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Abstract. In this paper the problem of trajectory
tracking is studied. Based on the Lyapunov theory,
a Fractional Order PID control law that achieves the
global asymptotic stability of the tracking error between a
fractional order recurrent neural network and a fractional
order complex dynamical network is obtained. To
illustrate the analytic results we present a tracking
simulation of a dynamical network with each node
being just one fractional order Lorenz´s dynamical
system and three identical fractional order Chen’s
dynamical systems.
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1 Introduction

This paper analyzes trajectory tracking not for a
nonlinear system but for a network of coupled
nonlinear systems, which are forced to follow a
reference signal generated by a nonlinear chaotic
system. The control law that guarantees trajectory
tracking is obtained by using the Lyapunov
methodology and the Fractional Order PID Control
Law. It is interesting to note that more than
half of the industrial controllers in use today are
PID controllers or modified PID controllers. The
proportional action tends to stabilize the system,
while the integral control action tends to eliminate

or reduce steady-state error in response to various
inputs. Derivative control action, when added
to a proportional controller, provides a means of
obtaining a controller with high sensitivity. An
advantage of using derivative control action is
that it responds to the rate of change of the
actuating error and can produce a significant
correction before the magnitude of the actuating
error becomes too large.

Derivative control thus anticipates the actuating
error, initiates an early corrective action, and tends
to increase the stability of the system.

The combination of proportional control action,
integral control action, and derivative control action
is termed proportional-plus-integral-plus-derivative
control action. It has the advantages of each of the
three individual control actions.

A Fractional Order PID controller, also known as
a
[
PIλDα

]
controller, takes on the form [1]:

u(t) = Kpe(t) +KiaD
−λ
t e(t) +KdaD

α
t e(t),

where λ and α are the fractional orders of the
controller and e(t) is the system error. Note
that the system error e(t) replaces the general
function f(t).

The analysis and control of complex behavior
in complex networks, which consist of dynamical
nodes, has become a point of great interest in
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recent studies [2, 3, 4]. The complexity in
networks comes from their structure and dynamics
but also from their topology, which often affects
their function.

Recurrent neural networks have been widely
used in the fields of optimization, pattern
recognition, signal processing and control systems,
among others. They have to be designed in such
a way that there is one equilibrium point that is
globally asymptotically stable. Trajectory tracking
is a very interesting problem in the field of theory
of systems control; it allows the implementation
of important tasks for automatic control such
as: high speed target recognition and tracking,
real-time visual inspection, and recognition of
context sensitive and moving scenes, among
others. We present the results of the design of a
control law that guarantees the tracking of general
fractional order complex dynamical networks.

2 Mathematical Models

2.1 Fractional General Complex Dynamical
Network

In this work, we use Caputo’s fractional operator,
which is defined, for 0 or 1, by:

x(α)(t) =c
0 D

α
t x(t) =

1

Γ(1− α)

∫ t

0

x’(τ)(t− τ)−αdτ .

If x(t) ∈ Rn, we consider that x(α)(t) is the
Caputo fractional operator applied to each entry:

x(α)(t) = (c0D
α
t xi1(t), ...,c0D

α
t xin(t))T .

Consider a network consisting of N linearly and
diffusively coupled nodes, with each node being an
n-dimensional dynamical system, described by:

x
(α)
i = fi(xi)+

N∑
j=1
j 6=i

cijaijΓ(xj−xi), i = 1, 2, . . . ,N ,

(1)
where xi = (xi1,xi2, . . . ,xin)T ∈ Rn are the state
vectors of node i, fi : Rn 7−→ Rn represents the
self-dynamics of node i, constants cij > 0 are
the coupling strengths between node i and node
j, with i, j = 1, 2, . . . ,N .

Γ = (τij) ∈ Rn×n is a constant internal matrix
that describes the way of linking the components in
each pair of connected node vectors (xj −xi): that
is to say for some pairs (i, j) with 1 ≤ i, j ≤ n and
τij 6= 0 the two coupled nodes are linked through
their ith and jth sub-state variables, respectively,
while the coupling matrix A = (aij) ∈ RN×N
denotes the coupling configuration of the entire
network: that is to say if there is a connection
between node i and node j(i 6= j), then aij = aji =
1; otherwise aij = aji = 0.

2.2 Fractional Recurrent Neural Network

Consider a fractional recurrent neural network in
the following form:

x(α)ni = Anixni +Wniσ(xin) + uin +

N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin),

i = 1, 2, . . . ,N , (2)

where xin = (xin1
,xin2

, . . . ,xinn)T ∈ Rn is the
state vector of neural network i, uin ∈ Rn is
the input of neural network i, Ain = −λinIn×n,
i = 1, 2, . . . ,N , is the state feedback matrix, with
λin being a positive constant, Win ∈ Rn×n is the
connection weight matrix with i = 1, 2, . . . ,N , and
σ(·) ∈ Rn is a Lipschitz sigmoid vector function
[5, 6], such that σ(xin) = 0 only at xin = 0, with
Lipschitz constant Lσi , i = 1, 2, . . . ,N and neuron
activation functions σi(·) = tanh(·), i = 1, 2, . . . ,n.

3 Trajectory Tracking

The objective is to develop a control law such
that the ith fractional neural network (2) tracks the
trajectory of the ith fractional dynamical system
(1). We define the tracking error as ei = xin − xi,
i = 1, 2, . . . ,N whose time derivative is:

e
(α)
i = x

(α)
ini
− x(α)i , i = 1, 2, . . . ,N . (3)
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From (1, 2, 3), we obtain:

e
(α)
i = Ainxin +Winσ(xin) + uin − fi(xi) +

N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin)− (4)

N∑
j=1
j 6=i

cijaijΓ(xj − xi), i = 1, 2, . . . ,N .

Adding and substracting, Winσ(xi), αi(t), i =
1, 2, . . . ,N , to (4), where αi is defined below, and
considering that xin = ei+xi, i = 1, 2, . . . ,N , then:

e
(α)
i = Ainei +Win(σ(ei + xi)− σ(xi)) +

(uin − αi) + (Ainxi +Winσ(xi) + αi)−

fi(xi) +

N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin)− (5)

N∑
j=1
j 6=i

cijaijΓ(xj − xi), i = 1, 2, . . . ,N .

In order to guarantee that the ith neural network
(2) tracks the ith reference trajectory (1), the
following assumption has to be satisfed:

Assumption 1. There exist functions ρi(t) and
αi(t), i = 1, 2, . . . ,N , such that:

ρ
(α)
i (t) = Ainρi(t) +Winσ(ρi(t)) + αi(t),

ρi(t) = xi(t), i = 1, 2, . . . ,N . (6)

Let’s define:

ũin = (uin − αi),
φσ(ei,xi) = σ(ei + xi)− σ(xi), (7)

i = 1, 2, . . . ,N .

From (6, 7), equation (5) is reduced to:

e
(α)
i = Ainei +Winφσ(ei,xi) + ũin +

N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin)−

N∑
j=1
j 6=i

cijaijΓ(xj − xi), (8)

i = 1, 2, ...,N .

We can also write:

N∑
j=1
j 6=i

cinjnainjnΓ(xjn − xin)

= Γ(

N∑
j=1
j 6=i

cinjnjainjnxjn − xin
N∑
j=1
j 6=i

cinjnainjn)

N∑
j=1
j 6=i

cijaijΓ(xj − xi) (9)

= Γ(

N∑
j=1
j 6=i

cijaijxj − xi
N∑
j=1
j 6=i

cijaij),

i = 1, 2, . . . ,N ,

where we used that cinjn = cij and ainjn =
aij . Then, with the above equation, equation (8)
becomes:

e
(α)
i = Ainei +Winφσ(ei,xi) + ũin +

Γ(

N∑
j=1
j 6=i

cijaijej − ei
N∑
j=1
j 6=i

cijaij)

= Aniei +Winφσ(ei,xi) + ũin + (10)
N∑
j=1
j 6=i

cijaijΓ(ej − ei),

i = 1, 2, . . . ,N .

It is clear that ei = 0, i = 1, 2, . . . ,N is an
equilibrium point of (10), when ũin = 0, i =
1, 2, . . . ,N . Therefore, the tracking problem can
be restated as a global asymptotic stabilization
problem for the system (10).

4 Tracking Error Stabilization and
Control Design

In order to establish the convergence of (10) to
ei = 0, i = 1, 2, . . . ,N , which ensures the desired
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tracking, first, we propose the following candidate
Lyapunov function:

VN (e) =

N∑
i=1

V (ei) = (11)

N∑
i=1

1
2 [(eTi ,wTi )(ei,wi)

T ].

In fractional calculus, the product rule for the
derivative is no longer valid. However, we still have
an upper bound for the product that appears in
(11). Specifically, from Lemma 1 in [7] the time
derivative of (11), along the trajectories of (10), and
adding the Derivative D:

aDα
t V = eTi aD

α
t ei + wTi aD

α
t wi,

aDα
t V = eT [aDα

t ei +KdaD
α
t ei(t)] + wTi aD

α
t wi,

aDα
t V = eTi [1 +Kd]aD

α
t ei(t) + wTi aD

α
t wi.

If a = [1 + Kd],α = λ, and wi = KiaD
−α
t ei(t),

then aDα
t wi = Kie(t), [8]

aDα
t V =

N∑
j=1

aeTi (Ainei +Winφσ(ei,xi) + (12)

ũin +

N∑
j=1
j 6=i

cijaijΓ(ej − ej)) + wTi Kie(t).

We can then write:

aDα
t =

N∑
i=1

(
−aλin ‖ei‖

2
+ (13)

aeᵀiWinφσ(ei,xi) + aeᵀi
∼
uin

)
+

a

 N∑
j=1
j 6=i

cijaije
ᵀ
i Γ(ej − ej)

+ wTi Kie(t).

Next, let’s consider the following inequality,
proved in [9, 10]:

X>Y + Y >X ≤ X>ΛX + Y >Λ−1Y , (14)

which holds for all matrices X,Y ∈ Rn×k and
Λ ∈ Rn×n with Λ = Λ> > 0. Applying (14) with Λ =

In×n to the term eᵀiWinφσ(ei,xi), i = 1, 2, ...,N ,
we get:

eᵀiWinφσ(ei,xi) ≤ 1

2
eᵀi ei

+
1

2
φ>σ (ei,xi)W

>
inWinφσ(ei,xi)

=
1

2
‖ei‖2 +

1

2
φ>σ (ei,xi)

×W>inWinφσ(ei,xi), (15)
i = 1, 2, ...,N .

Since φσ is Lipschitz, then:

‖φσ(ei,xi)‖ ≤ Lφσ1 ‖ ei ‖, i = 1, 2, ...,N , (16)

with Lipschitz constant Lφσi . Applying (16) to
1
2φ
>
σ (ei,xi)W

>
in
Winφσ(ei,xi) we obtain:

1

2
φ>σ (ei,xi)W

>
inWinφσ(ei,xi)

≤ 1

2

∥∥φ>σ (ei,xi)W
>
inWinφσ(ei,xi)

∥∥
≤ 1

2

(
Lφσi

)2 ‖Win‖
2 ‖ei‖2 , (17)

i = 1, 2, ...,N .

Next, (15) is reduced to:

eᵀiWinφσ(ei,xi)

≤ 1

2
‖ei‖2 +

1

2

(
Lφσi

)2 ‖Win‖
2 ‖ei‖2 (18)

=
1

2

(
1 + L2

φσi
‖Win‖

2
)
‖ei‖2 ,

i = 1, 2, ...,N .

Then, we have that:

V
(α)
N (e) ≤

N∑
i=1

eT (−aλinei − a
N∑
j=1
j 6=i

cijaijΓei +

a

2

(
1 + L2

φσi
‖Win‖

2
)
ei + (19)

wTi Kie(t) + a
N∑
j=1
j 6=i

cijaije
ᵀ
i Γej + a

∼
uni .
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We define
∼
uni =

≈
ui +

≈
uij + Kpiei + wi, i =

1, 2, ...,N , and from (19) we get:

V
(α)
N (e) ≤

N∑
i=1

[−a( λni −Kp)e
T
i ei +

a

2

(
1 + L2

φσi
‖Win‖

2
)
eTi ei +

(a+Ki)e
Twi − a

N∑
j=1
j 6=i

cijaijΓe
ᵀ
i ei (20)

+ a
N∑
j=1
j 6=i

cijaijΓe
ᵀ
i ej + aeT

≈
ui + aeT

≈
uij .

Here we select (a + Ki) = 0, so, Kd = −Ki −
1;Kd ≥ 0,then Ki ≥ −1. With this selection of
parameters (20) is reduced to:

aDα
t V = V

(α)
N (e) ≤

N∑
i=1

[−a( λni −Kp)e
T
i ei +

a

2

(
1 + L2

φσi
‖Win‖

2
)
eTi ei −

a
N∑
j=1
j 6=i

cijaijΓe
ᵀ
i ei +

a
N∑
j=1
j 6=i

cijaijΓe
ᵀ
i ej + aeT

≈
ui + aeT

≈
uij .

In this part, if λni − Kp > 0, a > 0,
then aDα

t V < 0,∀ei,wi,Wni ,the traking error is
asymptotically stable and it converges to zero for
every ei 6= 0; i.e. the Neural Network will follow the
plant asymptotically.

Now, we propose to use the following control law:

∼
uni =

(
1 + L2

φσi
‖Win‖

2
)
e

−
N∑
j=1
j 6=i

cijaijΓej , (21)

i = 1, 2, ...,N .

In this case, V (α)
N (e) < 0, ∀ e 6= 0. This means

that the proposed control law (21) can globally and
asymptotically stabilize the ith error system (10),
therefore ensuring the tracking of (1 by 2).

Finally, the control action of the recurrent neural
networks is given by:

uin = fi(xi) + λnixi −Wniσ (xi) +

1

2

(
1 + L2

φσi
‖Win‖

2
)
ei + (22)

Kpe(t) +KiaD
−λ
t e(t) +KdaD

α
t e(t)−

N∑
j=1
j 6=i

cijaijΓej + fi (xi) + λinxi,

i = 1, 2, ...,N .

5 Simulations

In order to illustrate the applicability of the
discussed results, we consider a fractional order
dynamical network with just one fractional order
Lorenz’s node and three identical fractional order
Chen’s nodes.

Fig. 1. Sub-State of Lorenz’s attractor with initial
condition X1 (0) = (10; 0; 10)ˆT

The single fractional order Lorenz system is
described by:

aDα
t xp1 = 10x2 − 10x1,

aDα
t xp2 = −x2 − x1x2 + 28x1, (23)

aDα
t xp3 = x1x2 −

8

3
x3,

xi(0) = (10, 0, 10)T , i = 1,

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 349–357
doi: 10.13053/CyS-24-1-2836

Fractional Complex Dynamical Systems for Trajectory Tracking using Fractional Neural Network... 353

ISSN 2007-9737



Fig. 2. Sub-States of Chen’s attractor with initial
condition X2,3,4(0) = (-10; 0; 37)ˆT

Fig. 3. Sub-State of Lorenz’s attractor with initial
condition X1 (0) = (10; 0; 10)ˆT

and the Chen’s oscillator is described by:

aDα
t xi1 = p1(xi2 − xi1) +

4∑
j=1,j 6=i

cijaij(xj1 − xi1),

aDα
t xi2 = (p3 − p2)xi1 − xi1xi3 + p3xi2 +

4∑
j=1,j 6=i

cijaij(xj2 − xi2), (24)

aDα
t xi13 = xi1xi2 − p2xi3 +

4∑
j=1,j 6=i

cijaij(xj3 − xi3),

xi(0) = (−10, 0, 37)T , i = 2, 3, 4.

If the system parameters are selected as p1 =
35, p2 = 3, p3 = 28, then the fractional order

Fig. 4. Sub-States of Chen’s attractor with initial
condition X2,3,4(0) = (-10; 0; 37)ˆT

Lorenz’s system and the fractional order Chen’s
system are shown in Fig. 1 and Fig.2, with α =
λ = 1, Fig. 3 and Fig.4, with α = λ = 0.0005
respectively. In this set of system parameters, one
unstable equilibrium point of the oscillator (25) is x
= (7:9373; 7:9373; 21)T [11].

Suppose that each pair of two connected
fractional order Lorenz and the fractional order
Chen’s oscillators are linked together through their
identical sub-state variables, i.e., Γ = diag(1, 1, 1),
and the coupling strengths are c12 = c21 = π,
c23 = c32 = π, c13 = c31 = π, c14 = c41 = 2π,
c24 = c42 = 2π, c34 = c43 = 2π. Fig. 5 visualizes
this entire fractional order dynamical network.

Fig. 5. Structure of the network with each node being a
Lorentz and Chen’s system
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The neural network was selected as:

Ani = −1 0 0
0 −1 0
0 0 −1

, Wni = 1 2 0
−3 4 0
0 2 3

,

σ(xni) = tanhn1(x)
tanhn2(x)
tanhn3(x)

xni = (20, 20,−10)T ,

Lφσi
M
= ni = 3, i = 1, 2, 3, 4.

Fig. 6. Time evolution for sub-states 1 with initial state
Xn1(0) = (10; 0; 10)ˆT

Fig. 7. Time evolution for sub-states 1 with initial state
Xn1(0) = (10; 0; 10)ˆT

Fig. 8. Time evolution for sub-states 2 with initial state
Xn1(0) = (10; 0; 10)ˆT

Fig. 9. Time evolution for sub-states 4 with initial state
Xn4(0) = (20,20,-10)ˆT

The experiment is performed as follows. Both
systems, the recurrent neural network (2) and
the dynamical networks (24) and (25), evolve
independently; at that time, the proposed control
law (22) is incepted. Simulation results are
presented in Fig. 6 - Fig. 8, with α = λ = 1, for
sub-sates of node 1. As can be seen, tracking is
successfully achieved and error is asymptotically
stable, as it is shown in Fig. 9 - Fig. 11, with
α = λ = 0.0005 for sub-states of node.
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Fig. 10. Time evolution for sub-states 4 with initial state
Xn4(0) = (20,20,-10)ˆT

Fig. 11. Time evolution for sub-states 4 with initial state
Xn4(0) = (20,20,-10)ˆT

6 Conclusions

We have presented a controller design for
trajectory tracking of a fractional general complex
dynamical networks. This framework is based
on controlling dynamic neural networks using
Lyapunov theory in the fractional case. We
obtained a control law in a purely theoretical way,
and can be therefore to a wide range of problems
in trajectory tracking. As an example, the proposed
control is applied to a simple network with four
different nodes and five non-uniform links. In
future work, we will consider the stochastic case
in fractional systems.
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