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Abstract. This paper proposes a multifractal model, with 

the aim of providing a possible explanation for the 
locality phenomenon that appears in the estimation of 
the Hurst exponent in stationary second order temporal 
series representing self-similar traffic flows in current 
high-speed computer networks. It is shown analytically 
that this phenomenon occurs if the network flow consists 
of several components with different Hurst exponents. 
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1 Introduction 

The properties that evidence the nature of the 
fractal origin of traffic flows in high-speed computer 
networks have been extensively studied and 
reported in the literature during the last twenty 
years, and it is generally accepted that their 
rescaled dynamic behavior must be carefully 
considered in performance analyses. 

There are, therefore, numerous explanations 
and models that attempt to give an answer to this 
origin, e.g. [1-3]. 

On the other hand, admitting that the localities 
of a fractal process can only be analyzed from the 
standpoint of multifractal analysis, in view of their 
construction from multiplicative cascades that 
ensure an exact characterization as a result of the 
high frequency analysis [9, 10], it is accepted that 
the traffic flows present in current high-speed 
computer networks are of a multifractal nature, and 

this gives rise to a new flow model that attempts to 
explain the locality phenomenon present in the 
estimation of the H [4, 8, 10]. 

From the results obtained by the use of 
computational simulations, it is inferred that the 
model contributes to the knowledge of the actual 
dynamics of the traffic in current high-speed 
computer networks, and that it can be used to 
simulate realistic traffic flow from real networks. 

2 On the Multifractal Traffic Flows 

In computer networks traffic flows is represented 
by means of a self-similar process Y(k) such that: 

( ) ( ),  0, 0,H

dY k a Y ak a k     (1) 

where d represents the equal finite-dimensional 

distributions and H  (0,1) is the Hurst exponent of 
the self-similar stochastic process (H-ss) Y(k). 

An H-ss process with stationary increments 
described in terms of the behavior of its 
aggregations is obtained by the multiplexation of 

X(k)  Y(k  1)  Y(k) increments over non-
superposed blocks of size n according to: 
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The resultant process has finite dimensional 
distributions similar to X(k). Specifically for each n 
we have that: 

( )( ) ( ),  .n H

dX k n X k n   (3) 

The stationary process X(k) that fulfills (3) is 
called a self-similar stationary process, H-sss, with 
Hurst exponent H. A typical example is the 
fractional Gaussian noise (fGn) given by the 

expression X(k)  B(H)(k  1)  B(H)(k), which is the 
only known H-sss Gaussian process [5]. 

There are several ways of studying the 
statistical properties of X(n)(k). The cumulants of 
the aggregate series, which are defined in terms of 
Taylor coefficients of the cumulant generating 
function, are considered in [5]: 
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where cumm X(k)  g(m)(0). In [7] it is shown that the 
m-th order cumulants of an H-sss aggregate 
process scales according to a power law given by: 

( )cum ( ) cum ( ).SmHn

m mX k n X k  (5) 

If a H-sss process fulfills (5) ∀ n, m  ℕ, then 
|log cumm X(n)(k)| behaves in such a way that its 
values scale linearly with those of log n, with mHs 
coefficients that are a linear function of m. In other 

words, mHS  mH(m), i.e: 

( ) ( )cum ( ) cum ( ).n mH m

m mX k n X k  (6) 

In [5], it is shown that a generalization of a self-
similar process to a multifractal process is given as 

follows: a stationary process X(k) with k  ℤ is a 
multifractal process if: 

( )log cum ( ) ( )log ( ),n

m X k mH m n c m   (7) 

for every m, n  ℕ, allowing the exponent H to vary 
with the order m. 

The general form of mH(m) is given by: 

( ) ,mH m m    (8) 

which corresponds to the linear fractal model, 

where the coefficients  and β are determined 
directly during the fitting of the cumulants.  

In [8, 9], it is shown that the only known process 
of this kind takes the form: 

  ( ) 2( 1)UmH m m H  (9) 

and it is called a unifractal process. 

In [5], the unifractal model is compared with the 
self-similar model using empirical flows. The 
analysis of Figures 3 and 4 in [5] puts in evidence 
that both models are capable of capturing the main 
trends of the real flows in the estimation of H, but 
also that none of them harmonizes with the locality 
phenomenon of the Hurst exponent. 

Fig. 1 gives an illustration of the locality 
phenomenon. In the current case the X-axis stands 
for log n and the Y-axis stands for log cumulant. 
The slope of the fitting curve crossovers from a 
small value to a notably larger value. Therefore the 
curve consists of three parts: a line segment with a 
gentler slope when log n is small, the intermediate 
transition part, and another line segment with a 
steeper slope when log n is large. 

3 A Multifractal Model for the Locality 
Phenomenon 

The reference [10] reports that the PCA (Principal 
Components Analysis) of the spectrum of proper 
values that result from mixing fractional Brownian 
motion signals with different Hurst exponents (H) 
produces a bi-scalar behavior. This precise fact is 
what motivates the statement of a multifractal flow 
traffic model capable of reproducing the locality 
phenomenon of the Hurst exponent. 

 

Fig. 1. Illustration of the locality phenomenon 
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Let us assume a network traffic process, W(k), 
composed of the addition of two independent self-
similar stochastic processes; X1(k) and X2(k), with 
Hurst exponents H1 and H2, respectively, i.e: 

1 1 2 2( ) ( ) ( ),W k X k X k     (10) 

where Var{X1}  Var{X2} and the scale coefficients 

1 and 2 (1, 2 > 0) controlling the variance of the 
components of (10). Also, without loss of 
generality, that H1 < H2.  

The same as for the case of (2), we can define 
the aggregate process Z(n)(k) through multiplexing 

increments Z(k) given by the expression Z(k)  W(k 

 1)  W(k), considering non-overlapping blocks of 
size n as: 
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Due to the independence for the self-similar and 
unifractal models it is verified that: 

 

Fig. 2. Phenomena in a fGn series with H  0.6 

 

Fig. 3. Phenomena in a fGn series with H  0.8 

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1517–1521
doi: 10.13053/CyS-23-4-2831

A Simplified Multifractal Model for Self-Similar Traffic Flows in High-Speed Computer Networks 1519

ISSN 2007-9737



1 2

1 2

( )

( ) ( )

1 1 2 2

( ) ( )

1 2

2( ( ) 1) 2( ( ) 1)

1 2

cum ( )

cum ( ( ) ( ))

( ) ( )

( ) ( ) ,

n

m

n n

m

nH m nH m

m H m m H m

Z k

X k X k

c m n c m n

c m n c m n

 

   



 

 



 
(12) 

with c1(m) and c2(m) partially determined by the 

coefficients 1 and 2, respectively. 

Then, if c1(m) > c2(m), there is a unique positive 
solution n* (not necessarily integer) of the equation 
in terms of variable n: 

   
1 22( ( ) 1) 2( ( ) 1)

1 2( ) ( ) .m H m m H mc m n c m n  (13) 

Thus, it is easy to verify that: 
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For every m the logarithmic scale diagram of 
the m-th order cumulant of Z(n)(k) consists of three 
segments: a first linear segment with slope given 

for m  2(H1  1) when n is small; an intermediate 
transition section (often very short), and finally a 

linear segment with slope m  2(H2  1) when n 
is large.  

Therefore, the locality phenomenon of the Hurst 
exponent is put in evidence. 

Fig. 2 shows the locality phenomenon in the 

behavior of a fGn series with H  0.6 generated 
spectrally, while Fig. 3 shows the phenomenon for 

a fGn series with H  0.8; Fig. 4 shows the joint 

behavior of both series with 1  2 in (10) [11]. 

It is interesting to notice that the theoretical 
inconsistency of a single value of the Hurst 
exponent and the locality phenomenon can be 
solved using a simple model that adds second 
order self-similar temporal series. On the other 
hand, it is possible to generate various processes 
with different Hurst exponents using any of the 
existing methods for the generation of second 
order self-similar series and then adding them. 

The above is completely consistent with the 
conclusion of [12], which states that it is necessary 
to multiplex several traffic sources to generate 
more appropriate and realistic simulations for 
traffic flows. 

Most of the previous models that deal with the 
origins of traffic flow self-similarity in high speed 
networks can be adopted, from the perspective of 
their application to the proposed model, with the 
purpose of stressing the coexistence in real flows 
of multiple self-similar heterogeneous components. 
It can therefore be stated that if in the On/Off model 
of [13] one assumes the existence of two different 

 

Fig. 4. Phenomena observed in the joint behavior of the previous series with 1  2 in (10)5 Conclusions 
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values for the Pareto exponents that control the 
distribution of the “On” periods and the “Off” 
periods of the sources, then the aggregate final 
process flow will present two different components 
in terms of their Hurst exponents and therefore the 
locality phenomenon will appear. 

In general, for large coverage networks, i.e. 
with very complex structures, the data channel is 
shared by multiple sources in a manner that can be 
considered approximately independent and 
additive. Because of diversity of sources and 
transfer mechanisms, the incoming flow coming 
from each source has different Hurst exponents. 
This leads to the statement of the following 
conjecture: it is more probable to observe the 
locality phenomenon in traffic flows of trunk 
networks than of local area networks. 
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