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Abstract. Adenocarcinomas are tumors that originate in 

the lining epithelium of the ducts that form the endocrine 
glands of the human body. In addition to the enormous 
morbidity and mortality that they imply for patients, the 
economic impact of the treatments is very high. The 
early detection of the disease when it has not yet 
acquired infiltrating character is therefore of great 
interest. Among the many different tools that contribute 
to it, computational simulation is one more that is 
increasingly consolidated over the traditional ones. The 
objective pursued by the research is to have fast and 
efficient computations that allow simulating the 
dynamics of the tumour in situ under a wide range of 
different parameters. This work proposes a simulation 
model that can be generalized to the most frequent types 
of in situ adenocarcinomas (CIS) based on cellular 
automata, applies it to the study of the case of ductal 
adenocarcinoma in situ of the breast, parallels them, and 
studies the acceleration achieved. 

Keywords. Adenocarcinomas, cellular automata, in situ 

disease, parallel programming, speedup. 

1 Introduction 

Throughout their lives, it is estimated that one in 
eight women [7] will suffer from breast carcinoma, 
of which approximately 80% will be ductal 
carcinomas. Likewise, one in nine men suffers 
from prostate carcinoma. 

Early detection is aimed at identifying the 
disease when it has not yet acquired infiltrating 
character, and is limited to the glandular ducts (in 
situ), without having infiltrated the glandular 
parenchyma yet.  

At this point, the disease can only be eradicated 
with surgery that removes the affected duct 
segment, plus a disease-free safety margin, 

preserving the rest of the patient's breast, with a 
success rate greater than 90%.  

In the case of prostate carcinomas, the specific 
prostate antigen, which has traditionally been used 
as a tumour marker, has proved to be imprecise for 
the screening of men for the disease. In both 
cases, it is of great interest to characterize the 
disease when it is still in situ, and for this, 
computational simulation can be an excellent tool 
to investigate it. 

 Carcinogenesis is a phenomenon in which one 
or multiple mutations in certain genes allow cells to 
reproduce and survive abnormally, under a 
selection process that leads to uncontrolled tumor 
growth of an infiltrating nature. There are many 
mathematical models in the literature [1, 2, 3, 5, 8, 
9, 11] that incorporate the knowledge we currently 
have about the genes involved in these 
neoplasms, and that study the mutations they 
undergo to end up giving rise to a CIS. In this 
paper, we propose a CIS model that uses a 
simulation based on a three-dimensional cellular 
automaton to model a generic glandular duct, and 
analyze how the mutations in the cells of the 
simulated duct become CIS.  

We also apply the model on known data of 
intraductal breast adenocarcinoma, parallelize it, 
and study its natural history with the parallel model 
and the acceleration achieved. 

2 Biology of CIS 

In a healthy human gland [2], the excretory ducts 
have a cylindrical morphology and are responsible 
for the secretion that the gland secretes (milk 
during lactation, or prostatic fluid). 
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These ducts, with a cross-sectional structure 
made up of two layers of cells (Figure 3); the 
innermost layer is called the luminal layer, and the 
outermost layer that surrounds it is called the 
myoepithelial layer. The entire package is wrapped 
in a basal membrane. 

Luminal cells are known to reproduce 
frequently throughout life, in response to the 
endocrine estrogen-progesterone axis for the 
breast, or the testosterone axis in the prostate. 
During cell reproduction, in the process of copying 
the genetic load, mutations can accumulate in the 
areas of the genome that control the processes of 
cell survival and reproduction. Ductal 
adenocarcinomas usually originate in the luminal 
cells and have an in situ character when they grow 
through the light of the tumour, without surpassing 
the basement membrane or infiltrating the 
glandular parenchyma that contains the duct. In 
the case of the human breast, it is currently known 
that the two types of cells that form the ducts have 
their origin in a single class of progenitor cell which, 
by means of cellular differentiation, gives rise to 
two germinal lines that conclude in the two 
aforementioned cell types. 

Continuing the analysis in the case of the 
human breast, Figure 1 illustrates the process of 
cell differentiation that results in a mature pipeline 
from stem-type progenitor cells, according to the 
currently published literature. As can be seen, 
stem cells are differentiated into two subtypes of 
germinal progenitor cells that end up differentiating 
into the two cell lines that form the duct, with the 
luminal cells in the light of the duct, and with a layer 
of myoepital cells between these and the 
basement membrane. This differentiation is 
determined by the cellular microenvironment, and 
by the presence of certain growth factors.  

In the model this aspects will be determined by 
a set of probabilities chosen ad hoc, so that a 
pipeline of physiological initial conditions is 
obtained. It is also known that women with a 
genetic predisposition to breast cancer accumulate 
inherited mutations that make them more prone to 
contracting the disease, estimating the number of 
cases due to this circumstance to be up to 12%.  

Without prejudice to other genes that may be 
involved in the pathogenesis of the disease, it is 
currently known that mutations in the BRCA1, 
BRCA2, PTEN and TP53 genes increase the 
probability of suffering a ductal carcinoma. In the 
model, this genetic predisposition will be taken into 
account by means of a logical HMG variable.  

In our simulation, the stem cells of the duct will 
be defined with the genetic predisposition 
incorporated in the genome of all of them.  

 

Fig. 1. Natural history of adenocarcinomas in situ, and 

their transformation into infiltrating adenocarcinomas 
from a normal duct (left) to a carcinoma in situ 

Tabla 1. Genes involved in CIS pathogenesis 

Gene Normal Expression  

BRCA1 Allows the cell a normal work 

BRCA2 Allows mitosis 

PTEN Activates cellular apoptosis when 
there are malignant mutations 

Inhibits cells neoplastic 
reproduction 

TP53 Apoptosis in case of proto-
oncogene damage 

Apoptosis if alterations 
architecture of double layer 

Tabla 2. Genes involved in CIS pathogenesis and their 

expression when mutated 

Gene Pathological Expression 

BRCA1 Cellular Death 

BRCA2 Allows uncontrolled mitosis 

PTEN Does not activate apoptosis if there 
are malignant mutations 

Does not inhibit neoplastic 
reproduction 

TP53 Celll survives eve with damage in 
their proto-oncogenes 

The cell survives even with 
alterations in the double-layer 
architecture 
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The meaning of the four genes we will consider 
in the simulation is illustrated in tables 1 and 2.  

In them, the first and second columns collect 
the modelled genes and their functioning under 
physiological conditions. When one or more of the 
genes are damaged, the behaviour of the host cell 
becomes malignant.  

When a particular chain of mutations leads to In 
particular, malignant transformation is 
consolidated not only when there is a mutation in 
the BRCA2 gene, but it is a multifactorial process 
[16] that also requires that cell safety mechanisms, 
which are regulated by the tumour suppression 
genes (PTEN) and programmed cell death or 
apoptosis (TP53), also fail.  In this situation, the 
natural history of the clone of cells that host it leads 
inexorably to the proliferation of ductal carcinoma, 
first in situ, and then infiltrating when this clone 
breaks the duct and expands to the  
glandular parenchyma. 

3 Cellular Automaton 

There are multiple definitions of the concept of 
cellular automaton in the literature. We choose the 
general proposal established in [4], adapted to 
reticular biological models in [14] and [17], and 
applied to tumour simulation in [13]. A cellular 
automaton (henceforth AC) is then defined as a 4-
upla (ζ, ε, ΝI, ρ) where: 

– ζ is a discrete regular network of cells (also 

called nodes or cells) together with some set 

of boundary conditions in the finite case, which 

define the vicinity of the cells on the periphery 

of the network, 

– ε is a finite set (usually with abellian ring 

structure) of states that network cells 

can adopt, 

– a finite set ΝI of cells that define the vicinity of 

cells with which a given cell interacts, and 

– a transition function ρ which specifies how a 

network cell changes state as a function of 

time and the state of the neighborhood ΝI. 

With this, a cell space can be defined as a 
network ζ with the real aspce Rd qwhich 
homogeneously covers a portion of the d-
dimensional Euclidean space.  

Each cell is labeled by its position 𝑟 ∈  ζ. The 
spatial arrangement of cells is specified by 
connections to their closest neighbours, which are 
obtained by joining pairs of cells in some  
regular arrangement.  

For any spatial coordinate 𝑟, the neighbourhood 
etwork 𝑁𝑏(𝑟) is a list of neighboring cells 
defined by: 

𝑁𝑏(𝑟) = {𝑟 + 𝑐𝑖: 𝑐𝑖 ∈ 𝑁𝑏 , 𝑖 = 1, ⋯ , 𝑏}, (1) 

donde 𝑏 es el número de coordinación o, dicho de 
otra forma, el número de vecinos próximos en el 
retículo que interactúan con la célula ubicada en la 
coordenada𝑟. Con 𝑁𝑏 denotamos a la plantilla de 

vecinos próximos con elementos 𝑐𝑖 ∈ 𝑅𝑑 , para 𝑖 =
1, ⋯ , 𝑏. 

En el caso que nos ocupa, y para 𝑑 = 2, los 
únicos polígonos regulares que forman una 
teselación regular del plano son triángulos (𝑏 = 3), 

rectángulos  (𝑏 = 4) y hexágonos  (𝑏 = 6), y 
nosotros escogeremos para nuestro modelo el 
segundo caso, de manera que: 

ζ= {r: r = (r1, r2) ∈ 𝑍2}. (2) 

The total number of available cells is usually 
noted by |ζ|. In computer simulations, ACs use 

reticles that are necessarily finite. (|ζ| < ∞), and 
border conditions should be imposed establishing 
which are the neighbours of those cells located at 
the declared borders. In our case, we will use the 
condition of null border, that is to say, we consider 
that the cells located in the periphery of the 
reticulum only have neighbors in the interior of the 
same one. The set of neighboring cells whose 
state influences a given, which is defined by the 

neighborhood of interaction 𝑁𝑏
𝐼(𝑟) for a given cell, 

according to the following expression: 

Nb
I (r) = {r + ci: ci ∈ Nb

I }. (3) 

This neighborhood or interaction template can 
be chosen in several ways, although we will opt in 
our simulation for the one known as Moore's 
neighborhood (Fig. 2). 

On the other hand, each cell 𝑟 ∈ ζ has an 

assigned state 𝑠(𝑟) ∈ ε. The elements of the whole 
ε can be numbers, letters or symbols.  
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We will choose ε ⊂ Z o model cells of different 
types, further encoding a genome of four genes. 

A global configuration for cellular automaton 𝑠 ∈

ε|ζ| is determined by the state of all cells in the 
reticulum and our model offers a snapshot of the 
state of the tumor at a given instant of time, and 
dynamically changes that state using a discrete 
time sequence according to the rule that the 
transition function imposes. 

Finally, this dynamic of temporal evolution of 
the model is determined by the transition function 
ρ, which specifies how a cell changes state as a 
function of its previous state, and of its interaction 
with its vicinity of cells, according to equation: 

ρ: ε𝜇 → ε, (4) 

where 𝜇 = |𝑁𝑏
𝐼|. Rule is spatially homogeneous, 

and therefore does not explicitly depend on the 
position 𝑟 for a given cell.  

Extensions of the definition given to include 
spatial or temporal homogeneity are feasible. If the 
AC is deterministic, the transition function leads to 
a single feasible state change, whereas if it is 
stochastic, the new state of a cell depends on 
some probability distribution. 

4 Adeconocarcinoma Ductal in Situ 
Model with Cellular Automaton 

To model the duct, a cellular automaton is used, 
with a tridimensional grid ζ with 20×20×200 nodes, 
which is built from the two-dimensional model 
proposed in [13] by adding an  
additional dimensional.  

Each node can contain one cell. Although a 
human ductal cell has a genome composed of 
multiple genes with millions of DNA bases, we will 
limit ourselves to considering in the model only the 
four genes involved in the pathogenesis of the 
DICS, which are encoded by an integer of 32 bits 
[12]. The genetic load of a cell is then modelled by 
an ordered tuple of the form GC=(brca1, brca2, 
pten, tp53). The GC tuple is in turn coded by a 
single integer using the pairing function given by 
equation 5. Moore’s vicinity extended to three 
dimensions and a null boundary condition are used 
to give the ends of the duct biological coherence: 

〈𝑥, 𝑦〉 = 2𝑥(2𝑦 + 1) − 1. (5) 

In this way, GC is coded using the expression 
𝑔𝑐 = 〈〈𝑏𝑟𝑐𝑎1, 𝑏𝑟𝑐𝑎2〉, 〈𝑝𝑡𝑒𝑛, 𝑡𝑝53〉〉 in a compact 
and efficient way. Additionally, each type of cell 
(free, basal, luminal or myoepithelial) is coded by a 
natural number, and finally all the information is 
represented by a natural cell. 𝑐𝑒𝑙𝑙 = 〈𝑡𝑖𝑝𝑜, 𝑔𝑐〉, that 
occupies a node in the duct. The decoding is direct 
by elementary arithmetic. 

The nodes of the grid are updated 
synchronously node by node of the duct and if they 
contain a cell of a given type, updating its genome 
according to its probability of mutation and its 
neighboring environment. Both variables define 
the transition function ρ. The selection and 
updating of the 8 × 104 nodes of the the grid 
defines a generation, and the number of 
generations is varied depending on the length of 
the natural history of the tumor being simulated, 
increasing or decreasing the number of simulation 
generations. At this point, it is already evident that 
the computational load that the simulation imposes 
is very high, and that the parallelization of the 
model is obligatory to have computable simulations 
with reasonable execution times, or to simulate 
several ducts at the same time with different initial 
conditions or different natural histories. 

The grid is initialized by a completely 
deterministic algorithm that creates a basal 
membrane and places a small number of 
progenitor cells inside it, which reproduce to form 
a double-layer duct that mimics the real biological 
formation for any human gland (Figure 3) with 
secretory function, although here we will apply it to 
the breast ducts.  

xi-1,j-1 xi-1,j xi-1,j+1 

xi,j-1 xi,j xi,j+1 

xi+1,j-1 xi+1,j xi+1,j+1 

Fig. 2. Moore’s neighborhood for a cell located in 

 𝑟 = (𝑖, 𝑗) 
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Each cross section of the duct contains 
approximately 45-50 luminal cells. Originally, all 
the cells located in the duct have a healthy 
genome, represented by a chain of bits equal to 
zero. Mutations are modelled by putting one or 
more bits of a gene at a value of one. If the model 
is to be executed considering an inherited genetic 
predisposition to contracting the disease, the HMG 
control flag is used, which allows this to be done, 
using a Monte-Carlo stochastic method.  

The reticulum initialization algorithm, which 
allows obtaining a simulation of the duct 
compatible with the histological structure of a duct 
in the human breast, is illustrated as follows.1 

                                                      
1 For purposes of clarity, in the algorithms we present here 

we have abstracted the necessary coding and decoding steps 
that allow us to modify the state of a grid node, or the genome 
of a cell located in that node. However, the reader must always 

Algorithm SetUp 

Input: empty grid 
Output: initial state for grid 
Method: 
1. With radial symmetry put basal_cells to define basal 
membrane; 
stem_cells=[]; 
//seeding stem cells... 
2. for(i=0; i<200; i++){ 
 cx=random(0, 19); 
 cy=random(0, 19); 
 cz=random(0,199); 
 grid[x][y][z]=stem; 
 stem_cells.add((x, y, z)); 
   } 
//putting mutations in stem cells... 
3. if(HMG==true) 
   for iterator in stem_cells{ 

  x=iterator(x); 
     y=iterator(y); 
     z=iterator(z); 
     mutate(grid[x][y][z],all_gens,15%); 
   } 
  //making the rest of duct...    
4. while(free_places){   
5.    for all cells in grid 

reproduce(grid[x][y][z],                                    
adjacent,hierarchy); 

6.    for all !(stem_cell) in grid 
migrate(grid[x][y][z],                       
vacant_neighboring,  
radial_symemtry);  

} 

When the previous simulation is executed 
through our parallel implementation with the Java 
language, a grid is obtained (Figure 4) that 
coherently models the normal histological structure 
of a human duct (Figure 3), and all the cells 
generated in the grid remain inside, adopting the 
double layer structure illustrated in Figure 4 for the 
normal state of the duct. 

During the reproduction phase modeled on line 
number 5, all cells in the grid divide and occupy 
adjacent places, consistent with the parent 
hierarchy and provided there is room for it. The 
inherited genetic load can be mutated, according 
to the mutation rate set as a parameter of the 
mutate method, to which we have given a value 
[15] of 15%, which encompasses reasonably well 
the various real causes that can give rise to this 
type of mutations, and which include the 

bear in mind that any step of reading or writing a node of the 
grid implies making them. 

l 

Fig. 3. Normal histological structure of a duct 

  

Fig. 4. One layer of a normal duct in initial state 
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environment, genetics and even the typology of  
the cell. 

Since all genes are mutated through the 
method, including those that control both mitosis 
and programmed cell death, the cells in the duct 
resulting from the SetUp routine will eventually 
lead to neoplastic pathology. Once the grid is in its 
initial state, it is necessary to make it evolve over 
time, which is done by the Evolve algorithm. 

Algorithm Evolve 

Input: grid in t-time 

Output: grid in (t+1)-time 

Method: 

//now, the transition function... 

1. for all cells in grid{ 

   //normal apoptosis... 

2. if((mutations(BRCA1(grid[x][y][z])) 

+mutations(TP53(grid[x][y][z])))>32) grid[x][y][z]=free; 
//cell dies 

  //normal apoptosis...       

3. if(mutations(TP53(grid[x][y][z]))<16 &&  
     (!adjacent_basal(grid[x][y][z]) ||  

    !adjacent_myopithelial(grid[x][y][z])))  

   //cell dies 

    grid[x][y][z]=free;  

   //anormal apoptosis...    

4. if(stem(grid[x][y][z])){ 

5.   if(adjacent_free(grid[x][y][z])) 

 normal_reproduction(); 

6.   if( 

        (mutations(BRCA1(grid[x][y][z]))+ 

 mutations(BRCA1(grid[x][y][z])+ 

 mutations(PTEN(grid[x][y][z])+ 

 mutations(TP53(grid[x][y][z])))>6)
 cancerous_reproduction(); 

 }    

7. for all !(stem_cell) in grid   

    migrate();  

  } 

In the above algorithm, methods BRCA1, 
BRCA2, PTEN and TP53 take the integer that 
encodes the genome of a cell from the grid and 
extract the 32-bit integer that encodes the gene 
that gives name to the method; the mutation 
method takes by argument a numerically encoded 
gene and returns the number of mutations it 
presents, as an integer between 0 and 32.  

The adjacent_basal and adjacent_myopithelial 
methods allow us to know the typology of the cells 
that form the Moore neighborhood cube of the cell 
that take as argument while the adjacent_free 
method consults the neighborhood of free nodes 
for the node that takes as argument. For its part, 
there is also available a set of four methods that 
allow to know the type of cell that there is in a node 
of the grid. The normal_reproduction subroutine 
allows parents to reproduce themselves correctly, 
at points in their local cubic vicinity, and preserving 
the double-layer structure of the duct. 

The cancerous_reproduction subroutine allows 
cells to reproduce indiscriminately at points in their 
local cubic vicinity, but does not respect the 
double-layer structure of the duct, and ends up 
forming an intraductal carcinoma in situ. Note that 

 

Fig. 5. Different layers of the duct across the simulation 
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for a parent to be able to reproduce in this way, it 
is necessary that the total sum of mutations in its 
four genes be greater than half the positions that 
the four genes encode. Moreover, a simulation is 
carried out by determining a number of time steps, 
in each of which the Evolve algorithm described is 
executed. When a critical number of mutations is 
reached, the cells begin to proliferate 
uncontrollably, filling up the light in the duct and 
forming the carcinoma in situ.  

Figure 5 illustrates this for several of a two 
hundred layer formed duct, where neoplastic 
transformation has taken place and malignant cells 
have begun to fill the duct light, without infiltrating 
the basement membrane.. 

As for the biological fidelity of the model used, 
we compared the simulation with a real specimen, 
using as a variable the number of neoplastic cells 
in the duct as a function of time (represented as the 
number of generations in the scope of the model).  

In the real case, the genetic predisposition had 
been verified by means of immunohistochemistry 
methods, while in our case the corresponding flag 
of the simulation was activated. Figure 7 shows the 
comparison and, for both cases, the classic 
gompertzian behavior [6] is appreciated, which 
describes the tumoral dynamics both in vivo and in 
vitro, which tends to occupy the entire available 

tissue domain with a quasi-exponential 
acceleration from a certain point in time of 
evolution.  

We see that in silico simulation is compatible 
with biological reality as well as the histological 
relaity, with an acceptable degree of fidelity to the 
global dynamics of neoplastic growth in situ. 

5 Implementation 

The previous model was implemented using the 
Java programming language, and parallelizing the 
sequential version obtained initially.  

The parallelization uses the principles of 
symmetric multiprocessing with parallelism of data, 
dividing the reticule in its longitudinal ntroduce in 
cubic sections that were processed by different 
threads on a core dedicated to each one of  
them [17].  

The tasks were supported by implementing the 
Runnable interface and processed through a 
ThreadPoolExecutor class object. In order to 
reduce containment to a minimum, two different 
ducts were used for reading and writing data. 
However, it was necessary to introduce two 
synchronization conditions: 

 
Fig. 6. Dynamics of Computer Simulation vs. Tumor Growth in vitro 
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a) barrier condition, in order to resynchronize all 
tasks when Evolve has been executed in time 
t and will be executed in time t+1. 

b) collection of reentrant locks, which protect the 
contact zones between the different cubic 
sections into which the duct is divided, formed 
by two layers of each section, with the aim that 
two different strands cannot modify at the 
same time the same grid node and which 
certainly induce a relative degree of 

containment which, on the other hand, with the 
design of the data structure presented, is 
unavoidable. 

It was also necessary to introduce a security 
condition to ensure that the simulation was 
coherent, consisting of forcing a thread that intends 
to write in the bi-layer section of the neighboring 
subretticle to consult the state of the node in which 
it intends to write [14], after having achieved the 
acquisition of the lock, since the thread responsible 
for that neighboring subretticle could have 

 

Fig. 7. Runtime average times 

 

Fig. 8. Average Speedups 
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occupied that node in its own writing time. The 
execution tests were developed on four different 
nodes of the processor cluster of our university.  

Each node has two Intel® processors Xeon™ 
E5 to 2.6 GHZ, which yield 20.8 GFLOPS together, 
with a common 128 GB memory bank, and without 
hyperthreading. The entry node operates the HP 
Cluster Management Utility on Red Hat Enterprise 
Linux for HPC. The version of the Java 
development kit used was Oracle 1.8.0.151-
1.b12.e17_4. The statistical treatment of the data 
was carried out with R. 

6 Measurements and Disccusion 

Figures 7 and 8 illustrate the mean times and 
speedups obtained from the simulation data in the 
four nodes of the cluster. Each point shows the 
mean time and speedup for a given number of 
tasks, also including the standard deviation (SD). 

It can be seen that both the time curve and the 
speedup curve reach their relative extremes 
around the eight parallel tasks and that from here 
on, they begin to worsen if we increase the number 
of parallel tasks more. In other words, the optimum 
average time is 4.18 seconds for a maximum 
speedup of 5.85, over a theoretical maximum of 
16, which is the number of cores available in each 
node, and starting from a sequential time of  
24.45 seconds. 

A priori one might think that a parallelization of 
the model that hardly accelerates half of the 
possible theoretical range is a parallelization that 
could be improved. Notwithstanding the above, it is 
necessary to qualify the why of these results, 
based on the following items: 

a) It should be remembered that the contact 
zones between subgrids controlled by different 
strands are protected by a mutual exclusion 
block, which introduces latencies of waiting 
interthreads that are not dispensable because 
they guarantee the coherence of the state of 
the This directly induces a runtime overload 
that is proportional to the number of parallel 
strands (and contact zones) you have. This 
had been characterized by us in a previous 
paper [14] and independently by other authors 
for a problem of similar nature in [10]. 

b) Although the introduction of reticles of different 
readings and writing allow the tasks to be 
processed exclusively and completely parallel 
with the other strands of the nodes that are not 
in the contact zones of the reticule, the same 
does not happen with the nodes that are. Here, 
the thread that wants to write in a node located 
in the contact zone, once it has the permission 
to do so, cannot only use the neighborhood 
data that it had when it did its reading, but it 
must also consult the writing grid to verify that 
a modification occupying space is feasible, 
because perhaps another thread I occupied is 
space as a result of a mitosis. This also 
induces execution overloads. 

c) Let us also remember that each node of the 
reticule encodes by means of a single positive 
integer number a lot of information (type of cell 
that occupies the node, and genes BRCA1, 
BRCA, PTEN and TP53. This means that the 
reading of the necessary information about the 
vicinity of a cell (adjacent_basal and 
adjacent_myoepithelial methods), the query of 
whether or not a cell is of the stem type or the 
induction of a mutation in a cell to name but a 
few, need to carry out the phases of decoding 
(and if necessary coding) numerical, all of 
which also adds an important processing load. 

It could be thought that the representation of the 
state and genome of a cell by means of a gridCell 
class could improve this last aspect, although the 
measures we have taken for this case, developing 
an alterantive implementation with it, discard it in a 
radical way. The space occupied in the heap of the 
Java Virtual Machine by the nodes modeled as 
classes, and the need to navigate their respective 
references to reach them, increases global 
processing times and decreases speedups.  

In short, the three previous items justify why the 
speedups obtained, the second one being 
especially relevant, and being also coherent with 
models that develop similar simulation dynamics in 
two dimensions, such as the results published  
in [10, 14]. 

7 Conclussions and Future Work 

The work presented proposes a general procedure 
for parallel simulation of adenocarcinomas in situ, 
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using the cellular automata model. As it has been 
presented, the simple change of the transition 
function of the cellular automaton in the two 
proposed algorithms and of the genetic load model 
allows it to be adapted to different types of 
glandular neoplasms before they adopt an 
infiltrating character. From the proposed 
algorithms, a parallel implementation has been 
made using Java language with symmetric 
multiprocessing by parallelism of data for the study 
of a case: ductal adenocarcinoma of breast in situ.  

The parallel simulation in the cluster of 
processors of our University has allowed a 
reduction of the processing times (Figure 7) 
achieving a maximum speedup factor of 5.85 
(Figure 8); it has also allowed us to identify an 
important limitation to the scalability of the 
proposed method, derived from the need to have 
under control of mutual exclusion the nodes of the 
simulation grid located in contact zones of the data 
spaces of different threads, which we had already 
identified in a previous work \cite{sal} for a 
simulation in two dimensions.  

This limitation is specific to the nature of the 
problem and therefore cannot be overlooked. The 
fidelity of the proposed model has also been 
contrasted with biological reality by means of the 
construction of the curves illustrated in Figure 6, 
which show that the simulation achieves, with more 
than acceptable fidelity, the usual sharing in this 
type of neoplasms.  

Our future lines of work on the proposed model 
will be oriented towards: 

a) the application of the developed model to other 
glandular neoplasms in situ. 

b) the development of a new scheme for data 
partitioning that allows massively parallel 
simulations on GPU architectures. 
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