression in natural language is a well formed
sentence.

The first semantic element of Natural Logic is
that each type denotes a set, hence De denotes
the set of entities, Dt denotes the set {0, 1}, D(α,β)
denotes the set whose elements are functions from
α to β. Also, the following partial order relations are
defined on each type.
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Fig. 1. Proof tree for the sentence Dobie didn’t bring
every ball

Definition 3.2. Partial order relations. Partial
order relations on the denotations of types can be
defined in the following way:

1. If d,d′ ∈De, then d ≤e d′ if and only if d = d′,

2. If d,d′ ∈ Dt, then d ≤t d
′ if and only if d = 0 or

d′ = 1,

3. If d,d′ ∈D(α,β), then d ≤(α,β) d′ if and only if for
all x ∈Dα,d(x) ≤β d

′
(x).

The second semantic element of Natural Logic
is that working with a proof system based
on functors, and taking into account a partial

order relation on each type, it is possible to
define static characteristics on functors, namely
a functor can be either upward monotone, or
downward monotone; obviously a functor can
also be non-monotone, according to the following
terms [8]:
Definition 3.3. Monotonicity. A function d ∈ D(α,β)
is:

1. upward monotone (+d) if and only if:

for all x, y ∈Dα,x ≤α y implies that
d(x) ≤β d(y),

2. downward monotone (−d) if and only if:

for all x, y ∈Dα,x ≤α y implies that
d(y) ≤β d(x).

3. non-monotone (⋅d) if and only if it is neither
upward monotone, nor downward monotone.

As it has been stated, the inference rule (1) must
be applied to construct a proof tree, therefore a
functor node and an argument node are required.
The resulting node will serve as either the functor
node, or the argument node to construct the
following level of the proof tree. In this way, the
construction of a proof tree is done by composing
functors: if an upward (downward) monotone
functor α is argument of a functor β, then the
static characteristic of α can change, depending of
the static characteristic of β. It is seen in Table
2 [10] the result of composing upward monotone
(+), downward monotone (−), and non-monotone
(⋅) functors.

Table 2. Result of the composition of upward monotone
(+), downward monotone (−), and non-monotone (⋅)
functors

○ + − ⋅

+ + − ⋅

− − + ⋅

⋅ ⋅ ⋅ ⋅

From Table 2 we can infer that the composition
of m upward and downward monotone functors

Computación y Sistemas, Vol. 22, No. 1, 2018, pp. 119–135
doi: 10.13053/CyS-22-1-2778

Automatic Theorem Proving for Natural Logic: A Case Study on Textual Entailment 123

ISSN 2007-9737



will be upward monotone if the number of
downward monotone functors is even, otherwise
the composition will be downward monotone,
and if one of the functors in composition is
non-monotone, then the whole composition will be
non-monotone. The composition of functors is
called polarity, it is said that polarity is: positive
(+) when the composition is upward monotone,
negative (−) when the composition is downward
monotone, and neutral (⋅) when the composition
is non-monotone. Hence, polarity is a dynamic
characteristic of some functors, which is given by
the position of the functors in the composition.

In terms of the proof tree of a sentence, a functor
node that is upward monotone will have positive
polarity if it is the argument of a composition where
an even number of downward monotone functors
are involved, otherwise it will have negative polarity.

On the same terms, a functor node that is
downward monotone will have positive polarity if
it is the argument of a composition where an
odd number of downward monotone functors are
involved, else it will have negative polarity.

Once the polarity of a node i is known in the
proof tree of the sentence S, the subtree whose
root is node i can be replaced for a greater one (in
the sense of Definition 3.2) if node i has positive
polarity, giving as a result sentence S′; in a dual
way, the subtree whose root is node i can be
replaced for a lesser one (in the sense of Definition
3.2) if node i has negative polarity, giving as a
result sentence S′. In both cases, it is said that S
implies S′. Sánchez [18] proved the soundness of
the above implication with respect to the Semantics
associated with the proof system. This is the way
of reasoning in Natural Logic.

In order to compute the polarity of the elements
of a sentence, the following clause is added to
definition 3.1.

If (α,β) is in LL, then (α+,β), and (α−,β) are
also in LL.

This clause does not belong to the calculus of
Ajdukiewicz, it has been included to mark either
the upward monotonicity of a functor from α to β,
(α+,β), or the downward monotonicity of a functor
from α to β, (α−,β).
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Fig. 2. The two steps to compute polarity with the
algorithm of van Benthem, for the sentence Dobie didn’t
bring every ball

So that, it is supposed that the lexicon contains
the information of monotonicity that some functors
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require, as shown below:
Dobie ∶ ((e, t)+, t) didn′t ∶ ((e, t)−, (e, t))
bring ∶ (e, (e, t)) every ∶ ((e, t)−, ((e, (e, t))+, (e, t)))
ball ∶ (e, t)

As an example, we have the proof tree in
Figure 2a with lexical monotonicity marking for the
sentence Dobie didn’t bring every ball.

Once the proof tree has lexical monotonicity
marks, the algorithm of van Benthem begins
marking the root of the proof tree with polarity +,
then if the functor in turn is upward monotone,
the polarity mark is propagated. In case that the
functor is downward monotone, then the polarity
mark of the argument is reversed, because a
downward monotone functor reverses the order
relation of the elements of its domain. Figure 2b
exemplifies Algorithm 3.1 for the sentence Dobie
didn’t bring every ball.
Algorithm 3.1. van Benthem polarity algorithm

1. Label the root with +.

2. Propagate notations up the tree.

(a) If a node of type β is labeled l and
its children are of type (α+,β) and
α, then both children are labeled l

(diagrammatically,
(α+,β)

l

α
l

β
l

).

(b) If a node of type β is labeled l and its
children are of type (α−,β) and α, then
the former child is to be labeled l and
the latter child is to be labeled −l, that is,
the flipped version of l (diagrammatically,

(α−,β)
l

α
−l

β
l

).

To know when a sentence N ′ is entailed from
a sentence N , first we have to define what a
subexpression of a natural language expression is.
Definition 3.4. Subexpression. Let N =

w1w2⋯wn,n ≥ 1, be a natural language expression,
where each word wi ∶ αi, it is said that M is a
subexpression of N if and only if one of the
following clauses holds:

1. M = wi, 1 ≤ i ≤ n;
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Fig. 3. Proof tree for the sentence Dobie brought every
ball

2. M = wiM
′, 1 ≤ i ≤ n − 1, where M ′ is a

subexpression of N , and (wi ∈Dα→β and M ′
∈

Dα) or (wi ∈Dα and M ′
∈Dα→β) holds;

3. M = M ′wi, 2 ≤ i ≤ n, where M ′ is a
subexpression of N , and (wi ∈Dα→β and M ′

∈

Dα) or (wi ∈Dα and M ′
∈Dα→β) holds;

4. M = M ′M ′′, where M ′ and M ′′ are subex-
pressions of N , and (M ′

∈ Dα→β and M ′′
∈

Dα) or (M ′
∈Dα and M ′′

∈Dα→β) holds. ◻

Example 3.1. Let N = Dobie brought every ball,
according to clause 1 of Definition 3.4, we have that
Dobie, brought, every, and ball are subexpressions
of N ; looking at Figure 3 we have that every ball
is also a subexpression by clause 2 of Definition
3.4, because every: ((((t/e)/e)/+(t/e))−/(t/e)),
and ball: (t/e), by the same clause are also
subexpressions brought every ball, and Dobie
brought every ball. ◻
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When we say that N(M) is a natural language
expression, we also mean that it has M as
subexpression.
Definition 3.5. Entailment on the same subexpres-
sion. Let N(M), and N(M ′

) be two natural
language expressions with M ,M ′

∶ α,M ≠

M ′, we define that N(M) entails on the same
subexpression N(M ′

) (symbolically N(M) ⊢

N(M ′
)) in the following way:

N(M) ⊢ N(M ′
) if and only if

⎧
⎪⎪
⎨
⎪⎪
⎩

M has positive polarity and M ≤α M
′, or

M has negative polarity and M ′
≤α M .

◻

4 Automatic Theorem Proving for an
Extension of AB Grammars

We are going to extend a version of categorial
grammars called AB grammars [14]; in this
extension, types are constructed by L ∶∶=

P ∣(Ls/L)∣(L/sL), where P is the set of primitive
types (in our case e and t), and functors are
constructed using the operators s

/ and /
s, with

s ∈ {+,−, ⋅}; these operators are intended to
distinguish if the argument of a functor is either
on the right or on the left, respectively. Also to
mark whether a functor is upward monotone (+),
downward monotone (−), or non-monotone (⋅).

As it has been stated, to prove that a natural
language expression is well formed (it is a
sentence), a proof tree with root t has to be
constructed, using the inference rules for syntactic

categories
Xs

/Y Y

X
, and

Y Y /
sX

X
; as

an example is the proof tree in Figure 4.

A natural language expression nlexp is re-
presented by the list [w1 ∶ X1, . . . ,wn ∶ Xn],
where wi is an English word in nlexp, and Xi

is its type, 1 ≤ i ≤ n. As an example,
the natural language expression Dobie didn’t
bring every ball is represented by the list
[Dobie ∶ (t+/(t/e)),didn′t ∶ ((t/e)−/(t/e)), bring ∶

((t/e)/e), every ∶ ((((t/e)/e)/+(t/e))−/(t/e)), ball ∶
(t/e)].
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Fig. 4. Proof tree for the sentence Dobie didn’t bring
every ball, in an extension of AB grammars

As it is known, there are natural language
expressions that admit more than one syntactic
analysis. Evenmore, sometimes it is possible to
use the inference rules in more than one pair of
adjacent words.

Hence, we need to look for those pairs of words
that may conform the initial subtrees of possible
proof trees. Also, for each initial subtree we need
to know the list of pairs w ∶ X on the left, and on
the right of the subtree, these three elements will
be called an environment.

For example, for the proof tree in
Figure 4 its unique initial subtree is
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every

((((t/e)/e)/+(t/e))−/(t/e))

ball

(t/e)

(((t/e)/e)/+(t/e))
, and its lists of

pairs are [Dobie ∶ (t+/(t/e)),didn′t ∶ ((t/e)−/(t/e)),
bring ∶ ((t/e)/e)] on the left, and [] on the
right; the algorithm BFSTL returns a list of
environments of the form [([w1 ∶ X1, . . . ,wi1−1 ∶

Xi1−1],

wi1
Xi1

wi1+1

Xi1+1

X1
, [wi1+2 ∶

Xi1+2, . . . ,wn ∶ Xn]), . . . , ([w1 ∶ X1, . . . ,wim−1 ∶

Xim−1],

wim
Xim

wim+1

Xim+1

Xm
, [wim+2 ∶

Xim+2, . . . ,wn ∶Xn])], 1 ≤ i1, im,m < n.
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The algorithm BFSTL has three input parameters:
left the pairs wj ∶ Xj , 1 ≤ j < i already processed;
current the pairs wk ∶ Xk, i ≤ n ≤ n which are not
being processed; and envs the list of environments
found until now.

In general (line 10), if some inference rule
can be applied to Xi and Xi+1 (line 11), then
a recursive call is performed appending (⊎) left
and the list [wi ∶ Xi]; stating that [wi+1 ∶

Xi+1, . . . ,wn ∶ Xn] is the new current, and appen-
ding envs and the list with the environment found

[(left,

wi
Xi

wi+1
Xi+1

X
, [wi+2 ∶ Xi+2, . . . ,wn ∶

Xn])] (lines 12-14).
If no rule can be applied (lines 15 and 16), a

recursive call is made indicating that a word has
been processed, and leaving envs without change.

If no environment was found (lines 2 and 6) then
the NoFirstSubTree exception is raised (lines 3
and 7). If there are no more elements to process
(line 4) or there is only one element (line 8),
then the work has been done and the list of
environments envs is returned (lines 5 and 9).

The algorithm BAWPT builds a proof tree from a
list of environments. If the list of environments is
not empty (lines 4 and 5), then the algorithm BAPT
is called with the elements of the first environment
in the list, and the type of the root of the first subtree
(line 6).
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If the algorithm BAPT could not build a proof tree,
then a recursive call is performed with the rest of
the list of environments (lines 8 and 9). If the
algorithm BAPT built a proof tree, this is returned
(line 10). If the environment list is empty, then
it was not possible to build a proof tree and the
exception NoProofTree is raised (lines 2 and 3).
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The algorithm EXTRACTYPE merely returns the
root of a unary tree (lines 2 and 3), or the root of a
binary tree (lines 4 and 5). This is used in line 6 of
the algorithm BAWPT.
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The purpose of the algorithm BAPT is to build a
proof tree. It takes four arguments: the list left
of pairs w ∶ X on the left of the proof subtree
proofSubTree, the proof subtree proofSubTree
already built, the list right of pairs w ∶X on the right
of the proof subtree proofSubTree, and the type X
of the root of the proof subtree proofSubTree.

If left and right are empty, then a proof tree
has been constructed, and there is nothing more
to process (lines 2 and 3).

If left is not empty, but right is, then to
construct a new proof subtree is needed that
the root X of subProofTree can combine with
the type Xi of the last element of left, this
is possible when X = Xi/

sX ′ is the functor
and Xi is the argument, or when X is the
argument and Xi = X ′s

/X is the functor, if that
is the case, then a recursive call is performed
pointing out that: wi ∶ Xi has been processed,

the new proof subtree

wi
Xi proofSubTree

X ′

has been constructed, right is still empty, the root
of the new proof subtree is X ′ (lines 4-7).

FUNCTION BAPT(left,proofSubTree, right,X)

1 switch
2 case left = [] and right = [] ∶

3 return proofSubTree
4 case left = [w1 ∶X1, . . . ,wi ∶Xi] and right = [] ∶

5 if X =Xi/
sX ′ or Xi =X

′s
/X

6 then BAPT([w1 ∶X1, . . . ,wi−1 ∶Xi−1],

7

wi
Xi proofSubTree

X ′
, [],X ′

)

8 else return “”
e

9 case left = [] and right = [wj ∶Xj , . . . ,wn ∶Xn] ∶

10 if X =X ′s
/Xj or Xj =X/

sX ′

11 then BAPT([],
proofSubTree

wj

Xj

X ′
,

12 [wj+1 ∶Xj+1, . . . ,wn ∶Xn],X
′
)

13 else return “”
e

14 case left = [w1 ∶X1, . . . ,wi ∶Xi] and
15 right = [wj ∶Xj , . . . ,wn ∶Xn] ∶

16 switch
17 case X =Xi/

sX ′ or Xi =X
′s
/X ∶

18 BAPT([w1 ∶X1, . . . ,wi−1 ∶Xi−1],

19

wi
Xi proofSubTree

X ′
,

20 [wj ∶Xj , . . . ,wn ∶Xn],X
′
)

21 case X =X ′s
/Xj or Xj =X/

sX ′
∶

22 BAPT([w1 ∶X1, . . . ,wi ∶Xi],

23
proofSubTree

wj

Xj

X ′
,

24 [wj+1 ∶Xj+1, . . . ,wn ∶Xn],X
′
)

25 case default ∶

26 return “”
e

27 end

If it was not possible to build a new proof subtree,
then the tree “”

e is returned (lines 8, 13 and 23),
so that the algorithm BAWPT tries to build a proof
tree with the remaining environments.

If left is empty, but right is not, then to construct
a new proof subtree it is needed that the root X
of subProofTree can combine with the type Xj

of the first element of right, this is possible when
X = X ′s

/Xj is the functor and Xj is the argument,
or when X is the argument and Xj = X/

sX ′ is
the functor, if that is the case, then a recursive call
is performed pointing out that: left is still empty,

the new proof subtree
proofSubTree

wj

Xj

X ′

has been constructed, wj ∶ Xj has been
processed, the root of the new proof subtree is X ′

(lines 9-12).
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If left and right are not empty, then the root X
of proofSubTree can combine with the type Xi of
the last element of left (lines 17-20); or the root X
of proofSubTree can combine with the type Xj of
the first element of left (lines 21-24), just like the
respective previous cases.

Finally, the algorithm BUILDPROOFTREE passes
the appropriate initial values to BFSTL in order to
get a list of environments, this list is passed to
BAWPT, which constructs a proof tree.

FUNCTION BUILDPROOFTREE(nlexp)
1 return BAWPT(BFSTL([],nlexp, []))
2 end

5 Automatic Theorem Proving for
Natural Logic

To compute polarity in our extension to AB
grammars, the algorithm of van Benthem is
adapted as follows.
Algorithm 5.1. van Benthem’s polarity algorithm
adapted to an extension of AB grammars.

1. Label the root with +.

2. Propagate notations up the tree.

(a) If a node of type X is labeled l and
its children are of type (Xs

/Y ) and Y ,
then the former child is to be labeled l
and the latter child is to be labeled l ○ s

(diagrammatically,
(Xs

/Y )

l

Y
l○s

X
l

).

(b) If a node of type X is labeled l and its
children are of type Y and (Y /

sX), then
the former child is to be labeled l ○ s
and the latter child is to be labeled l

(diagrammatically,
Y
l○s

(Y /
sX)

l

X
l

).

As an example with have the proof tree of Figure
5a.

The algorithm POLALG encodes the algorithm of
van Benthem more precisely. It returns a proof tree
with polarity marks. Its arguments are: the polarity
label l for the root of tree, and the proof tree tree.

FUNCTION POLALG(l, tree)
1 switch
2 case tree = w

X
∶

3 return w
X
l

4 case tree =

⋮

(Xs
/Y )

⋮

Y
X

∶

5 lptp← POLALG(l,
⋮

(Xs
/Y )

)

6 rptp← POLALG(l ○ s,
⋮

Y
)

7 return
lptp rptp

X
l

8 case tree =

⋮

Y

⋮

(Y /
sX)

X
∶

9 lptp← POLALG(l ○ s,
⋮

Y
)

10 rptp← POLALG(l,
⋮

(Y /
sX)

)

11 return
lptp rptp

X
l

12 end

If the current tree is a unary tree, then it returns
a unary tree marking the root with l (lines 2 and 3).

If the current tree is a binary tree and the functor
is the left subtree, then it recursively propagates
the polarity l on the left subtree lptp, and also
it recursively propagates the polarity l ○ s on the
right subtree rptp. Finally it returns a binary tree
marking the root with l, and having lptp and rptp
as left and right subtrees, respectively (lines 4-7).

If the current tree is a binary tree and the functor
is the right subtree, then it recursively propagates
the polarity l ○ s on the left subtree lptp, and
also it recursively propagates the polarity l on the
right subtree rptp. Finally it returns a binary tree
marking the root with l, and having lptp and rptp
as left and right subtrees, respectively (lines 8-11).

The algorithm POLARITY returns a proof tree
with polarity marks, it receives as argument the
representation of a natural language expression
nlexp, as it was discussed in section 4. POLARITY
calls POLALG with the mark of positive polarity and
the proof tree for nlexp.

FUNCTION POLARITY(nlexp)
1 return POLALG(+, BUILDPROOFTREE(nlexp))
2 end
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Fig. 5. Proof trees with polarity marks using the
adapted algorithm of van Benthem in an extension of AB
grammars

Example 5.1. A proof tree with polarity marks for
the natural language expression An elk ran is
shown in Figure 5b.

If N = An elk ran, M = elk y M ′
= mammal,

then we can say that An elk ran ⊢ A mammal ran,
because elk has positive polarity, and elk ≤(t/e)

mammal, because elk is a meronym of mammal.
◻

Example 5.2. If N = An elk ran, M = elk and
M ′

= animal we can say that An elk ran ⊢ An
animal ran, because elk has positive polarity and
elk ≤(t/e) animal, because elk is a meronym of
animal. ◻

Finally, we want to define an automatic theorem
prover, to get this it is needed to chain entailments
on more than one subexpression, this is done in
the following way:
Definition 5.1. Entailment. Let N , and N ′ be two
natural language expressions with N ≠ N ′, we
define that N entails N ′ (symbolically N ⊢ N ′) as
follows:

N ⊢ N ′ if and only if
⎧
⎪⎪
⎨
⎪⎪
⎩

N ′
= N(M ′

) and N(M) ⊢ N(M ′
), or

N ′′
= N(M ′′

),N(M) ⊢ N(M ′′
) and N ′′

⊢ N ′.

◻

Now, we define the algorithms ENTAILS,
ENTAILSALL, and ENTAILSONE.

The algorithm ENTAILS has as input the natural
language expressions N , and N ′, it returns the
result of the algorithm ENTAILSALL. The purpose
of ENTAILS is to warrant that ENTAILSALL receives,
in the set DifSub, all the pairs (M ,M ′

), where
M ,M ′ are respectively subexpressions of N ,N ′

that make N ≠ N ′. Also it receives true the first
time that it is called.

FUNCTION ENTAILS(N ,N ′
)

1 Form the set DifSub with all the pairs (M ,M ′
),

2 where M ,M ′ are subexpressions of N ,N ′

3 such that M ≠M ′

4 return ENTAILSALL(DifSub, true)
5 end

ENTAILSALL tries to find counterexamples to the
entailment of two natural language expressions.
The algorithm ENTAILSALL codes Definition 5.1, it
takes two parameters as input: DifSub containing
the pairs of subexpressions (M ,M ′

) that make
different N and N ′, and the variable flag, which
records (line 15) if a counterexample, that it is
falsifying the entailment, has been found.
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As it is implicit in Definition 3.5, a natural
language expression N(M) entails N(M ′

) if they
vary in subexpressions M and M ′ of the same
type, and M ≤ (≥)M ′ according to their polarity.
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Hence, the main purpose of ENTAILSALL is to
process a pair (M ,M ′

) fromDifSub with the same
type (lines 3 and 4), then if ENTAILSONE fails (line
5) and M has the same polarity as M ′ (line 6), it
means that a counterexample has been found, and
it writes the cause of the failure (lines 9, 11, 13,
14), then it calls itself removing the pair (M ,M ′

)

from DifSub, and recording by false ∧ flag that a
counterexample was found (line 15).

If ENTAILSONE does not fail, then a recursive call
is performed (line 16) removing the pair (M ,M ′

)

from DifSub, and recording by true ∧ flag that a
counterexample was not found.

If subexpressions M , and M ′ have different
types (line 17), then it is indicated that the
subexpressions have not the same syntactic
structure, because Natural Logic cannot reason
with these kind of expressions, in this case the
algorithm finishes returning false (line 18).

When each pair of DifSub has been processed,
the result of ENTAILSALL has to do with whether or
not counterexamples have been found (lines 1 and
2).

The algorithm ENTAILSONE codes almost
directly Definition 3.5, it takes subexpressions M
and M ′, analysing if they meet the order relation
according to their polarity.

FUNCTION ENTAILSONE(M ,M ′
)

1 switch
2 case polarity(M) = + ∶

3 return M ≤M ′

4 case polarity(M) = − ∶

5 return M ′
≤M

6 case default ∶

7 return false
8 end

To implement an automatic theorem prover,
lexicons having pairs word ∶ type are needed, but,
as far as we know, there are no such lexicons.
Another possibility is to have a Part of Speech
(POS) tagger that associates each word with its
proper type.

The C & C tools [6] have a POS tagger, but it
uses the inference rules of Combinatory Categorial
Grammars, and there is not an algorithm to
compute polarity for these kind of grammars,
actually the known algorithms to compute polarity
only work with Categorial Grammars which

have the inference rules
Xs

/Y Y

X
, and

Y Y /
sX

X
as the unique inference rules.

There are no domains partially ordered as it is
supposed in section 3, therefore it is not possible
to check if M ≤α M ′, but it is possible to
take advantage of tools such as WordNet [16],
BabelNet [15], etc., to find synonyms, hyponyms,
hyperonyms, meronyms, and troponyms.
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6 Examples

At this time, we have a prototype that con-
structs possible counterexamples for the pair
text-hypothesis of natural language expressions. It
is implemented in Moscow ML version 2.10, for
what has been discussed previously, the prototype
asks the user for the veracity of the constructed
relationships in the entailment process.
Example 6.1. An elk ran ⊢ An animal moved

- modChckNatLog([lxe("An", sl(u,

sl(u,t, sl(n,t,e)), sl(n, t,e ))),

lxe("elk", sl(n, t,e )), lxe("ran",

sl(n, t, e))],

[lxe("An", sl(u, sl(u,t, sl(n,t,e)),

sl(n, t,e ))),

lxe("animal", sl(n, t,e )),

lxe("moved", sl(n, t, e))]);

Is "ran" a kind of, or a manner of

"moved"?

Is "elk" a kind of, or a manner of

"animal"?

Done.

This exemplifies that a very specific statement
can be generalized at the extreme that it loses
information. Nevertheless, the entailment is true.
◻

Example 6.2. Dobie brought every ball ⊢ Dobie
brought every black ball

- modChckNatLog([lxe("Dobie",sl(u,t,

sl(n,t,e))), lxe("brought",

sl(n,sl(n,t,e),e)),

lxe("every", sl(d,bs(u,sl(n,sl(n,t,e),e),

sl(n,t,e)),sl(n,t,e))),

lxe("ball",sl(n,t,e))],

[lxe("Dobie",sl(u,t,sl(n,t,e))),

lxe("brought",sl(n,sl(n,t,e),e)),

lxe("every", sl(d,bs(u,sl(n,sl(n,t,e),e),

sl(n,t,e)),sl(n,t,e))),

lxe("black",sl(u,sl(n,t,e),sl(n,t,e))),

lxe("ball",sl(n,t,e))]);

Is "black ball" a kind of, or a manner of

"ball"?

Done.

In this case we have the role of ”every” that
is downward monotone on its first argument,
therefore it sets the polarity of ball to negative.
Hence it can be replaced with black ball that is a
lesser expression. The entailment is true. ◻

Example 6.3. Dobie didn’t bring every ball ⊢ Dobie
didn’t bring every black ball

- modChckNatLog([lxe("Dobie",sl(u,t,

sl(n,t,e))),

lxe("didn’t", sl(d, sl(n,t,e), sl(n,t,e))),

lxe("bring",sl(n,sl(n,t,e),e)),

lxe("every", sl(d,bs(u,sl(n,sl(n,t,e),e),

sl(n,t,e)),

sl(n,t,e))), lxe("ball",sl(n,t,e))],

[lxe("Dobie",sl(u,t,sl(n,t,e))),

lxe("didn’t", sl(d, sl(n,t,e),

sl(n,t,e))),

lxe("bring",sl(n,sl(n,t,e),e)),

lxe("every",sl(d,bs(u,sl(n,sl(n,t,e),e),

sl(n,t,e)),

sl(n,t,e))), lxe("black",sl(u,sl(n,t,e),

sl(n,t,e))),

lxe("ball",sl(n,t,e))]);

Is "ball" a kind of, or a manner of

"black ball"?

Done.

In this case the verb is negated, therefore it
changes the polarity of the following constituents.
Hence, the prototype asks if ball is a kind of black
ball, i.e, if ball is lesser than black ball. Thence the
entailment is false. ◻

Example 6.4. Don’t dig your grave with your own
knife ⊢ Don’t trench your grave with your own
penknife. For this example, refer to Figure 6.

- modChckNatLog([lxe("Don’t",

sl(d, q ,q)),

lxe("dig", sl(u, q, sl(n, t, q)) ),

lxe("your", sl(u, sl(n, t, q), q)),

lxe("grave", q),

lxe("with", sl(u, bs(u, q, q),

sl(n, t, q))),

lxe("your", sl(u, sl(n, t, q), q)),

lxe("own", sl(u, q ,q)),

lxe("knife", q)],
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Fig. 6. Proof tree with polarity marks for the sentence
Don’t dig your grave with your own knife, in this tree p =
(t/e)

[lxe("Don’t", sl(d, q ,q)),

lxe("trench", sl(u, q, sl(n, t, q)) ),

lxe("your", sl(u, sl(n, t, q), q)),

lxe("grave", q),

lxe("with", sl(u, bs(u, q, q),

sl(n, t, q))),

lxe("your", sl(u, sl(n, t, q), q)),

lxe("own", sl(u, q ,q)),

lxe("penknife", q)]);

Is "penknife" a kind of, or a manner of

"knife"?

Is "trench" a manner of "dig"?

Done.

If WordNet is consulted we find that trench is a
direct troponym of dig. Also, that penknife is a
hyponym of knife. The entailment is true. ◻

Example 6.5. Don’t dig your grave with your own
knife ⊢ Don’t trench your hole with your own
penknife

- modChckNatLog([lxe("Don’t",

sl(d, q ,q)),

lxe("dig", sl(u, q, sl(n, t, q)) ),

lxe("your", sl(u, sl(n, t, q), q)),

lxe("grave", q),

lxe("with", sl(u, bs(u, q, q),

sl(n, t, q))),

lxe("your", sl(u, sl(n, t, q), q)),

lxe("own", sl(u, q ,q)), lxe("knife", q)],

[lxe("Don’t", sl(d, q ,q)),

lxe("trench", sl(u, q, sl(n, t, q)) ),

lxe("your", sl(u, sl(n, t, q), q)),

lxe("hole", q),

lxe("with", sl(u, bs(u, q, q),

sl(n, t, q))),

lxe("your", sl(u, sl(n, t, q), q)),

lxe("own", sl(u, q ,q)),

lxe("penknife", q)]);

Is "penknife" a kind of, or a manner

of "knife"?

Is "hole" a kind of, or a manner

of "grave"?

Is "trench" a manner of "dig"?

Done.

penknife is a hyponym of knife, trench is a direct
troponym of dig, but hole is an hypernym of grave,
it is not an hyponym. The entailment is false.
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7 Conclusions and Future Work

We have developed an Automatic Theorem Prover
for Natural Logic to Recognize Textual Entailment;
this includes algorithms to: construct proof trees
as the syntactic part of Natural Logic; compute
polarity as the base of reasoning in Natural
Logic; and look for subexpressions that falsify the
entailment process.

The main advantage of the Automatic Theorem
Prover is that it provides the list of counterexamples
(pairs of subexpressions of the same type) that
do not allow the entailment between two natural
language expressions. As a consequence, the
scope of Natural Logic in Recognizing Textual
Entailment is restricted to pairs of expressions
having the same syntactic structure.

As future work, in order to widen the scope of
Natural Logic to Recognize Textual Entailment, it
is desirable to be able to compare subexpressions
of similar types; for example, the type of nouns is
similar to the type of noun phrases.

Other points on the agenda for future work
are: to construct lexicons where the words
are associated with their types, to define an
algorithm to compute polarity for Combinatory
Categorial Grammars, and to build interfaces to
take advantage of resources such as WordNet, and
BabelNet.
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