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Abstract. Differential gene expression analysis and
clustering techniques have been current tools to study
the relation between a gene and biological processes.
Since a group of genes may show co-expression under
certain conditions, biclustering techniques have been
used to find sets of genes sharing similar expression
patterns. We present an analysis of the performance
of the BIMAX: Binary Inclusion-MAXimal sequential
biclustering algorithm. Its performance is evaluated
using synthetic datasets. Finally, we propose a strategy
of parallelization for optimizing the performance of the
BIMAX using parallel programming techniques.
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1 Introduction

Data Mining is useful in the analysis of data
structures provided in massive quantities by
sophisticated new processing technologies. Bioin-
formatics focuses on the research and develop-
ment of new computational methodologies based
on computer techniques for organization and
analysis of information associated with the “omics”
sciences [14]. The organization and analysis
of biological data at the level of DNA sequence
and RNA generate information related to cellular
mechanisms and processes [15]. One of the main
aims is the analysis of gene expression [10].

Hybridization-based techniques or microarrays
in gene expression analysis has achieved high
performance in quantifying the level of gene
expression. However, such analysis is performed
using hypothesis tests, w hich require a relatively
small number of conditions and only genes that
have been selected can be parsed.

Clustering describes patterns classifying the
information by unsupervised methods. Biclustering
techniques allow the clustering of genes with a sim-
ilar genetic profile in experimental conditions, thus
overcoming the traditional clustering techniques by
the simultaneous clustering of genes, diseases
and overlap.

In this paper we focus on BIMAX, described by
Prelić et al. [21], based on Divide-and-Conquer
strategies to determine optimal biclusters in
reasonable time.

In general, biclustering techniques face the
same problem as the clustering techniques
proposed in the literature, due to the type of infor-
mation being analyzed, which is characterized by
high-dimensional databases. Consequently, robust
noise algorithms must be proposed minimizing
runtime and showing high-quality solutions. A
high-performance computing system is essential
to improve the performance of any computational
algorithm. We describe the implementation of the
parallel BIMAX algorithm.
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Section 2 describes the background, and
Section 3 presents BIMAX algorithm. Finally,
Section 4 describes the analysis of the sequential
algorithm and Section 5 presents strategies for
parallelizing BIMAX.

2 Background

The main application of Bioinformatics within the
biological context is the use of Data Mining
techniques for the analysis of information obtained
in the study of molecules relevant for life [18].
However, before the application of computational
algorithms, it is necessary to adapt and elaborate
new models and methodologies that fit the demand
of the problem under study [20, 22].

Techniques of clustering and biclustering allow
to perform transcriptome analysis for the detection
of genes differentially expressed in a set of experi-
mental conditions. The patterns can be identified
from datasets through microarray experiments,
aiming to infer the biological mechanisms modeling
the genotype-phenotype relationship and support
decision-making. The information from microarray
analysis is organized in a Gene Expression Matrix :

Wm,n =


w11 w12 · · · w1n

w21 w22 · · · w2n

...
...

. . .
...

wm1 wm2 · · · wmn

 . (1)

The i-th row contains data of a specific gene gi
while the j-th column represents a experimental
condition cj . Let G = {g1, g2, · · · , gn} and C =
{c1, c2, · · · , cm} be the collections of genes and
conditions, respectively. For each i, j, the value
wij represents the expression level of gene i at
condition j.

The gene expression matrix may contain noise,
null values and systemic variations produced
during the execution of the experiments. Usually,
there are much more genes than conditions.
Pre-processing of data is essential before applying
any bioinformatic analysis technique, to form
hypotheses about the potential pathways of
information flow between the involved genes.

2.1 Clustering Techniques

Clustering techniques aim to group data containing
common characteristics, they identify densely
populated regions called clusters, namely, a
partition U = {U1,U2, · · · ,Uk} of an universe U
is built.

Gene-based-clustering obtains functional rela-
tions between genes based on their expression
levels in comparison with experimental conditions.
Such relations consider genes as the data to be
grouped and the states as attributes.

Instead, sample-based-clustering [8] matches
each group of experiments with a phenotype.

A good clustering solution must consider the
maximization of homogeneity and separation
metrics, which act oppositely. There are many
proposals to solve grouping problems, and most of
them are NP-hard. Thus heuristics and approxima-
tions are used. Five clustering algorithms and their
characteristics are summarized in Table 1.

Advantages and lacks appear at clustering
algorithms when identifying highly correlated
gene sets in gene expression. K-means,
SOM, and hierarchical clustering have shown
high-performance [31] but their purpose is general
and they may fail to address particular challenges
of gene expression analysis. On the other hand,
CLICK and CAST may solve this problem [24].

2.2 Biclustering Techniques

A gene expression matrix Wm,n as in eq. (1) can
be seen as indexed by the set G × C where
G = {g1, g2, · · · , gn} and C = {c1, c2, · · · , cm}
are the sets of considered genes and conditions,
respectively. The ij-th value wij represents
the expression level of gene i at condition j.
Accordingly, we will write from now on WGC

instead of the previously introduced notation Wm,n.
For any subsets F ⊆ G and B ⊆ C, the
submatrix WFB = (wij)i∈F ,j∈B consists of the
expression levels corresponding to genes in F
under conditions in B, and can be seen as the
gene expression matrix of the bicluster F×B (in the
cases in which F = G or B = C it is conventional
to refer to clusters instead of biclusters).

A bicluster may satisfy a homogeneity property,
e.g., it may have constant entries, or constant
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Table 1. Clustering algorithms

Algorithm Description Ref.

K-means
Method of vector quantization whose objective is to classify n
observations into k clusters. The time complexity isO(lkn) where
l is the number of iterations, and k is the number of clusters.

[12]

Self Organizing Maps

Algorithm based on competitive learning without supervision to
classify a set of nearby observations through a graph. In some
cases, it may fail because interesting patterns can be classified
in several ways [26]

[28]

CAST

Algorithm based on the notion of corrupted clique graph data
model. The input data set is assumed to come from the
underlying cluster structure with “contamination” due to random
errors caused by the complex process of gene expression
measurement.

[2]

CLICK

Algorithm to identify highly connected components in the
proximity graph as clusters using probabilistic assumptions so
that two criteria are satisfied: homogeneity, due to mates: highly
similar to each other; and separation due to non-mates: little
similarity to each other.

[4]

Hierarchical
Clustering

This algorithm generates a hierarchical series of nested
clusters which can be graphically represented by a tree named
dendrogram.

[7]

entries by rows or columns, or have additive
or multiplicative coherent values or coherent
evolutions, etc.

The Biclustering Problem (BP) receives as
input a gene expression matrix WGC and a
collection H of homogeneity properties and the
goal is to find a covering of G × C consisting of
maximal biclusters (Fι ×Bι)ι∈I such that WGC =⋃
ι∈IWFιBι and each bicluster WFιBι satisfies a

homogeneity property.
The BP can be hardened by requiring that the

cover solution is indeed a partition. Namely, its sets
are pairwise disjoint.

BP, in general, is NP-complete [19], hence
the vast majority of algorithms prioritize the
reduction of computing costs, opting for the
use of heuristic, stochastic search, divide and
conquer and pre-processing techniques to make
the patterns of interest more evident.

Most biclustering techniques are used for the
analysis of transcriptomic data. The choice of an
algorithm will implicitly favor getting a particular

type of grouping. Five biclustering algorithms have
been selected. Table 2 gives a brief description
of them.

2.3 Related Work

Improving the computational efficiency of Data
Mining algorithms by introducing some method
of Parallel Computation proves to be significant
as the dimension of the datasets to be analyzed
increases. In this sense, several robust parallel
methodologies have been proposed that model
a biological model under study and also support
decision making efficiently.

Metaheuristics are techniques that help in the
solution of combinatorial optimization problems.
In [9] Gomez-Pulido et al. propose the
parallelization based on a fine granularity scheme
of a biclustering algorithm based on EAs. The
methodology indicates the selection of the section
that takes the longest computation time, then
copies of the implementation will be processed
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Table 2. Biclustering algorithms

Algorithm Description Ref.

Cheng &
Church

This algorithm is the first application of biclustering for analysis
of expression profile, and the aim is to find more delicate signals
than the clustering algorithm using the Mean Residue Score.

[3]

SAMBA

SAMBA emerged as a method of biclustering that produced
statistically significant results, and that will also involve a
normalization of the expression matrix that represents the
essential characteristics of the data.

[5]

CTWC

The idea of this algorithm is to identify subsets of genes and
conditions so that some of these subsets are used to define new
groups that define stable and significant partitions. It should note
that the number of submatrices grows exponentially with the size
of the problem.

[30]

Plaid Models

This algorithm considers a matrix of genes and conditions as a
layer superposition, each of them being a subset of rows and
columns, which are rearranged to obtain a matrix formed by
blocks, where each block is a bicluster

[16]

BIMAX

This algorithm is based on the technique of “divide and conquer ”.
Specifically, the algorithm begins with a division of the matrix
Wm×n into sets of columns based on one of the rows as
the reference. Next, the rows or genes rearranged, as they
correspond to the different sets of conditions previously obtained.

[23]

in different processing units. The results showed
high efficiency in computing time and power
consumption when using reconfigurable hardware
instead of multiprocessor architectures.

Lin et al. proposed the parallelization of the
biclustering algorithm: Large Average Submatrices
(LAS) based on the MapReduce technique.
Intuitively, the algorithm is organized in two phases:
1) search k rows with the largest sum over the
columns, this phase consists of a function map and
two functions reduce; and 2) based on adaptive
row search to sum over the columns indicated for
each row, then sort all the row sums in sequential
order, this phase contains only a map function [13].
This algorithm proved to have a better performance
in the quantitative characteristics of each cluster
compared to other algorithms such as BIMAX.

On the other hand, Ardaneswari et al. propose
a method of grouping in two phases to be able
to determine a bicluster [1]. During the first
step, the parallel algorithm k-means is used to

classify a matrix Wm×n. In the second phase,
the algorithm proposed by Cheng & Church is
used. Also, the benefits and limitations related to
the design of a parallel biclustering algorithm in
GPUs are presented in [17]. This paper proposes
the minimization of latency using a coarse grain
to maximize energy efficiency and performance
through the use of parallel patterns.

Sarazin et al. in [25] propose an implementation
of the algorithm self-organizing maps using
MapReduce with the Spark platform. This appli-
cation is focused on fault correction, information
management and distribution in a distributed
architecture. The main idea is based on the
initiation of two functions of map-reduce type,
which manage the iterations between the rows and
the columns.

A parallel algorithm of biclustering must be
robust, that is, it must show relevant results in
a reasonable amount of time, and that must
also be scalable to the target architecture. In
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the following section, we describe the BIMAX:
Binary Inclusion-MAXimal algorithm sequential,
which assumes two possible levels of expression:
level change, and no difference, concerning a
control experiment.

3 BIMAX: Binary Inclusion-MAXimal

Heuristics are used to solve problems that have
proved to be NP-complete. The advantages of
one algorithm over another may be due to a more
suitable optimization method for a specific dataset.
In this sense, for the choice of BIMAX, the number
of references within the scientific community and
the facility to reconstruct the code based on the
original publication were considered.

BIMAX algorithm uses a search strategy based
on “divide and conquer ” to determine all optimum
maximal biclusters within a reasonable time of a
matrix of binary gene expression. Each gene in
a condition assumes two possible values: 1 if the
gene responds differentially to a condition and 0 if
it does not concern a control condition [21].

Let G = {g1, g2, · · · , gn} and C =
{c1, c2, · · · , cm} be the sets of genes
and conditions.

Find a gene gi ∈ G, such that the following two
condition subsets Bi0, Bi1 are non-empty, where
for each k ∈ {0, 1} Bik consists of the conditions
cj ∈ C such that wij = k.

Let WGBi0 and WGBi1 be the submatrices whose
columns are indexed by these sets.

Let us partition the gene (row) index set into
three subsets:

Gi0 = {gi′ ∈ G| the restriction of the the i′-th row
of WGBik is constant with value
k, for some k ∈ {0, 1} },

Gi1 = {gi′ ∈ G| the restriction of the the i′-th row
of WGBik is constant with value
1− k, for some k ∈ {0, 1} },

Gi2 = G− (Gi0 ∪Gi1),

and let Fi1 = G\Gi1 be its complement in the gene
index set. Form the submatrices:

W0 =WGBi1 , W1 =WFi1C .

Repeat the procedure to each of these biclus-
terings, W0 and W1, till the above activation
non-emptyness condition fails.

3.1 Algorithm (Reference Method)

Algorithm The following algorithm realizes the
divide-and-conquer strategy. Note that individual
operations are required for processing the WFB

submatrices. The algorithm needs to guarantee
that only optimal, i.e., inclusion-maximal biclusters
are generated [21].

Algorithm 1 Procedure BIMAX
Require: Wm,n

Ensure: WFB

1: Z = 0
2: WFB =conquer(Wm,n, ({G}, {C}),Z))

Algorithm 2 Procedure Conquer
Require: Wm,n, ({G}, {C}),Z
Ensure: ({G}, {C})

1: if ∀ i ∈ G, j ∈ C : wij = 1 then
2: return ({G}, {C})
3: end if
4: (Gi1,Gi2,Gi3,Bik) =

divide(Wm,n, ({G}, {C}),Z)
5: W0 = 0,W1 = 0
6: if Gi1 6= 0 then
7: W0=conquer(Wm,n, ({Gi1 ∪Gi2}, {Bi1}),Z)
8: end if
9: if Gi3 6= 0 ∧Gi2 = 0 then

10: W1 =conquer(Wm,n, ({Gi3}, {Bi0}),Z)
11: else if Gi2 6= 0 then
12: Z ′ = Z ∪ {Bi0}
13: W1 = conquer(Wm×n, ({Gi2 ∪ Gi3}, {Bi0 ∪

Bi1}),Z ′)
14: end if
15: return (W0 ∪W1)

4 Analysis of Sequential BIMAX

During the parallelization process of an algorithm
it is necessary to make an analysis of the
performance of the algorithm. This analysis is

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 255–267
doi: 10.13053/CyS-24-1-2979

Towards BIMAX: Binary Inclusion-MAXimal Parallel Implementation for Gene Expression Analysis 259

ISSN 2007-9737



Algorithm 3 Procedure Reduce
Require: Wm×n, ({G}, {C}),Z
Ensure: G′

1: G′ = 0
2: for i ∈ G do
3: C∗ = {j|j ∈ C ∧ wi,j = 1}
4: if C∗ 6= 0 ∧ ∀ C ∈ Z : C ∩ C∗ 6= 0 then
5: G′ = G′ ∪ {i}
6: end if
7: end for
8: return G′

Algorithm 4 Procedure Divide
Require: Wm,n, ({G}, {C}),Z
Ensure: Gi1,Gi2,Gi3,Bik

1: G′ =reduce(Wm,n, ({G}, {C}),Z)
2: Choose i ∈ G′ with 0 <

∑
j∈C wij < |C|

3: if i ∈ G′ then
4: Bi1 = j|j ∈ C ∧ wij = 1
5: else
6: Bi1 = C
7: end if
8: Bi0 = C \Bi1
9: Gi1 = 0,Gi2 = 0,Gi3 = 0

10: for i ∈ G′ do
11: C∗ = {j|j ∈ C ∧ wij = 1}
12: if C∗ ⊆ Bi1 then
13: Gi1 = Gi1 ∪ {i}
14: else if C∗ ⊆ Bi0 then
15: Gi2 = Gi2 ∪ {i}
16: else
17: Gi3 = Gi3 ∪ {i}
18: end if
19: end for
20: return (Gi1,Gi2,Gi3,Bik)

helpful to find information about the segments of
code that can be potentially parallelized. In this
section, we present an analysis of the sequential
BIMAX algorithm.

The implementation of the sequential BIMAX
algorithm was designed and codified based in
the algorithm presented in [21] in C language.
For the experiments, we use an Intel Xeon E3
v5 processor. For the performance analysis
of the sequential BIMAX, we used the three in

silico1 datasets, Group A, Group B and Group
C. Group A was used to evaluate the effectivines
of the algorithm, which is measure by calculating
the number of correct biclusters presented in
the output of the program. Group B was built
to measure the effectiveness of the algorihtm
in the presence of noise, which was simulated
by applying a random order of the rows in the
matrix. Finally, Group C was used to determine
the maximum amount of sections in the algorithm
potentially parallelized.

— Group A is characterized by five binary
matrices constructed in the absence of noise,
to which a definite number of biclusters has
been implanted according to the size of the
matrix. These datasets represent the best
case scenario due to the elements belonging
to a bicluster are contiguous, and there are
no overlaps between them. The table 3
describes the characteristics of each of these
matrices, the processing time expressed in
milliseconds and the percentage of effective-
ness represented by the comparison between
the features of the biclusters implanted against
of the obtained biclusters.

We have represented the percentage of
effectiveness through the convention: α0 −
α1(%), where α0 and α1 represent the number
of biclusters implanted and detected respec-
tively, while (%) represents the percentage
of effectiveness for each case study. The
percentage of effectiveness was obtained by
comparing the characteristics of the implanted
and obtained biclusters. The above has shown
that the algorithm has a good correctness and
efficiency, being able to determine the 100% of
the biclusters implanted in datasets proposed.

— Group B is characterized by five binary
matrices belonging to group A, which have
been added noise simulated by random
ordering of the rows. Table 4 describes
the processing time expressed in milliseconds
and the percentage of effectiveness of each
matrix. One more column has been added
to represent the percentage of the growth

1generated through a computational simulation
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Table 3. Effectiveness of the BIMAX sequential biclustering algorithm without noise

Matrix Size Time (ms) Effectiveness

1 10× 10 0.4802 3-3(100%)

2 20× 20 0.6608 4-4(100%)

3 30× 30 0.7990 5-5(100%)

4 40× 40 0.9938 6-6(100%)

5 50× 50 1.1459 7-7(100%)

rate of the execution time needed to find
biclusters in the presence and absence of
noise. The percentage of the growth has been
measured using the equation Growth rate =
t0 − t1
t1

× 100, where t0 and t1 represent the

execution time in presence and absence of
noise, respectively.
The results show that although the biclusters
are not well defined, the algorithm does not
lose precision or quality. One more experiment
was added by randomly swapping the order of
the columns of each test matrix in this dataset.
These experiments (see table 4, 5) shown that
the growth rate concerning the execution time
varies between 20 % and 30 % in the presence
of noise. A matrix M50×50 was constructed to
compare the impact that the presence of noise
has on the performance of the algorithm. To
each element of M was added a noise value
simulated by a Gaussian distribution as well
as the order of the rows and columns was
randomly exchanged.
The execution time obtained by processing
the matrix 5 of the experiments shown in the
tables 3, 4 and 5 was compared. The results
show that the more noise contains the gene
expression matrix and the less obvious the
biclusters are, the algorithm will take more
time to present a result to the user (see
table 6).

— Group C characterized by eleven binary
matrices that have been constructed by the
implantation of a defined number of biclusters
with superposition. Next, a simulated noise
value has been added to each element of

the matrix using a Gaussian distribution.
Finally, the order of the rows followed by
the order of the columns has been randomly
exchanged. This dataset represents the worst
case scenario.

The table 7 shows the dimension of each
of the arrays built in silico, as well as the
execution time expressed in milliseconds. It
is necessary to highlight that the algorithm
depends on two parameters that the user
needs to define at the beginning of the
computation: the minimum number of genes
for a bicluster that contains more than
one condition, or the minimum number of
conditions for a bicluster that contains more
than one gene. We have defined these
parameters with a value of 1, so that our
analysis shows the greatest possible number
of results.

An analysis of the time it takes for the
algorithm to read the gene expression matrix,
to process it and to write the results has
been made. Table 8 shows the percentage
of time for each case study. It is appreciated
that in the first four cases the percentage
corresponding to the writing and reading
time is higher than the percentage of the
processing time. However, as the size of the
matrix increases, the rate of processing time
begins to converge to 68 %, which represents
the processing time limit of the algorithm that
can be potentially parallelizable.

We analyze the maximum performance that
the parallel system of the BIMAX algorithm
can provide. Given the sequential program of
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Table 4. Effectiveness of the BIMAX sequential biclustering algorithm in presence of noise

Matrix Time (ms) Effectiveness Rate

1 0.5952 3-3(100%) 23.94%

2 0.8210 4-4(100%) 24.24%

3 0.9819 5-5(100%) 22.89%

4 1.2376 6-6(100%) 24.53%

5 1.4688 7-7(100%) 28.18%

Table 5. Effectiveness of the BIMAX sequential biclustering algorithm in presence of noise

Matrix Time (ms) Effectiveness Rate

1 0.6198 3-3(100%) 29.07%

2 0.8659 4-4(100%) 31.03%

3 1.0578 5-5(100%) 32.39%

4 1.2919 6-6(100%) 29.99%

5 1.4770 7-7(100%) 28.89%

the BIMAX algorithm whose 68 % of its code
is perfectly parallelizable, the performance and
efficiency of the sequential algorithm is calculated
on {1, 2, 4, 8, 16} processors, assuming that it
has a run time of 100 units of time (seconds).
The system’s performance improvement factor

(speed-up) is defined as S(p) =
T (1)

T (p)
, while the

efficiency of the system with p processors is define

as E(p) =
S(p)

p
, such that T (p) represents the

runtime with p processing units.

The estimation of the performance of the algo-
rithm while increasing the number of processors is
shown in table 9. A system is scalable for a specific
range of processors, if E(p) of the system remains
constant and above a factor of 0.5 [6], although it
is appreciated that moving to 8 processors reduces
the efficiency considerable.

Consequently, the performance of the BIMAX
algorithm is defined when p→∞ as:

lim
p→∞

T (1)

(1− φ) + φ

p

=
100

(1− 0.68)
= 3.125,

where φ is defined as 68 % of the potentially
parallelizable code. The above represents an
approximation to the maximum acceleration that
can be obtained from the parallelization of the
sequential code of the algorithm.

5 Strategies for Parallelizing BIMAX

In the figure 1 it is observed that the processing
time characterized by φ begins to decrease as
p increases. In contrast, the sequential time
represented by (1 − φ) = r(p) + w(p) where r(p)
and w(p) represent the time of reading and writing
partial results by each processing unit remains
constant in all the study cases and particularly
when p ≥ 4, (1− φ) > φ.

Based on the results obtained in the table 8, it
can be said that:

lim
p→∞

r(p) = 0 ∴ w(p) ≈ σ(p).

Therefore, it is proposed to use a parallel file
system in a message passing environment, in
order to optimize the access time to the data and
consequently improve the overall performance of
the algorithm.
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Table 6. Analysis of tthe impact that the presence of noise has on the performance of the BIMAX algorithm

Matrix Size Time(ms) Effectiviness

1 50× 50 1.1459 7-7(100%)

2 50× 50 1.4688 7-7(100%)

3 50× 50 1.4770 7-7(100%)

4 50× 50 47.6542 7-4(57.1%)

Fig. 1. Analysis of the performance of the BIMAX sequential algorithm

Due to the complexity of BIMAX, which is defined
as O(mnβmin{m,n}), where β is the number of
inclusion-maximum biclusters of Wm,n [21], the
divide and conquer scheme that is used, and the
hard disk space required to process and store, the
algorithm turns out to be a suitable candidate for
the application of some parallelization technique.

The parallelization of biclustering algorithms has
been difficult due to its inherent characteristics,
which requires to repetitively read the same data
or to distribute it between different devices. These
data intensive characteristics can limit current
parallel architectures.

Nevertheless, some biclustering algorithms have
been parallelized including novel algorithms using

parallel genetic algorithms, parallel evolution-
ary learning and the parallel large average
submatrices based on MapReduce [27], [11]
[13], running on multicore systems or clusters.
Others algorithms have been parallelized for using
the popular graphics processing units (GPUs),
requiring more specialized parallel programming
as [17].

Despite the BIMAX algorithm has been taken as
a baseline for comparison with other biclustering
algorithms, the only parallel version, to the best
of our knowledge, is the one presented by
Voggenreiter et al. [29]. This parallelisation
consists of a straightforward strategy using a
job pool of threads. [29] states that using a
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Fig. 2. Example of the partitioning of the input matrix created by BIMAX algorithm

Table 7. Total execution time in minutes (mins) to
evaluate the performance of the BIMAX sequential
biclustering algorithm

Matrix Size Time (mins)

1 10× 10 0.0048

2 50× 50 0.0535

3 100× 100 1.9749

4 150× 150 23.2889

5 200× 200 185.9743

6 250× 250 762.6570

7 300× 300 3191.0777

8 350× 350 10906.2004

9 400× 400 39018.2120

10 450× 450 84378.7566

11 500× 500 131627.8000

single pool, leads to contention between threads
and it increases as the number of threads gets
higher. Thus, the more number of threads running
the BIMAX, the slower performance the program
have. To alleviate this contention, it is proposed
a parallelization of BIMAX without a job pool.
However, this implementation was found not to be
effective for larger datasets.

Table 8. Percentages of the execution time of the three
phases of the BIMAX sequential biclustering algorithm:
reading, writing and processing

Matrix Reading
(%)

Writing (%) Processing
(%)

1 2.8014 94.0423 3.1563

2 1.8938 67.1074 22.2813

3 0.5095 59.1921 40.2983

4 0.0679 57.3385 42.5936

5 0.0103 44.3639 55.6258

6 0.0030 38.0696 61.9274

7 0.0008 35.0811 64.9181

8 0.0003 33.0724 66.9273

9 0.0001 32.0714 67.9285

10 0.0001 32.0153 67.9846

11 0.0000 32.0076 67.9924

In this work, we aim to go further in the BIMAX
parallelization by partitioning the input matrix up to
a certain level. This level is limited by the number
of processors in the architecture system. After
reaching the last level, then the BIMAX is executed
independently by each process with a submatrix.
The program ends when all the processes have
been finished.

Figure 2 illustrates the proposed paralellization

Computación y Sistemas, Vol. 24, No. 1, 2020, pp. 255–267
doi: 10.13053/CyS-24-1-2979

Alejandra Serrano Rubio, Amilcar Meneses Viveros, Guillermo B. Morales Luna, Mireya Paredes López264

ISSN 2007-9737



Table 9. Estimation of the performance and efficiency of
the BIMAX algorithm with different number of processors

Processors 1 2 4 8 16

S(p) 1 1.5151 2.0408 2.4691 2.7586

E(p) 1 0.7575 0.5102 0.3086 0.0946

of the BIMAX algorithm. It basically consists
of the division of the input matrix into the total
number of available processors in the system. This
division is made at the beginning by the parallel
BIMAX program. Since the BIMAX is implemented
in divide and conquer approach, it generates a
tree of processes as it can be seen in Figure 2.
The number of levels in that tree depends on the
total number of processors. For instance, having
available six processors, the tree can only have two
levels of the BIMAX recursion. Once the last level
of tree is achieved, in this case the second level,
each processor start the execution of the BIMAX
algorithm with its respective input matrix.

6 Conclusion

Biclustering is a powerful unsupervised technique
to uncover patterns in gene expression data.
Three main phases of the BIMAX algorithm are
described: data reading, processing and writing
results. Our results suggest that the algorithm is
potentially parallelizable in the processing and the
writing phases, due to the reading phase tends to
zero when the number of processors increases.

The parallelization of the BIMAX algorithm is
proposed in a message passing environment, as
well as a parallel file system. The above is
associated with a lower computation cost when
obtaining partial results for each processing unit
during the analysis of a section of the gene
expression matrix.

Certainly, there are differences in the specific
criteria used to parallelize the algorithm, having
as a consequence differences in speed between
the present study and those proposed in the
literature. In this sense, a previous analysis of
the performance of the BIMAX algorithm has been
carried out to identify the potentially parallelizable
sections, and thus, be able to propose a good

design of the parallel algorithm in distributed
memory platforms.

In this study, we used only gene expression
matrices designed in silico, of which the char-
acteristics of implanted biclusters were known
to minimize the confounding variables. Future
research should include gene expression matrices
that result from biological experiments, and that
also allow verifying the results in vitro.

It must be taken into account that the
parallelization of the algorithm will show an
improvement in its performance that will depend on
the algorithm itself, its sequential component, the
overhead of communication and synchronization
between the processes. However, the objective will
always be to increase the speed of the processing
without altering the effectiveness of the algorithm,
independently of the error coming from the different
noise sources of the experiment.
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