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Abstract. We present the experimental results obtained
by testing a monocular visual odometry algorithm on a
real robotic platform outdoors, on flat terrain, and under
severe changes of global illumination. The algorithm
was proposed as an alternative to the long-established
feature based stereo visual odometry algorithms. The
rover’s 3D position is computed by integrating the frame
to frame rover’s 3D motion over time. The frames
are taken by a single video camera rigidly attached
to the rover looking to one side tilted downwards to
the planet’s surface. The frame to frame rover’s 3D
motion is directly estimated by maximizing the likelihood
function of the intensity differences at key observation
points, without establishing correspondences between
features or solving the optical flow as an intermediate
step, just directly evaluating the frame to frame intensity
differences measured at key observation points. The
key observation points are image points with high linear
intensity gradients. Comparing the results with the
corresponding ground truth data, which was obtained
by using a robotic theodolite with a laser range sensor,
we concluded that the algorithm is able to deliver the
rover’s position in average of 0.06 seconds after an
image has been captured and with an average absolute
position error of 0.9% of distance traveled. These results
are quite similar to those reported in scientific literature
for traditional feature based stereo visual odometry
algorithms, which were successfully used in real rovers
here on Earth and on Mars. We believe that they
represent an important step towards the validation of the
algorithm and make us think that it may be an excellent
tool for any autonomous robotic platform, since it could
be very helpful in situations in which the traditional
feature based visual odometry algorithms have failed. It

may also be an excellent candidate to be merged with
other positioning algorithms and/or sensors.

Keywords. Visual-based Autonomous Navigation,
Planetary Rover Localization, Ego-Motion Estimation,
Visual Odometry, Experimental Validation, Planetary
Robots.

1 Introduction

In the last decades, robotic rovers, such as the
Mars Exploration rover Opportunity [1, 2] and the
Mars Science Laboratory’s rover Curiosity [3, 4],
have proven to be very powerful and long lasting
tools for Mars exploration due to their ability to
navigate and perform activities semi-autonomously
[5], as well to survive beyond any prediction [6],
which have allowed them to get a closer look at any
interesting target found in their path and to further
extend the territory explored [7, 8]. The activities
to be performed by the rover during the day are
usually instructed only once per Martian day (often
called a sol) via a prescheduled sequence of
commands, which are sent each morning by the
scientists and engineers on Earth [9]. A sol is just
about 40 minutes longer than a day on Earth. The
rover is expected to safely and precisely navigate
along a given path, position itself with respect to
a target, deploy its instruments to collect valuable
scientific data, and return them back to earth [5],
where any kind of navigation error could result in
the loss of a whole day of scientific exploration,
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trap the vehicle in hazardous terrain, or damage
the hardware [7, 8]. On Earth, the data received
will be used for scientific research and to plan the
next sol’s activities [9].

For safe and precise autonomous navigation, the
rover must know its exact position and orientation
during the execution of all motion commands [10].
The rover’s position is estimated by integrating
the rover’s translation over time, which in turn is
estimated from a combination of encoder readings
of how much the wheels turn (wheel odometry)
with heading updates from the gyros [11]. The
position at the beginning of the rover’s motion
is assumed to be known or reset by command.
The rover’s orientation is estimated by integrating
the rover’s rotation over time, where the latter
is delivered by gyros of an Inertial Measurement
Unit (IMU) onboard the rover [11]. The initial
orientation of the rover is estimated from both
accelerometer measurements delivered by the IMU
and the position of the sun, which is obtained by a
sun sensor that is also part of the rover navigation
system [12].

A common problem associated with the use
of wheel odometry is that the accumulated error
of wheel odometry with distance traveled highly
depends on the type and geometry of the terrain
over which the rover has been traversing, being
small on level high friction terrain [13, 11, 8], where
the wheel slip is small due to good traction, and
large on steep slopes and sandy terrain [10, 7, 14],
where the wheels slip due to the loss of traction or
when a wheel pushes up agains a rock [13]. This
limits the autonomous navigation of the planetary
rovers on slippery environments [15], because
the position estimate derived solely from wheel
encoders would not be very accurate to be trusted
to compensating for slip in order to ensure that the
rover stays on the desired path [10]. In addition, the
excessive wheel slip could even cause the rovers to
get stuck in soft terrain [10, 16].

In order to improve the safety and autonomous
navigation accuracy of rovers in slippery
environments, the rover is often commanded
to perform the correction of any error that occurred
because of wheel slippage after moving a small
amount by using the rover’s position estimate,
which is determined by a feature based stereo

visual odometry algorithm [10, 17, 5]. This
algorithm is able to determine the rover’s position
and orientation from the video signal delivered
by a stereo video camera mounted on the rover
[18]. It can be roughly summarized in seventh
steps. In the first step, a stereo pair is captured
before the rover moves and a set of 2D feature
points are chosen carefully evenly across the left
image. In the second step, the 3D positions of
the selected 2D feature points are estimated by
establishing 2D feature point correspondences
and using triangulation to derive the 3D positions
[19]. In the third step, after the rover moves a short
distance, a second stereo pair is captured.

Then the previously selected 2D feature points
are projected onto the second stereo pair by
using an initial motion estimate provided by the
onboard wheel odometry. In the fourth step, the
projected 2D feature point positions are refined
and their 3D positions are also estimated by
establishing 2D feature point correspondences and
using triangulation to derive the 3D positions. In
the fifth step, the 3D correspondences between
the set of 3D feature point positions computed
before the rover’s motion and the set of 3D feature
point positions computed after the rover’s motion
are established. In the sixth step, the conditional
probability of the established 3D correspondences
is computed and then maximized to find the 3D
motion estimates. Finally, in the seventh step,
the motion estimates are accumulated over time in
order to get the rover’s position and orientation.

The above algorithm was initially described in
[20], then it was further developed in [21, 22, 23],
until a real-time version of it was implemented and
incorporated in the rovers Spirit and Opportunity
of the Mars Exploration Rover Mission [10]. After
evaluating its performance in both Spirit and
Opportunity rovers on Mars, changes were made
in [24] to improve its robustness and reduce the
onboard processing time. This last updated version
of the stereo visual odometry algorithm is currently
being used in the Curiosity rover [25, 26].

There are other similar algorithms in the
professional literature [27, 28, 29, 30, 31, 32],
which have even been adapted for to operate
with a monocular [30] or an omnidirectional video
camera [33, 34, 35, 36], and recently, extended
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to Simultaneous Localization and Mapping (SLAM)
[37, 38]. Refer to [39, 40] for a comprehensive
tutorial on visual odometry.

In [41, 42], a monocular visual odometry
algorithm based on intensity differences was
proposed as an alternative to the long-established
feature based stereo visual odometry algorithms,
which avoids having to establish 2D and 3D feature
points correspondences for motion estimation,
tasks that are known to be very difficult, to
consume a lot of processing time [27] and are
prone to match errors due to large motions,
occlusions or ambiguities, which greatly affect the
3D motion estimation [21]. With this algorithm it
is possible to estimate the 3D motion of the rover
by means of the maximization of the conditional
probability of the intensity differences measured
at key observation points between two successive
images. The images are taken by a single video
camera prior to and after the motion of the rover.
The key observation points are image points whose
linear intensity gradients are found to be high.

Although the starting point to compute the
conditional probability is the well known optical
flow constraint [43, 44], this is not a typical
two-stage 3D motion estimation algorithm as those
described in [45, 46, 47, 48, 49, 50, 51, 52, 53],
which requires the estimation of the optical flow
vector field as an intermediate step, but rather a
one-stage 3D motion estimation algorithm similar
as those proposed in [54, 55, 56, 57, 58, 59, 60],
which is able to directly deliver the 3D motion just
evaluating intensity differences at key observation
points, thereby avoiding in this way solving the
ill-posed problem of optic flow estimation, whose
solution is rarely unique and stable [61].

Despite that in [41, 42] the above
intensity-difference based monocular visual
odometry algorithm has been extensively tested
with synthetic data to investigate its error growth at
different intensity error variances, an experimental
validation of the algorithm in a real rover platform in
outdoor sunlit conditions is still missing. Therefore,
this paper’s main contribution will be to provide that
missing validation data to help to clarify whether
the algorithm really does what is intended to do
in real outdoors situations. However because
the terrain shape is unknown, flat terrain will

be assumed and the results presented in this
contribution will be from experiments conducted
only on flat ground.

Since the final goal of the algorithm is for it to
be used in the rover’s positioning, its positioning
performance will be assessed for validation, where
the absolute position error of distance traveled will
be used as a performance measure. Minimal, it
is expected to obtain an absolute position error
within a range of 0.15% and 2.5% of distance
traveled, similar to those achieved by traditional
feature based stereo visual odometry algorithms
[45, 28, 10, 30, 34], which have been successfully
used in rovers here on Earth and on Mars. The
processing time per image will be also reported.

This contribution is organized as follows: in
section 2, the monocular visual odometry algorithm
is briefly described; in section 3, the experimental
validation results are presented; and finally, in
section 4, a summary and the conclusions are
given.

2 Visual Odometry Algorithm

This algorithm is able to estimate the rover’s 3D
motion from two successive intensity images Ik−1
and Ik. The images depict a part of the planet’s
surface next to the rover and are taken by a single
video camera at time tk−1 and time tk, which
has been mounted on the rover looking to one
side tilted downwards to the planet’s surface. The
estimation is achieved by maximizing a likelihood
function consisting of the natural logarithm of
the conditional probability of intensity differences
at key observation points between both intensity
images. The conditional probability is computed by
taking as a starting point assumptions of how the
world is constructed and how an image is formed.

Subsections 2.1 and 2.2 describe these
assumptions. The conditional probability is
computed in subsection 2.3. In subsection 2.4, the
method for maximizing the natural logarithm of the
conditional probability to determine the rover’s 3D
motion is explained.
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2.1 Motion, Camera and Illumination Models

The rover’s 3D motion from time tk−1 to time tk is
described by a rotation followed by a translation of
its own coordinate system (q, r, s) with respect to
the fixed surface coordinate system (X,Y ,Z). The
translation is described by the 3 components of the
3D translation vector ∆T = (∆TX , ∆TY , ∆TZ)

>.
The rotation is described by 3 rotation angles:
∆ωX , ∆ωY , ∆ωZ . Here, the unknown six motion
parameters are represented by the vector B =

(∆TX , ∆TY , ∆TZ , ∆ωX , ∆ωY , ∆ωZ)
>. In addition,

the rover coordinate system (q, r, s) and the
camera coordinate system are supposed to be the
same, and the camera coordinate system (q, r, s)
is supposed to coincide with the fixed surface
coordinate system (X,Y ,Z) at time t0.

Thus, the accumulated 3D motion of the surface
with respect to the camera coordinate system
(q, r, s) is the accumulated negative 3D motion
of the rover with respect to the fixed coordinate
system (X,Y ,Z). Furthermore, it is assumed that
an image is formed through perspective projection
onto the camera plane of that part of the surface
next to the rover, which is inside the camera’s field
of view. That part is called herein the visible part of
the surface. Moreover, it is assumed that there are
no moving objects on the visible part of the surface
and that the surface is Lambertian, as well as the
illumination is diffuse and time invariant. Thus, the
intensity difference at any key observation point is
due only to the rover’s 3D motion.

2.2 Surface Model

For 3D motion estimation from time tk−1 to time tk,
the 3D shape of a rectangular portion of the visible
part of the surface and its relative pose to the
camera coordinate system (q, r, s), as well as a set
of observation points are supposed to be known
at time tk−1. The 3D shape of this rectangular
surface portion is assumed to be flat and rigid
and described by meshing together two triangles,
forming the rectangle. The pose is described by a
set of six parameters: the three components of a
3D position vector and three rotation angles. An
observation point lies on the rectangular surface
portion at barycentric coordinates Av and carries
the intensity value I, as well as the linear intensity

gradients g = (gx, gy)> at position Av. From now
on, these known shape, pose and observation
points will be referred as the surface model at
time tk−1. The surface model at time tk−1 is
obtained by moving (rotating and translating) the
surface model from its pose at time tk−2 to the
corresponding pose at time tk−1 with the negative
of the rover’s 3D motion estimates from time tk−2
to time tk−1. The initial surface model at time t0
is currently created and initialized a priori during
the time interval extending from time t−a until time
t0: [t−a, t−a+1, ..., t−b, ..., t−c, ..., t−d, ..., t−1, t0].
During this initialization time interval the rover
does not move. Thus the surface model’s pose
remains constant in that interval.

2.2.1 Shape Initialization

The dimensions of the rectangular flat surface
model are initialized with the same dimensions as
a real planar checkerboard pattern, which is placed
on the surface in front of the camera at time t−b
and removed from the scene at time t−d during
the initialization time interval. The pattern is placed
so that its perspective projection onto the camera
plane lies in the center of the image and covers
approximately 20% of the total image area. The
pattern has 8x6 squares of 50 mm side length.

2.2.2 Pose Initialization

The pose of the initial surface model with respect to
the camera coordinate system (q, r, s) is set equal
to the position and orientation of the real pattern
mentioned above with respect to the camera
coordinate system. The position and orientation
are estimated in two steps during the initialization
time interval. First, an intensity image I−c of the
real pattern on the surface is captured at time
instant t−c, where t−b < t−c < t−d. Then, the
position and orientation are estimated by applying
Tsai’s coplanar camera calibration algorithm [62] to
the intensity image I−c. The pattern is removed
from the scene after calibration at time instant t−d.
The camera calibration also ensures metric motion
estimates.
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2.2.3 Observation Points Initialization

The observation points of the initial surface model
are created and initialized in five steps at the end of
the initialization time interval by using the intensity
image I0 captured at time t0. First, the gradient
images G0x and G0y are computed by convolving
the intensity image I0 with the Sobel operator. In
the second step, the image region of each triangle
of the surface model is computed by perspective
projecting their 3D vertex positions into the camera
plane. In the third step, the observation points
are selected but only inside the image regions of
the projected triangles. An arbitrary image point
a inside the image region of a projected triangle
will be selected as an observation point only if
the linear intensity gradient at position a satisfies
|G0(a)| > δ1.

This selection rule will reduce the influence of
the camera noise and increase the accuracy of
the estimation. The value of the threshold δ1
was heuristically set to 12 and remains constant
throughout the experiments. In the fourth step,
the 3D positions of the selected observation points
on the model surface with respect to the camera
coordinate system are computed. The 3D position
vector A of an arbitrary selected observation is
computed as the intersection of the a’s line of
sight and the plane containing the corresponding
triangle’s vertex 3D positions. The corresponding
barycentric coordinates Av with respect to the
vertex 3D positions are also computed. Finally, in
the fifth step, each selected observation point is
rigidly attached to the triangle’s surface. For this
purpose, its position, intensity value I and linear
intensity gradient g = (gx, gy)> are set to Av, I0(a)
and (G0x(a),G0y(a))>, respectively.

2.2.4 Pose and Observation Points
Reinitialization

After the robot has moved a distance, it is possible
that at time tk−1 � t0 the camera will begin to lose
sight of the rectangular portion of the planetary
surface being described by the surface model. This
causes some observation points to no longer be
used to estimate the robot motion from time tk−1
to time tk. This can reach the point where no
more observation points are available for motion

estimation because the camera complete loses
sight of the portion of the surface being modeled
at time tk−1. To avoid this problem, one must
check if any of the vertices of the surface model
at time tk−1 are outside of the camera’s field of
view. If at least one of them is outside, the
surface model’s pose and observation points are
reinitialized in two steps. First, the pose are set
to be the same as it was at time t0 with respect
to the camera coordinate system (q, r, s). Then, a
new set of observation points is created using the
image captured at time tk−1.

2.3 Conditional Probability of the Intensity
Differences

Let Av be the barycentric coordinates of an
arbitrary observation point on the planet’s
surface model and A = (Aq,Ar,As)

> be
the corresponding position with respect to
the camera coordinate system at time tk−1.
Furthermore, let a = (ax, ay)> be the position of
its perspective projection onto the camera plane
with coordinate system (x, y). Then, the frame to
frame intensity difference fd at observation point a
is approximated as follows:

fd(a) = Ik(a)− Ik−1(a) ≈ Ik(a)− I. (1)

Due to the robot’s motion from time tk−1 to time
tk, the observation point moves from A to A′ with
respect to the camera coordinate system. The
corresponding perspective projections onto the
image plane are a and a′, respectively. Expanding
the intensity signal Ik−1 at image position a by a
Taylor series and neglecting the nonlinear terms,
the Horn and Schunck optical flow constraint
equation [43] between the unknown position a′ and
the frame to frame intensity difference is obtained:

fd(a) = Ik(a)− Ik−1(a) ≈ −g> (a
′
− a). (2)

In order to improve the approximation accuracy
of Eq. (2), the second order derivatives are also
taken into account. To do this, the linear intensity
gradients g of the observation point are replaced by
the average of g and the linear intensity gradients
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(Gkx(a),Gky(a))> of the current intensity image Ik
at position a, as proposed in [63]:

fd(a) = Ik(a)− Ik−1(a) ≈ −ḡ> (a
′
− a), (3)

where

ḡ =
1

2
(g +

[
Gkx(a)
Gky(a)

]
) =

[
ḡx
ḡy

]
. (4)

Expressing a with a Taylor series approximation
of the perspective camera model at known position
A with focal distance f and neglecting the
nonlinear terms results:

a′ ≈ a +

[
f
As

0
f Aq

As
2

0 f
As

f Ar

As
2

]
(A′ −A). (5)

The known position A = (Aq,Ar,As)
> is related

with the unknown position A′ = (A′q,A′r,A′s)
>

according to:

A′ = ∆R (A−C) + C−∆T, (6)

where C = (Cq,Cr,Cs)
> represents the origin

of the coordinate system of the planet’s surface
model with respect to the camera coordinate
system and ∆R represents the rotation matrix
computed with the 3 rotation angles: −∆ωX ,
−∆ωY ,−∆ωZ , by rotating first around the X axis
with −∆ωX , then around the Y axis with −∆ωY ,
and finally around Z axis with −∆ωZ .

Substituing Eq. (6) in Eq. (5), and then Eq.
(5) in Eq. (3), as well as assuming small rotation
angles, so that cos(−∆ω) ≈ 1 and sin(−∆ω) ≈
−∆ω, the following linear equation that relates
the unknown motion parameters and the frame
to frame intensity difference measured at the
observation point position a is obtained:

fd(a) = o> B +∆I, (7)

where

o =



f ḡx
As
f ḡy
As

− f (Aq ḡx+Ar ḡy)

A2
s

− f [Aq ḡx(Ar−Cr)+Ar ḡy(Ar−Cr)+Asḡy(As−Cs)]

A2
s

f [Ar ḡy(Aq−Cq)+Aq ḡx(Aq−Cq)+Asḡx(As−Cs)]

A2
s

− f [ḡx(Ar−Cr)−ḡy(Aq−Cq)]

As


,

and ∆I represents the stochastic intensity
measurement error at the observation point.
If Eq. (7) is evaluated at N > 6 observation
points (N =15906 on average), the following
overdetermined system of linear equations is
obtained:

(fd(a(N−1)), fd(a(N−2)), . . . , fd(a(0)))> =

[o(N−1)>,o(N−2)>, . . . ,o(0)>]> B+

+ [∆I(N−1), ∆I(N−2), . . . , ∆I(0)]>, (8)

FD = O B + V. (9)

Modeling the intensity measurement error ∆I(n)

with image coordinates a(n) by a stationary
zero-mean Gaussian stochastic process, the
conditional probability of the frame to frame
intensity differences at the N observation points
can be written as follows:

p(FD|B) = (10)
1√

(2π)N |U|
e−

1
2 ((FD−O B)>U−1(FD−O B)),

where |U| is the determinant of the covariance
matrix U of the intensity measurement errors at
N observation points. Here, the variance of each
intensity measurement error ∆I(n) is considered
to be 1 and all intensity errors are considered to
be statistically independent. Thus, the covariance
matrix U becomes the identity matrix.
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2.4 Maximizing the conditional probability

Finally, the robot’s 3D motion parameters B are
estimated by maximizing Eq. (10). To do
this, the derivative of the natural logarithm of
Eq. (10) is first computed, then set to 0 and
finally, the Maximum-Likelihood motion estimates
are obtained by solving for B:

B̂ =
(
O>U−1O

)−1
O>U−1FD. (11)

Since Eq. (7) resulted from several truncated
Taylor series expansions (i.e. approximations),
the above equation needs to be applied iteratively
to improve the reliability and accuracy of the
estimation. For this purpose, the estimates iB̂
found in the ith iteration are used to compensate
the motion of the planet’s surface model relative to
the camera coordinate system using Eq. (6), as
well as to update the motion estimates B̂ found by
previous iterations.

Due to the motion compensation, an arbitrary
observation point moves from iA to iA

′ with
respect to the camera coordinate system. The
corresponding perspective projections into the
image plane are ia and ia

′, respectively. Let
imsd be the mean square frame to frame intensity
difference at N observation points in the ith
iteration:

imsd =
1

N

N−1∑
n=0

fd(ia
(n)′

)2. (12)

The iteration ends when after two consecutive
iterations the mean square frame to frame intensity
difference at the N observation points is less than
or equal to the threshold δ2:

|imsd− i−1msd| ≤ δ2. (13)

The value of the threshold δ2 was heuristically
set to 1 × 10−8 and remains constant throughout
the experiments.

Fig. 1. Clearpath Robotics
TM

Husky A200
TM

rover
platform and Trimble R© S3 robotic total station used for
experimental validation

3 Experimental Results

The intensity-difference based monocular visual
odometry algorithm has been implemented in
the programing language C and tested in a
Clearpath Robotics

TM
Husky A200

TM
rover platform

(see Fig. 1). In this contribution, our efforts
were concentrated on measuring its performance
in rover positioning in real outdoors situations,
where the absolute position error of distance
traveled was used as a performance measure. In
total 343 experiments were carried out over flat
paver sidewalks only (see Fig. 1), in outdoor
sunlit conditions, under severe global illumination
changes due to cumulus clouds passing fast
across the sun. As it has been done on Mars
[7], special care was taken to avoid the rover’s
own shadow in the scene, because the intensity
differences due to moving shadows can confuse
the motion estimation algorithm. The processing
time per image was also measured.

During each experiment, the rover is
commanded to drive on a predefined path at
a constant velocity of 3 cm/sec over a paver
sidewalk (see Fig. 1), usually a straight segment
from 1 to 12 m in length or a 3 m radius arc from
45 to 225 degrees, while a single camera with
a real time image acquisition system captures
images at 15 fps and stores them in the onboard
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Fig. 2. Image with resolution 640x480 pixel2 captured
by the right camera of the rover’s Bumblebee R©2 stereo
camera during experiment number 288

computer (see Fig. 2). Although the rover’s real
time image acquisition system consists of three
IEEE-1394 cameras (see Fig. 1)—a 6 mm Grey
Point Bumblebee R©2 stereo camera, a Grey Point
6 mm Bumblebee R© XB3 stereo camera and a
6 mm Basler A601f monocular camera, rigidly
attached to the rover by a mast built in its cargo
area—only the right camera of the Bumblebee R©2
stereo camera was used in all experiments. This
camera has an image resolution of 640x480 pixel2

and a horizontal field of view of 43 degrees. It is
located at 77 cm above the ground looking to the
left side of the rover tilted downwards 37 degrees.
The radial and tangential distortions due to the
camera lens are also corrected in real time by the
image acquisition system. This image acquisition
software was developed under Ubuntu, ROS and
the programing language C.

Simultaneously, a Trimble R© S3 robotic total
station (robotic theodolite with a laser range
sensor) tracks a prism rigidly attached to the rover
and measures its 3D position with high precision
(≤ 5 mm) every second (see Fig. 1), where
the position and orientation of the local coordinate
system of the robotic total station with respect to
the planet’s surface model coordinate system at
time t0 is precisely known.

After that, the intensity-difference based
monocular visual odometry algorithm is applied to

Table 1. Mean and standard deviation of experimental
results

mean standard

deviation

Observation points 15906 67.74

per image

Motion estimation 14.88 1.89

iterations per image

Processing time 0.06 0.006

(in second) per image

Absolute position 0.9% 0.45%

error
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Fig. 3. Trajectory obtained by visual odometry (in red)
and corresponding ground truth trajectory (in blue). The
rover drove a 3 m radius arc of ∼190 degrees

the captured image sequence. Then, the prism
trajectory is computed from the rover’s estimated
3D motion. Finally, it is compared with the ground
truth prism trajectory delivered by the robotic total
station.

All the experiments were performed on an Intel R©

Core
TM

i5 at 3.1 GHz with 12.0 GB RAM. In Table
1 and Table 2, the main experimental results are
summarized. The number of observation points N
per image was 15906 on average with a standard
deviation of 67.74, a minimum of 15775 and
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Fig. 4. Trajectory obtained by visual odometry (in red)
and corresponding ground truth trajectory (in blue). The
rover drove a 3 m radius arc of ∼280 degrees
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Fig. 5. Trajectory obtained by visual odometry (in red)
and corresponding ground truth trajectories (in blue).
The rover drove a straight segment of ∼6 m in length

a maximum of 15999 observation points. The
average number of motion estimation iterations per
image was 14.88 with a standard deviation of 1.89,
as well as a minimum and maximum of 12.33 and
19.09 iterations, respectively. The processing time
per image was 0.06 seconds on average with a
standard deviation of 0.006, a minimum of 0.05
and a maximum of 0.08 seconds. The absolute
position error was 0.9% of the distance traveled
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Fig. 6. Trajectory obtained by visual odometry (in red)
and corresponding ground truth trajectory (in blue). The
rover drove a straight segment of ∼12 m in length

on average with a standard deviation of 0.45%.
The minimum and the maximum absolute position
error was 0.31% and 2.12%, respectively. These
absolute position error results are quite similar to
those achieved by known traditional feature based
stereo visual odometry algorithms [28, 30, 10, 34],
whose absolute position errors of distance traveled
are within the range of 0.15% and 2.5%. The
tracking was not lost in any of the experiments.
Figs. 3, 4, 5 and 6 depict the visual odometry
trajectory and the robotic total station trajectory
for four different paths driven by the rover, two
paths forming arc segments and two paths forming
straight segments, respectively.

Although our experiments were carried out only
on flat terrain along straight lines and gentle
arcs at a constant velocity without the presence
of shadows, we believe that these results are
still relevant because they reveal the potential of
the algorithm for obtaining the rover’s position in
real outdoors situations, even under severe global
illumination changes, in a non-traditional way,
without establishing correspondences between
features or solving the optical flow as an
intermediate step, just directly evaluating the
intensity differences between successive frames
delivered by a monocular camera.
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Table 2. Minimum and maximum values of experimental
results

min max

Observation points 15775 15999

per image

Motion estimation 12.33 19.09

iterations per image

Processing time 0.05 0.08

(in second) per image

Absolute position 0.31% 2.12%

error

4 Conclusion

After testing the monocular visual odometry
algorithm proposed in [41, 42] in a real rover
platform for localization in outdoor sunlit conditions,
even under severe global illumination changes,
over flat terrain, along straight lines and gentle
arcs at a constant velocity, without the presence
of shadows, and comparing the results with the
corresponding ground truth data, we concluded
that the algorithm is able to deliver the rover’s
position in average of 0.06 seconds after an image
has been captured and with an average absolute
position error of 0.9% of distance traveled.

These results are quite similar to those reported
in scientific literature for traditional feature based
stereo visual odometry algorithms, which were
successfully used in real rovers here on Earth and
on Mars. Although experiments are still missing
over different types of terrain and geometries,
particularly over rough terrain, we believe that
these results represent an important step towards
the validation of the algorithm and that it may
be an excellent candidate to be used as an
alternative when wheel odometry and traditionally
stereo visual odometry have failed. It may also
be a great candidate to be merged with other
visual odometry algorithms and/or with sensors
such as IMUs, laser rangefinders, etc., to improve
autonomous navigation of current and future Moon
and Mars rovers.

Additionally, since it has the advantage of being
able to operate with just a single monocular video
camera, which consumes less energy, weighs less
and needs less space than a stereo video camera,
it might also be especially well-suited for light
robots such as entomopters (insect-like robots),
where space, weight and power supply are really
very limited.

5 Future Work

In the future, the algorithm will be tested over
different types of terrain and geometries. Most
likely this will require that the precise 3D shape
of the terrain is acquired before motion estimation
by using a range sensor or stereoscopic camera.
We will also make the algorithm robust to shadows
by segmenting the shadow regions in the acquired
images similar to the proposal in [45] and excluding
them from motion estimation.
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