
A Comparative Study of Sorting Algorithms with FPGA Acceleration
by High Level Synthesis

Yomna Ben Jmaa1,2, Rabie Ben Atitallah2, David Duvivier2, Maher Ben Jemaa1

1 NIS University of Sfax, ReDCAD,
Tunisia

2 Polytechnical University Hauts-de-France,
France

Yomna.BenJmaa@etu.univ-valenciennes.fr, {Rabie.BenAtitallah, David.Duvivier}@univ-valenciennes.fr,
maher.benjemaa@enis.rnu.tn

Abstract. Nowadays, sorting is an important operation
for several real-time embedded applications. It is one
of the most commonly studied problems in computer
science. It can be considered as an advantage for
some applications such as avionic systems and decision
support systems because these applications need a
sorting algorithm for their implementation. However,
sorting a big number of elements and/or real-time de-
cision making need high processing speed. Therefore,
accelerating sorting algorithms using FPGA can be an
attractive solution. In this paper, we propose an efficient
hardware implementation for different sorting algorithms
(BubbleSort, InsertionSort, SelectionSort, QuickSort,
HeapSort, ShellSort, MergeSort and TimSort) from
high-level descriptions in the zynq-7000 platform. In
addition, we compare the performance of different
algorithms in terms of execution time, standard deviation
and resource utilization. From the experimental results,
we show that the SelectionSort is 1.01-1.23 times faster
than other algorithms when N < 64; Otherwise, TimSort
is the best algorithm.

Keywords. FPGA, sorting algorithms, heterogeneous
architecture CPU/FPGA, zynq platform.

1 Introduction

At present, Intelligent Transportation Systems
(ITS) is an advanced application combining en-
gineering transport, communication technologies
and geographical information systems. These
systems [15] play a significant part in minimizing

the risk of accidents, the traffic jams and pollution.
Also, ITS improve the transport efficiency, safety
and security of passengers. They are used in
various domains such as railways, avionics and
automotive technology. At different steps, several
applications need to use sorting algorithms such
as decision support systems, path planning [6],
scheduling and so on.

However, the complexity and the targeted
execution platform(s) are the main performance
criteria for sorting algorithms. Different platforms
such as CPU (single or multi-core), GPU (Graphics
Processing Unit), FPGA (Field Programmable
Gate Array) [14] and heterogeneous architectures
can be used.

Firstly, the FPGA is the most preferable platform
for implementing the sorting process. Thus,
industry uses frequently FPGAs for many real-time
applications improve performance in terms of
execution time and energy consumption [4, 5].
On the other hand, using an FPGA board allows
to build complex applications which have a high
performance. These applications are being
made by receiving a large number of available
programmable fabrics. They provide an imple-
mentation of massively-parallel architectures [5].
The increase in the complexity of the applications
has led to high-level design methodologies[10].
Hence, High-Level Synthesis (HLS) tools have

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546

doi: 10.13053/CyS-23-1-2999

been developed to improve the productivity of
FPGA-based designs.

However, the first generation of HLS has failed
to meet hardware designers’ expectations; some
reasons have facilated researchers to continue
producing powerful hardware devices. Among
these reasons, we quote the sharp increase
of silicon capability; recent conceptions tend to
employ heterogeneous Systems on Chips (SoCs)
and accelerators. The use of behavioral designs
in place of Register-Transfer-Level (RTL) designs
allows improving design productivity, reducing the
time-to-market constraints, detaching the algorithm
from architecture to provide a wide exploration for
implementing solutions [11]. From a high-level
programming language (C / C ++), Xilinx created
the vivado HLS [34] tool to generate hardware
accelerators.

The sorting algorithm is an important process
for several real-time embedded applications.
There are many sorting algorithms [17] in the
literature such as BubbleSort, InsertionSort and
SelectionSort which are simple to develop and to
realize, but they have a weak performance (time
complexity is O(n2)). Several researchers have
used MergeSort, HeapSort and QuickSort with
O(nlog(n)) time complexity to resolve the restricted
performance of these algorithms [17]. On the one
hand, HeapSort starts with the construction of a
heap for the data group. Hence, it is essential to
remove the greatest element and to put it at the end
of the partially-sorted table. Moreover, QuickSort
is very efficient in the partition phase for dividing
the table into two. However, the selection of the
value of the pivot is an important issue. On the
other hand, MergeSort gives a comparison of each
element index, chooses the smallest element, puts
them in an array and merges two sorted arrays.

Furthermore, other sorting algorithms are
improving the previous one. For example,
ShellSort is an enhancement of the insertion
sort of algorithm. It divides the list into a
minimum number of sub-lists which are sorted
with the insertion sort algorithm. Hybrid sorting
algorithms emerged as a mixture between several
sorting algorithms. For example, Timsort combines
MergeSort and InsertionSort. These algorithms
choose the InsertionSort if the number of elements

is lower than an optimal parameter (OP) which
depends on the target architecture and the
sorting implementation; otherwise, MergeSort is
considered with integrating some other steps to
improve the execution time.

The main goal of our work is to create a new
simulator which simulates the behavior of elements
/ components related to intelligent transportation
systems; In [2], the authors implemented an
execution model for a future test bench and
simulation. However, they propose a new
hardware and software execution support for the
next generation of test and simulation system
in the field of avionics. In [33], the authors
developed an efficient algorithm for helicopter path
planning. They proposed different scheduling
methods for the optimization of the process on
a real time high performance heterogeneous
architecture CPU/FPGA. The authors in [25]
presented a new method of 3D path design
using the concept of “Dubins gliding symmetry
conjecture“. This method has been integrated in
a real-time decisional system to solve the security
problem.

In our research group, several researchers
proposed a new adaptive approach for 2D path
planning according to the density of obstacle
in a static environment. They improved this
approach into a new method of 3D path planning
with multi-criteria optimizing. The main objective
of this work is to propose a different optimized
hardware accelerated version of sorting algo-
rithms (BubbleSort, InsertionSort, SelectionSort,
HeapSort, ShellSort, QuickSort, TimSort and
MergeSort) from High-Level descriptions in avionic
applications. We use several optimization steps to
obtain an efficient hardware implementation in two
different cases: software and hardware for different
vectors and permutations.

The paper is structured as follows: Section
II presents several studies of different sorting
algorithms using different platforms (CPU, GPU
and FPGA). Section III shows a design flow of
our application. Section IV gives an overview
of sorting algorithms. Section V describes our
architecture and a variety of optimizations of
hardware implementation. Section VI shows
experimental results. We conclude in Section VII.

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546
doi: 10.13053/CyS-23-1-2999

Yomna Ben Jmaa, Rabie Ben Atitallah, David Duvivier, Maher Ben Jemaa214

Table 1. Complexity of the sorting algorithms

Best Average Worst
BubbleSort O(n) O(n2) O(n2)

InsertionSort O(n) O(n2) O(n2)
SelectionSort O(n2) O(n2) O(n2)

HeapSort O(n log(n)) O(n log(n)) O(n log(n))
ShellSort O(n log(n)) O(n log(n)2) O(n log(n)2)
QuickSort O(n log(n)) O(n log(n)) O(n2)
MergeSort O(n log(n)) O(n log(n)) O(n log(n))

TimSort O(n) O(n log(n)) O(n log(n))

2 Background and Related Work

Sorting is a common process and it is considered
as one of the well-known problems in the
computational world. To achieve this, several
algorithms are available in different research
works. They can be organized in various ways:

— Depending on the algorithm time complexity,
Table I presents three different cases (best,
average and worst) of the complexity for
several sorting algorithms. We can mention
that QuickSort, HeapSort, MergeSort, timSort
have a best complexity of O(nlog(n)) in
average case. By contrast, the worst case
performance for the four algorithms is O(n2)
obtained by QuickSort. A simple pretest
makes all algorithms in the best case to O(n)
complexity.

— Each target implementation platform, such as
CPUs, GPUs, FPGAs and the hybrid platform,
has a specific advantage: FPGA is the best
platform in terms of power consumption while
CPU is considered as a simple platform for
programmability. GPU appears as a medium
solution.

The authors in [9] used MergeSort to sort
up to 256M elements on a single Intel
Q9550 quadcore processor with 4GB RAM
for single thread or multi-thread programs,
whereas the authors in [29] considered the
hybrid platform SRC6 (CPU Pentium 4+FPGA
virtex2) for implementing different sorting
algorithms (RadixSort, QuickSort, HeapSort,
Odd-EvenSort, MergeSort, BitonicSort) using
1000000 elements encoded in 64 bits [17].

— According to the number of elements to be
sorted, we choose the corresponding sorting
algorithms. For example, if the number of ele-
ments is small, then InsertionSort is selected,
otherwise; MergeSort is recommended.

Zurek et al. [35] proposed two different hardware
implementation algorithms: the quick-merge
parallel and the hybrid algorithm (parallel bitonic
algorithm on the GPU + sequence MergeSort on
CPU) using a framework openMP and CUDA.
They compared two new implementations with a
different number of elements. The obtained result
shows that multicore sorting algorithms are the
best scalable and the most efficient. The GPU
sorting algorithms, compared to a single core, are
up to four times faster than the optimized quick
sort algorithm. The implemented hybrid algorithm
(executed partially on CPU and GPU) is more
efficient than algorithms only run on the GPU
(despite transfer delays) but a little slower than the
most efficient, quick-merge parallel CPU algorithm.
They showed that the hybrid algorithm is slower
than the most efficient quick-merge parallel CPU
algorithm.

Abirami et al. [1] presented an efficient hardware
implementation of the MergeSort algorithm with
Designing Digital Circuits. They measured
the efficiency, reliability and complexity of the
MergeSort algorithm with a digital circuit. Abirami
used only 4 input and compared the efficiency of
the MergeSort to the bubble sort and the selection
sort algorithms. The disadvantage of this work is
using only MergeSort algorithm in FPGA.

Pasetto et al. [26] presented several parallel im-
plementations of five sorting algorithms (MapSort,
MergeSort, Tsigas-Zhang’s Parallel QuickSort,
Alternative QuickSort and STLSort) using an
important number of elements. They calculated the
performance of this algorithm using two different
techniques (direct sorting and key/pointer sorting)
and two machines: Westmere (Intel Xeon 5670,
frequency: 2.93 GHz and 24 GB of memory)
containing 6 cores i7 and Nehalem (Intel Xeon
5550, 2.67 GHz, 6 GB of memory) integrating 4
cores i7. After that, they compared the several
algorithms in terms of CPU affinity, throughput,
microarchitecture analysis and scalability.

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546

doi: 10.13053/CyS-23-1-2999

A Comparative Study of Sorting Algorithms with FPGA Acceleration by High Level Synthesis 215

Based on the obtained results, the authors
recommended MergeSort and MapSort when
memory is not an issue. Both of these algorithms
are advised if the number of elements is up to
100000, as they need an intermediate array size.
Danelutto et al. [12] presented an implementation
of the pattern using the openMP, the Intel TBB
framework and the Fastflow parallel programming
running on multicore platforms. They proposed a
high-level tool for the fast prototyping of parallel
Divide and Conquer algorithms. The obtained
results show that the prototype parallel algorithms
allow a reduction of the time and also need
a minimum of programming effort compared to
hand-made parallelization.

Jan et al. [19] presented a new parallel
algorithm named the min-max butterfly network,
for searching a minimum and maximum in
an important number of elements collections.
They presented a comparative analysis of the
new parallel algorithm and three parallel sorting
algorithms (odd even sort, bitonic sort and rank
sort) in terms of sorting rate, sorting time and
speed running on the CPU and GPU platforms.
The obtained results show that the new algorithm
has a better performance than the three others
algorithms.

Grozea et al. [25] allowed to accelerate existing
comparison algorithms (MergeSort, Bitonic Sort,
parallel Insertion Sort) (see, e.g. [22, 28] for
details) to work at a typical speed of an Ethernet
link of 1 Gbit/s by using parallel architectures
(FPGAs, multi-core CPUs machines and GPUs).
The obtained results show that the FPGA platform
is the most flexible, but it is less accessible. Beside
that GPU is very powerful but it is less flexible,
difficult to debug and requiring data transfers to
increase the latency. Sometimes, the CPU is
perhaps too slow in spite of the multiple cores and
the multiple CPUs, but it is the easiest to use.

Konstantinos et al [16] proposed an efficient
hardware implementation for three algorithms
based on virtex 7 FPGAs of image and video
processing using high level synthesis tools to
improve the performance. They focused only in
the MergeSort algorithm for calculating the Kendall
Correlation Coefficient. The obtained results
show that the hardware implementation is 5.6x

better than the software implementation. Janarbek
et al. [16] proposed a new framework which
provides ten basic sorting algorithms for different
criteria (speed, area, power...) with the ability to
produce hybrid sorting architectures. The obtained
results show that these algorithms had the same
performance as the existing RTL implementation if
the number of elements is lower than 16K elements
whereas they overperformed it for large arrays
(16K-130K). We are not in this context because
the avionic applications need to sort at most 4096
elements issuing from previous calculation blocs.

Chen et al. [8] proposed a methodology
for the hardware implementation of the Bitonic
sorting network on FPGA by optimizing energy
and memory efficiency, latency and throughput
generate high performance designs. They
proposed a streaming permutation network (SPN)
by ”folding” the classic Clos network. They
explained than the SPN is programmable to
achieve all the interconnection patterns in the
bitonic sorting network. The re-use of SPN causes
a low-cost design for sorting using the smallest
number of resources.

Koch et al. [21] proposed an implementation
of a highly scalable sorter after a careful analysis
of the existing sorting architectures to enhance
performance on the processor CPU and GPUs.
Moreover, they showed the use of a partial run
time reconfiguration for improving the resource
utilization and the processing rate...

Purnomo et al. [27] presented an efficient
hardware implementation of the Bubble sort
algorithm. The implementation was taken on a
serial and parallel approach. They compared
the serial and the parallel bubble sort in terms
of memory, execution time and utility, which
comprises slices and LUTs. The experimental
results show that the serial bubble sort used less
memory and resource than the parallel bubble sort.
In contrast, the parallel bubble sort is faster than
the serial bubble sort using an FPGA platform.

Other researchers works on high-speed parallel
schemes for data sorting on FPGA are presented
in [13, 4]. Parallel sorting which was conducted
by Sogabe [32] and Martinez [24]. Finally the
comparison study of many sorting algorithms
covering parallel MergeSort, parallel counting sort,

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546
doi: 10.13053/CyS-23-1-2999

Yomna Ben Jmaa, Rabie Ben Atitallah, David Duvivier, Maher Ben Jemaa216

and parallel bubble sort on FPGA is an important
step [7].

The obtained results in a certain amount
of works which aim to parallelize the sorting
algorithms on several architectures (CPU, GPU
and FPGA) show that the speedup is proportional
to the number of processors. These researches
show that the hardware implementation on FPGA
give a better performance in terms of time and
energy. In this case, we can parallelize to the
maximum but we do not reach the values of
speedup because the HLS tool could not extract
enough parallelization since we need only a small
number of elements to be sorted.

Hence, the HLS tool improves hardware
accelerator productivity while reducing the time
of design. Also, the major advantage of HLS is
the quick exploration of the design space to find
the optimal solution. HLS Optimization Guidelines
Produce Hardware IP that verifies Surface and
Performance Tradeoff. We notice that there are
several algorithms not used for FPGA. To this end,
we choose in this work the FPGA platform and the
HLS tool to improve performance and to select the
best sortng algorithm.

We proposed in our previous work [20] an
efficient hardware implementation of MergeSort
and TimSort from high-level descriptions using the
heterogeneous architecture CPU/FPGA. These
algorithms are considered as part of a real-time
decision support system for avionic applications.
We have compared the performance of two
algorithms in terms of execution time and resource
utilization. The obtained results show that TimSort
is faster than MergeSort when using an optimized
hardware implementation.

In this paper, we proposed an improvement of
the previous work based on the permutation gene-
rator proposed by Lehmer to generate the different
vectors and permutations as input parameter. we
compared the 8 sorting algorithms (BubbleSort,
InsertionSort, SelectionSort, ShellSort, QuickSort,
HeapSort, MergeSort and TimSort) implemented
on FPGA using 32 and 64 bit encoded data. Table
2 presented the comparative analysis approaches
of the discussed studies.

3 Design Flow

Fig. 1. General Design flow

To accelerate the different applications (real time
decision system, 3D path planning) , Figure 1
presents the general structure of the organization
for design. Firstly, we have a set of tasks
programmed in C/C++ and to be executed on a
heterogeneous platform CPU/FPGA. After that, we
optimize the application via High Level Synthe-
sis(HLS) tool optimization directives for an efficient
hardware implementation. In addition, we optimize
these algorithms by an another method that runs
in parallel the same function with different input.
Next, the optimized program will be divided into
software and hardware tasks using the different
metaheuristic or a Modified HEFT (Heterogeneous
Earliest-Finish Time) (MHEFT) while respecting
application constraints and resource availability.
This step is proposed in [33]. The hardware task
will be generated using the Vivado HLS tool from
C/C++. Finally, the software and the hardware
tasks will communicate with bus to run them on
the FPGA board. This communication is done
with ISE or vivado tools to obtain an efficient result
implementation.

4 Overview of Sorting Algorithms

4.1 BubbleSort

Bubble sort [31, 24] is a simple and well-known
algorithm in the computational world.

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546

doi: 10.13053/CyS-23-1-2999

A Comparative Study of Sorting Algorithms with FPGA Acceleration by High Level Synthesis 217

Table 2. Different context analysis approaches

Approach Algorithms Parallelization Platforms Avionic application High Level toolName Complexity High performance CPU GPU FPGA

Grozea et al [10]
MergeSort
Bitonic sort

Parallel InsertionSort

O(n log(n))
O(n log(n)ˆ2)

O (nˆ2)
Yes Yes Yes Yes Yes No No

Chhugani et al [11] MergeSort O(n log (n)) Yes Yes Yes No No No No

Satish et al [12] RadixSort
MergeSort

O(nK)
O(n log(n)) Yes Yes No Yes No No No

Zurek et al [13] Parallel quick merge
Hybrid algorithm - Yes Yes Yes Yes No No Yes

Abirami et al[14] MergeSort O (n log (n)) Yes Yes No No Yes No No

Pasetto et al [15]

MapSort
MergeSort

Tsigas-Zhangs
Alternative QuickSort

STLSort

O(n/P(log(n))
O(n log(n))
O(n log(n))
O(n log(n))

-

Yes Yes Yes No No No No

Danelutto et al [16] Divide and conquer O (n log(n)) Yes Yes Yes No No No Yes
Jan et al [17] min-max butterfly - Yes Yes Yes Yes No No No

Konstantinos et al [20] MergeSort O(n log(n)) Yes Yes Yes No Yes No Yes
Chen et al [21] BitonicSort O(n log(n)ˆ2) Yes Yes No No Yes No No
Koch et al [22] Highly scalable sorter - Yes Yes Yes Yes No No No

Purnomo et al [23] BubbleSort O(nˆ2) Yes Yes No No FPGA No No

[24][25][26][27][28]
MergeSort

Parallel CountingSort
Parallel BubbleSort

O(n log(n))
O(n+k)
O(nˆ2)

Yes Yes No No Yes No No

Previous work [29] MergeSort
TimSort

O(n log(n))
O(n log(n)) Yes Yes Yes No Yes Yes Yes

Our work

BubbleSort
InsertionSort
SelectionSort

QuickSort
HeapSort
MergeSort
ShellSort
TimSort

O(nˆ2)
O(nˆ2)
O(nˆ2)

O(n log(n))
O(n log(n))
O(n log(n))

O(n(log(n)ˆ2))

O(n log(n))

Yes Yes Yes No Yes Yes Yes

However, it is inefficient for sorting a large
number of elements because its complexity is very
important O (n2) in the average and the worst
case. Bubble sort is divided into four steps. Firstly,
bubble sort is the high level, which allows sorting
all input. The second step is to swap two inputs
if tab[j] > tab[j + 1] is satisfied. Subsequently,
the comparator step makes it possible to compare
two inputs. Finally, an adder is used to subtract
two inputs to define the larger number in the
comparator component. These different steps are
repeated until you sorted array is obtained (Figure
2).

4.2 SelectionSort

The selection sorting algorithm [18] is a simple al-
gorithm for analysis, compared to other algorithms.
Therefore, it is a very easy sorting algorithm to
understand and it is very useful when dealing
with a small number of elements. However, it is
inefficient for sorting a large number of elements
because its complexity is O (n2) where n is the

number of elements in the table. This algorithm is
called SelectionSort because it works by selecting
a minimum of elements in each step of the sort.
The important role of selection sort is to fix the
minimum value at index 0. It searches for the
minimum element in the list and switches the value
at the medium position. After that, it is necessary
to increment the minimum index and repeat until
the sorted array is obtained (Figure 3).

4.3 InsertionSort

InsertionSort [31] is another simple algorithm
used for sorting a small number of elements as
shown in Figure 4. Nevertheless, it has a better
performance than BubbleSort and SelectionSort.
InsertionSort is less efficient when sorting an
important number of elements, which requires
a more advanced algorithm such as QuickSort,
HeapSort, and MergeSort because its complexity
is very important O (n2) in the average and the
worst case. The InsertionSort algorithm is used
to integrate a new element in each iteration and to

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546
doi: 10.13053/CyS-23-1-2999

Yomna Ben Jmaa, Rabie Ben Atitallah, David Duvivier, Maher Ben Jemaa218

Fig. 2. BubbleSort algorithm

Fig. 3. SelectionSort Algorithm

compare the values of elements in the list. If the
value of an element is less than the current value
of that element then a switch is performed. Repeat
this step until n-1 item.

Fig. 4. InsertionSort Algorithm

4.4 ShellSort

ShellSort [30] is a very efficient sorting algorithm
for an average number of elements and it is an
improvement of the InsertionSort algorithm as it
allows to switch the elements positioned further.
The average-case and worst-case complexities of
this algorithm are of O(n(log(n)2)). The principle
role of this algorithm is to compute the value
of h and divides the list into smaller sub-lists of
equal h intervals. After that, it sort each sub-list
that contains a large number of elements using
InsertionSort. Finally, repeat this step until a sorted
list is obtained. ShellSort is not widely used in the
literature.

4.5 QuickSort

Quicksort [23] is based on a partitioning operation:
Firstly, this algorithm divides a large array into
two short sub-arrays: the lower elements and the
higher elements. It is divided into different steps:
1. Select an element from array, named pivot.
2. Partitioning: move all smaller elements’values
before the pivot, and move all bigger’elements

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546

doi: 10.13053/CyS-23-1-2999

A Comparative Study of Sorting Algorithms with FPGA Acceleration by High Level Synthesis 219

Fig. 5. ShellSort Algorithm

values after it. After this partitioning, the pivot is in
its final position, called partition operation.
3. Repeat recursively the different steps for two
sub-arrays with smaller and greater values of
elements.

Therefore, it is a divide and conquer algorithm.
Quicksort is faster in practice than other algorithms
such as BubbleSort or Insertion Sort because
its complexity is O(n log n). However, the
implementation of QuickSort is not stable and it is
a complex sort, but it is among the fastest sorting
algorithms in practice.

The most complex problem in QuickSort is
selecting a good pivot element. Indeed, if at each
step QuickSort selects the median as the pivot
it will obtain a complexity of O(n log n), but a
bad selection of pivots can always lead to poor
performance (O(n2) time complexity), cf. Figure 6.

4.6 HeapSort

HeapSort [3] is based on the same principle as
SelectionSort, since it searches for the maximum
element in the list and places this element at the
end. This procedure is repeated for the remaining
elements. This algorithm is a better sorting
algorithm being in place because its complexity is

Fig. 6. QuickSort Algorithm

O(n log(n)). In addition, this algorithm is divided
into two basic steps:

— Creating a Heap data structure (Max-Heap
or Min-Heap) with the first element of the
heap, which is the greatest or the smallest
(depending upon Max-Heap or Min-Heap)

— Repeating this step using the remaining
elements to select again the first element of
the heap and to place this element at the
end of the table until you get a sorted array.
Heapsort is too fast and it is not stable sorting
algorithm. It is very widely used to sort a large
number of elements.

4.7 MergeSort

In 1945, MergeSort [20] was established by
John von Neumann. The implementation of this
algorithm retains the order of input to output.
Therefore, this algorithm is an efficient and stable
algorithm. It is based on the famous divide and
conquer paradigm. The necessary steps of this
algorithm are : 1- Divide array into two sub-arrays,
2- Sort these two arrays recursively 3- Merge the
two sorted arrays to obtain the result. It is a better

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546
doi: 10.13053/CyS-23-1-2999

Yomna Ben Jmaa, Rabie Ben Atitallah, David Duvivier, Maher Ben Jemaa220

Fig. 7. HeapSort Algorithm

algorithm than the HeapSort, QuickSort, ShellSort
and TimSort algorithms because its complexity in
the average case and the worst case is O(n log(n))
but its is O(n log(n)) in the best case as shown in
Figure 8.

4.8 TimSort

TimSort [20] is based on MergeSort and Insertion-
Sort algorithms. The principle role of this algorithm
is to switch between these two algorithms. This
step depends on the value of the optimal parameter
(OP) which is fixed to 64 for the architecture of the
processor Intel i7. The execution time is almost
equal for parallel architectures when we change
the value of parameter OP. Therefore, we consider
in this work the value of OP is 64 because several
research use this standardized value. However, we
could follow two different ways by mean of the size
of elements to be sorted: If the size of the array is
greater or equal than 64 elements, then MergeSort
will be considered; otherwise, InsertionSort is
selected in the sorting step as shown in Figure 9.

Fig. 8. MergeSort Algorithm

Fig. 9. TimSort Algorithm [20]

5 Optimized Hardware Implementation

In this section, we will present the different
optimizations applied to the sorting algorithms
defined in the previous section using HLS

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546

doi: 10.13053/CyS-23-1-2999

A Comparative Study of Sorting Algorithms with FPGA Acceleration by High Level Synthesis 221

directives with the size of data 64 bits. Then, we
will explain our execution architecture. Finally, we
will propose several input data using the Lehmer
method to take a final decision.

5.1 Optimization of Sorting Algorithms

In order to have an efficient hardware implementa-
tion, we applied the following optimization steps to
the C code for each sorting algorithm:

— Loop unrolling: The elements of the table are
stored in BRAM memory, which are described
by dual physical ports. The dual ports could be
configured as dual write ports, dual read ports
or one port for each operation. We profit from
this optimization by unrolling the loops in the
design by factor=2. For example, only writing
elements are executed in the loop. Hence, the
two ports for an array could be configured as
writing ports and consequently we could unroll
the loop by factor=2.

— Loop iterations are pipelined in order to reduce
the execution time. Loop iterations are
pipelined in our design with only one clock
cycle difference in-between by applying loop
pipelining with Interval iteration (II)=1. To
satisfy this condition, the tool will plan loop
execution.

— Input/output Interface: Input/output ports are
configured to exploit the AXI-Stream protocol
for data transfer with minimum communication
signals (DATA, VALID and READY). Also,
the AXI-Lite protocol is employed for design
configuration purposes; for example, to
determine the system’s current state (start,
ready, busy).

5.2 Hardware Architecture

Today, the heterogeneous architecture presents a
lot of pledge for high performance extraction by
combining the reconfigurable hardware accelerator
FPGA with the classic architecture. The use of
this architecture causes a significant improvement
in performance and energy efficiency. In the
literature, different heterogeneous architectures
such as Intel HARP, Microsoft Catapult and

Xilinx Zynq are used.this architecture promises a
massive parallelism for proceeding improvement
in hardware acceleration of the FPGA technology.
In fact, the FPGA technology can offer a better
performance (power consumption, time...), up to 10
times compared to the CPU. We use in this work a
Xilinx Zynq board which has two different modes of
communication: AXI4-Lite and AXI4-Stream.

In this case, we choose the AXI4-Stream
protocol in this paper because it is one of the AMBA
protocols designed to carry streams of Arbitrary
width data of 32/64 bit size in the hardware. These
data are generally represented as vector data
on the software side that can be transferred 4
bytes per cycle. On one side, the AXI4-Stream
is designed for high-speed streaming data. This
mode of transfer supports unlimited data burst
sizes and provides point-to-point streaming data
without using any addresses. However, it is
necessary to fix a starting address to begin a
transaction between the processor and HW IP.
Typically, the AXI4-Stream interface is used with a
controller DMA (Direct Memory Access) to transfer
much of the data from the processor to the FPGA
as presented in Figure 10. In this case, An interrupt
signal is invoked when the first packet of data is
transferred, for the associated channel to initialize
a new transfer. On the one hand, we consider that
the scatter-gather engine option is disabled on the
AXI DMA interface.

Figure 10 shows how the HLS IP (HLS is
sorting) is connected to the design. The input
data are stored in the memory of the processing
element (DDR Memory). They are transferred
from the processing system (ZYNQ) to the HLS
core (HLS Sorting Algorithm) through AXI-DMA
communication. After the data are sorted, the
result is written back through the reverse path.

Fig. 10. Hardware architecture

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546
doi: 10.13053/CyS-23-1-2999

Yomna Ben Jmaa, Rabie Ben Atitallah, David Duvivier, Maher Ben Jemaa222

5.3 Choice of the Input Data

In this part, we propose different input data, which
are stored in several file systems. Firstly, we
present the management of files on an SD card
(Secure Digital Memory Card) while retaining a
strong portability and practicality from the FPGA.
SD cards are not easily eresable enforceable with
FPGAs and are widely used the portable storage
medium. Nowadays, several studies show that
using the SD card controller with FPGA play an
important role in different domains. They are
based on the use of an API interface (Application
Programming Interface), AHB bus (Advanced High
performance Bus), etc. They are dedicated to the
realization of an ultra-high-speed communication
between the SD card and upper systems. All the
communication is synchronous to a clock provided
by the host (FPGA). The file system design and
implementation of an SD card provides three major
means of innovation:

— The integration and combination of the SD
card controller and the file system, gives
a system which is highly incorporated and
convenient.

— The utilization of file management makes
processing easier. In addition, it improves the
overall efficiency of the systems.

— The digital design provides a high perfor-
mance and it allows a better portability since
it is independent of the platform.

In this paper, we implemented the different
algorithms using many data encoded in 8
bytes,which is another solution for optimizing the
performance. Thus, several studies in computer
science on sorting algorithms use the notion of
permutations as input.

5.3.1 Permutation

Firstly, permutation is used with different combina-
tory optimization problems especially in the field
of mathematics. Generally, a permutation is an
arrangement of a set of n objects 1,2,3,,n into a
specific order and each element occurs just only
once. For example, there are six permutations

of the set 1,2,3, namely (1,2,3), (1,3,2), (2,1,3),
(2,3,1), (3,1,2), and (3,2,1). So, the number of
permutations depends only on the n objects. In this
case, there are exactly n! permutations. Secondly,
a permutation π is a bijective function from a set
1,2,...,n to itself (i.e., each element i of a set S has
a unique image j in S and appears exactly once
as image value). We also considered that posπ(i)
is the position of the element i in the permutation
π; π(i) is the element at position i in π and Sn is
a set of all the possibilities of permutation of size
n. Among the many methods used to treat the
problem of generating permutations, the Lehmer
method is used in this paper.

6 Experimental Results

In this section, we present our results of execution
time and resource utilization for sorting algorithms
on Software and Hardware architecture. We
compare our results for different cases: Software
and optimized hardware for several permutations
and vectors. A set of R=50 replications is obtained
for each case and permutations/vectors. The array
size ranges from 8 to 4096 integers encoded in 4
and 8 bytes. As previously mentioned, we limited
the size to 4096 elements because the best sorting
algorithm is mainly used for real-time decision
support systems for avionic applications. In this
case, it sorted at most 4096 actions issuing from
the previous calculation blocks.

We developed our hardware implementation
using a Zedboard platform. The hardware
architecture was synthesized using the vivado
suite 2015.4 with default synthesis/implementation
strategies. Firstly, we compared the execution time
between several sorting algorithms on a software
architecture (processor Intel core i3-350M)). The
frequency of this processor is 1.33 GHz. Table
3 reports the average execution time of each
algorithm for different sizes of arrays ranging from
8 to 4096 elements with 50 replications (R=50).

Figure 11 and table 3 show that the BubbleSort,
the InsertionSort and the SelectionSort algorithms
have a significant execution time when the size
of the arrays is greater than 64; otherwise the
InsertionSort is the best algorithm if the size of the
array is smaller or equal to 64.

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546

doi: 10.13053/CyS-23-1-2999

A Comparative Study of Sorting Algorithms with FPGA Acceleration by High Level Synthesis 223

Table 3. Execution time of different algorithms

BubbleSort (us) InsertionSort (us) SelectionSort (us) HeapSort (us) QuickSort (us) ShellSort (us) MergeSort (us) TimSort (us)
8 1.57 1.074 1.243 2.296 2.316 1.514 2.639 1.818

16 5.725 2.781 3.730 5.040 4.725 4.471 4.253 2.870
32 24.375 9.011 15.293 12.371 13.197 12.184 14.641 13.084
64 96.871 28.516 41.079 48.304 41.555 42.830 32.052 34.702
128 432.990 98.884 164.989 83.592 93.241 122.110 52.753 86.434
256 1037.802 403.147 580.504 296.508 299.465 329.927 159.046 192.016
512 3779.371 1394.601 2127.602 468.886 1136.260 1145.126 275.380 507.135

1024 12290.912 4548.036 7249.245 1504.325 3291.473 3528.034 774.106 1140.902
2048 47304.790 24829.288 27876.093 2093.825 10978.576 12180.592 1554.525 1911.241
4096 181455.365 66851.367 107568.834 4281.869 41848.195 46796.158 2985.149 4098.597

Fig. 11. Execution time in software (us)

Fig. 12. Execution time of the HeapSort, QuickSort,
MergeSort, ShellSort et TimSort algorithms on a
processor

Hence, we compared the execution time of only
five algorithms (ShellSort, QuickSort, HeapSort,

MergeSort and TimSort) for average cases as
shows the figure 12. We concluded that MergeSort
is 1.9x faster than QuickSort, 1.37x faster than
HeapSort, 1.38x faster than TimSort and 1.9x
faster than ShellSort running on a processor Intel
Core i3 (Figure 12).

Fig. 13. Standard deviation of different algorithms
running on Software

Second, we compared the performance of the
sorting algorithms in terms of standard deviation
as shown in table 4, which illustrates the standard
deviation for each algorithm. Finally, we calculated
the different resource utilization for the sorting
algorithms (Table 5) and we noted that BubbleSort,
InsertionSort and SelectionSort consume less of
a resource. In contrast, ShellSort is the best
algorithm in terms of resource utilization (Slice,
LUT, FF and BRAM) (Figure 14, 15) because
BubbleSort, InsertionSort and SelectionSort have
an important complexity. From the results, it is
concluded that MergeSort is the best algorithm.

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546
doi: 10.13053/CyS-23-1-2999

Yomna Ben Jmaa, Rabie Ben Atitallah, David Duvivier, Maher Ben Jemaa224

Table 4. Standard deviation of different algorithms

BubbleSort InsertionSort HeapSort MergeSort QuickSort SelectionSort ShellSort TimSort
8 2753 2173 3636 3198 2989 2486 2770 2911

16 4786 3654 4524 4102 4413 3941 4410 3660
32 7310 5671 6075 6713 6301 9772 6123 6400
64 112167 9209 23719 9919 58629 9895 69133 10317

128 36686 10277 13835 7573 13875 42599 104016 10721
256 182061 302001 557507 19687 431402 83059 74621 75778
512 844048 757201 168523 116047 757716 284322 389055 782516
1024 2519380 676104 1239939 409297 437650 1854144 1362460 1164588
2048 4825091 1993282 210328 85225 2207375 2400166 585655 243134
4096 9895405 3179333 756228 159427 3462193 6339409 1431203 539362

Table 5. Utilization resources of the sorting algorithms

Slices LUT FF BRAM
BubbleSort 57 173 159 2

InsertionSort 55 183 132 2
SelectionSort 95 306 238 2

ShellSort 107 321 257 2
QuickSort 188 546 512 6
HeapSort 211 569 576 2
MergeSort 278 706 797 6

TimSort 998 3054 2364 69

Fig. 14. Resources utilization of different algorithms

After that, we used HLS directives in order
to improve the performance of the different
algorithms. We calculated the execution time
for each optimized Hardware implementation of
sorting algorithms. We compared those algorithms
using different sizes of the array (8-4096)
and several permutations (47 permutations) and

Fig. 15. BRAM memory of different algorithms

vectors (47 vectors) which are generated using
a generator of permutations proposed by Lehmer
encoded in 32 and 64 bits to analyze the
performance of each algorithm. Hence, we talk
about multicriteria sorting for use in real-time
decision support systems.

We calculated the execution time of the sorting
algorithms for different sizes of arrays ranging
from 8 to 4096 elements. The permutations are
generated using the Lehmer code and encoded
in 4 or 8 bytes. Table 6 and table 7 report
the minimum, average and maximum execution
time for each algorithm in 4 bytes and 8 bytes
respectively. Figure 16 shows the execution time of
the sorting algorithms for the average cases using
elements encoded in 4 bytes. When N is smaller
than 64, we display a zoom from the part framed
red. Hence, SelectionSort is 1.01x-1.23x faster
than the other sorting algorithms if N ≤ 64.

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546

doi: 10.13053/CyS-23-1-2999

A Comparative Study of Sorting Algorithms with FPGA Acceleration by High Level Synthesis 225

Table 6. Execution time of the sorting algorithms encoded in 4 bytes of us

BubbleSort (us) InsertionSort (us) SelectionSort (us) ShellSort (us) QuickSort (us) HeapSort (us) MergeSort (us) TimSort (us)
Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

8 11.244 17.302 23.181 11.036 17.106 22.98 10.78 16.84 22.29 11.816 17.88 23.768 12.55 18.68 24.6 11.903 17.99 23.8 12.84 18.93 24.847 12.12 18.12 24
16 15.934 22.009 27.897 14.11 20.206 26.102 13.914 20 25.88 16.1 22.25 28.1 17.16 23.22 29.11 15.77 21.85 27.73 17.52 23.6 29.5 16 22.07 27.95
32 32.317 38.763 44.647 24.02 30.15 36.03 23.85 29.9 35.25 27.12 33.25 39.14 28.3 34.3 40.2 24.97 31.1 37.02 28.36 34.48 40.36 27.51 31.18 37
64 97.11275 103.255 109.136 59.44 65.56 77.185 59.13 65.25 71.13 54.12 60.24 66.12 59.6 62.8 68.6 46.66 52.78 58.66 52.33 58.465 64.34 44.8 50.89 56.7

128 348.937 358.255 360.94 190.94 196.96 202.84 191 197.2 203 120.2 126.3 132.1 131.7 137.9 143.7 96.535 102.665 108.54 105.71 111.88 117.76 88.39 94.5 100.3
256 1344.71 1350.84 1356.72 708.1 714.21 720.039 701 707.2 713 281.8 293.55 293.8 342.7 351.2 357.07 222.47 228.57 234.45 223.1 231.3 237.25 182.9 189 197.9
512 5304.07 5310.11 5315.92 2711.18 2717.29 2723.17 2698.4 2711.4 2717.1 662.16 668.2 674.1 984.1 1001.3 1007 459.92 466.05 471.93 476.4 782.5 788.4 387 393.17 399
1024 21095.1 21101.2 21107.01 10629.9 10635.7 10645.4 10649 10655 10661.1 1607.6 1625.1 1803 2881 3121 3127 1001.8 1015.5 1024.6 1025.4 1031.5 1037.4 826.75 832.85 837.2
2048 32767 83852.9 84177.8 31733.1 42209.7 42215.5 32767 42288 42294 4021.6 4027.67 4033.48 4232 10660 10665 2221.04 2227.1 2233 2182.1 2211.5 2217.3 1763.4 1769.5 1775
4096 32767 333077 336274.5 31744.8 168307 168313 32767 168531 168536 9750.4 9756.4 9762 20630 101507 101512 4810.5 4848.5 4854.2 4728.9 4734.9 4740.7 3750.1 3756 3761.9

Table 7. Execution time of the sorting algorithms encoded in 8 bytes of us

BubbleSort (us) InsertionSort (us) SelectionSort (us) ShellSort (us) QuickSort (us) HeapSort (us) MergeSort (us) TimSort (us)
Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

8 11.312 17.447 23.385 11.042 17.15 22.95 10.94 17.01 22.88 11.92 18 23.87 12.56 18.67 24.57 11.87 17.96 23.85 12.79 18.89 24.78 12.12 18.13 24.01
16 16.32 22.419 28.341 14.38 20.48 26.37 14.36 20.5 26.48 16.2 22.5 28.5 17.4 23.5 29.38 16.048 22.16 28.08 17.91 24.02 29.91 16.38 22.43 28.29
32 33.433 39.53 45.416 24.73 30.82 36.69 24.55 30.31 36.5 27.8 33.9 39.78 28.9 34.9 40.8 25.673 31.76 37.636 28.95 35.05 40.9 25.74 31.8 40.86
64 98.482 104.75 110.45 60.79 66.89 72.03 60.5 66.61 72.48 55.49 61.57 67.47 58 64.14 70.02 48.05 54.15 60.027 53.75 59.86 65.74 46.18 52.28 58.14

128 353.24 359.35 365.236 193.64 199.75 205.63 193.8 199.9 205.8 123 129.1 135 134.6 140.6 146.5 99.36 105.47 111.35 108.4 114.5 120 91.22 97.3 103.21
256 1350.31 1356.42 1362.3 710.56 717.07 802.5 704.7 718.2 724.1 292.9 299 304.9 345.5 351.7 357.5 222.47 228.57 234.45 228.1 234.45 240.12 188.5 194.5 200.4
512 5315.43 5321.45 5327.25 2722.62 2728.8 2716.5 2722.5 2728.6 2735.6 670.4 676.6 682.5 482.5 489 494.8 471.27 477.38 484.32 484.7 490.8 496.7 398.3 404.5 410.3
1024 20926.15 21243.01 21140.12 10652.9 10656.11 10664.8 10672 10678.2 10684 1642.5 1648.7 1654.6 2893 3132.8 3138.7 1035.47 1041.58 1047.7 1048.1 1054.2 1060.1 849.6 855.7 861.8
2048 32767 84217.69 84223.49 31734.6 41802.5 42264.7 32767 41525.3 46392 4067 4073 4078.8 4254.9 10682 10688 2244.7 2272.5 2278.43 2250.9 2257 2262.9 1809 1815 1821
4096 32767 336356 336361.8 30728 168554 168578 32767 168618 168624 9814 9820.5 9826.3 67153 38599 38684 4930 4936.1 4941.95 4812.4 4819.5 4825.3 3837 3843.9 3849.7

Otherwise, Figure 17 shows the execution time
of the sorting algorithms when N > 64. We note
that BubbleSort, InsertionSort, SelectionSort and
QuickSort have a high execution time. Thereafter,
we compared only the other four algorithms to
choose the best algorithm in terms of execution
and standard deviation. In addition, we calculated
the standard deviation for the different sorting
algorithms when N ≤ 64. Tables 8 and 9 show
that the standard deviation is almost the same.
Since we rejected the BubbleSort, InsertionSort,
SelectionSort and QuickSort algorithms if N > 64,
we compared the standard deviation and execution
time between HeapSort, MergeSort, ShellSort and
TimSort. Consequently, TimSort has the best
standard deviation with N ≤ 64 and N > 64 as
shown in table 9 and Fig 18.

Figure 18 shows the execution time of Timsort,
MergeSort, HeapSort and ShellSort algorithms for
the average case. For example, when N=4096, the
execution time was 3756us, 4734.9us, 4848.5us
and 9756.4us for Timsort, MergeSort, HeapSort
and ShellSort respectively. For a large number
of elements, we concluded that TimSort was
1.12x-1.21x faster than MergeSort, 1.03x-1.22x
faster than HeapSort and 1.15x-1.61x faster than
ShellSort running on FPGA (Figure 21). Table
7 presents the execution time for each algorithm
using several elements encoded in 8 bytes. The
obtained results show almost the same results
obtained when using elements encoded in 4 bytes.
From table 6 and 7, it is observed that the results

obtained for TimSort in table 6 and 7 have a
smaller execution time in each case. Thus, the
performance of the sorting algorithms depends on
the permutation or vectors.

Moreover, we notice that the computational exe-
cution time of 6 and 7 in hardware implementation
is reduced compared that in processor Intel (Table
3) when the same frequency is used. For example,
when N=2048, the hardware implementation was
1815 us (50 MHz) and the software implementation
was 61,926 us (2260 MHz) for Timsort. We study
two cases where the frequency is 2260Mhz the
execution time is 61.926 us. In contrast, if the
frequency decreases to 50MHz then the execution
time increases and for this reason, we notice that
the time on FPGA is very faster if the frequency is
50MHz.

From Software and Hardware implementation,
we concluded that BubbleSort, InsertionSort and
SelectionSort have an important execution time
for a large number of elements. In addition, we
concluded that MergeSort is the best algorithm in
software execution and TimSort in the FPGA when
N > 64; otherwise, we note that InsertionSort
much faster than the other algorithms running
on the processor and faster than SelectionSort
running in the hardware platform. Table 10 shows
the different resources utilization for BubbleSort,
InsertionSort, SelectionSort, HeapSort, Merge-
Sort, ShellSort and TimSort. We can see that
Tim sort consumes more resources than the other
algorithms. TimSort consumed 44% more for Slice

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546
doi: 10.13053/CyS-23-1-2999

Yomna Ben Jmaa, Rabie Ben Atitallah, David Duvivier, Maher Ben Jemaa226

Fig. 16. Comparison between the sorting algorithms using data encoded in 4 bytes

Table 8. Standard deviation for sorting algorithms (N ≤ 64)

BubbleSort InsertionSort SelectionSort QuickSort HeapSort MergeSort ShellSort TimSort
8 3.47244 3.474 3.485 3.504 3.486 3.491 3.4752 3.471
16 3.4789 3.481 3.507 3.4849 3.4777 3.483 3.4742 3.4712
32 3.474 3.474 3.476 3.4757 3.475 3.4749 3.4763 3.4731
64 3.475 3.4743 3.4762 3.4739 3.474 3.475 3.4747 3.4724

Table 9. Standard deviation for sorting algorithms with N > 64

HeapSort MergeSort ShellSort TimSort HeapSort MergeSort ShellSort TimSort
128 3.475 3.4752 3.4745 3.4736 3.486 3.491 3.4752 3.471
256 3.474 3.4737 3.4758 3.4731 3.4777 3.483 3.4742 3.4712
512 3.6695 3.707 3.472 3.4714 3.475 3.4749 3.4763 3.4731
1024 4.082 3.479 3.56 3.4714 3.474 3.475 3.4747 3.4724

Table 10. Utilization of resources of the sorting algorithms

BubbleSort InsertionSort SelectionSort ShellSort QuickSort HeapSort MergeSort TimSort
LUT FF BRAM LUT FF BRAM LUT FF BRAM LUT FF BRAM LUT FF BRAM LUT FF BRAM LUT FF BRAM LUT FF BRAM

8 242 121 1 219 131 0 336 203 1 356 224 0 733 541 2 524 444 0 955 877 0 5299 2480 35
16 176 136 1 226 139 0 333 214 1 355 232 0 750 552 2 526 459 1 985 883 0 5326 2498 35
32 189 136 1 187 115 0.5 351 225 1 314 208 0.5 776 564 2 541 474 1 856 809 1.5 5293 2482 35
64 199 149 1 201 123 0.5 363 236 1 319 216 0.5 814 608 2 556 489 1 871 815 1.5 5320 2499 35.5

128 215 162 1 212 131 0.5 373 247 1 337 224 0.5 820 588 2 583 504 1 885 821 1.5 5487 2516 35.5
256 228 175 1 221 139 0.5 365 258 1 345 232 0.5 835 600 2 606 519 1 893 827 1.5 5468 2535 35
512 238 188 1 239 147 0.5 394 269 1 359 240 0.5 841 612 2 611 534 1 925 849 1.5 5494 2552 35.5
1024 245 201 1 248 155 1 407 280 1 365 248 1 860 624 3 651 551 1 936 855 3 5545 2569 36
2048 259 216 2 265 163 2 418 293 2 367 258 2 909 638 6 669 566 2 942 861 6 5668 2586 38
4096 291 229 4 274 171 4 434 304 4 384 266 4 976 682 15.5 689 581 4 954 867 12 5841 2602 44

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546

doi: 10.13053/CyS-23-1-2999

A Comparative Study of Sorting Algorithms with FPGA Acceleration by High Level Synthesis 227

Fig. 17. Comparison between sorting algorithms when
N > 64

Fig. 18. Comparison of execution time between TimSort,
MergeSort, HeapSort and ShellSort

LUT in hardware implementation and around 9 %
for Slice Register. We concluded that when we
increase the performance of the algorithm in terms
of execution time, then we increase the amount
of available the number of available resource
utilization on the FPGA.

7 Conclusion

In this paper, we presented the optimized hardware
implementation of sorting algorithms to improve the

performance in terms of execution time using a
different number of elements (8-4096) encoded in
4 and 8 bytes. We used a High-Level Synthesis
tool to generate the RTL design from behavioral
description. However, we used a muli-criteria
sorting algorithms which contain several actions in
line and different criteria in columns.

A Comparative analysis of the various results
obtained by these sorting algorithms was done
based on two different cases (software and optimi-
zed hardware) and two parameters (Execution time
and resource utilization) on a Zynq-7000 platform.
From the results, it is concluded that BubbleSort,
InsertionSort and QuickSort have a high execution
time. In addition, TimSort ranges from 1.12x-1.21x
faster than MergeSort, 1.03x-1.22x faster than
HeapSort and 1.15x-1.61x faster than ShellSort
when N ≥ 64 and using optimized hardware with
many permutations/vectors. In contrast, when N <
64, Selection sort is 1.01x-1.23x faster than the
other sorting algorithms.

As future work, we plan to use the hardware
TimSort algorithm in the avionics field and in the
hardware implementation of a decisional system.
The next step is to include the best solution in
hardware path planning algorithms.

References

1. Abirami, R. (2014). Vhdl implementation of merge
sort algorithm. International Journal of Computer
Science and Communication Engineering, pp. 1–6.

2. Afonso, G. (2013). Vers une nouvelle génération de
systèmes de test et de simulation avionique dyna-
miquement reconfigurables. Ph.D. thesis, Université
des Sciences et Technologie de Lille-Lille I.

3. Al-Jaloud, E., Al-Aqel, H., & Badr, G. (2014).
Comparative performance evaluation of heap-sort
and quick-sort algorithms. International Journal of
Computing Academic Research, pp. 39–57.

4. Alquaied, F., Almudaifer, A. I., & AlShaya, M.
(2011). A novel high-speed parallel sorting algorithm
based on fpga. IEEE International Conference
on Electronics, Communications and Photonics
Conference (SIECPC), pp. 1–4.

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546
doi: 10.13053/CyS-23-1-2999

Yomna Ben Jmaa, Rabie Ben Atitallah, David Duvivier, Maher Ben Jemaa228

5. Baklouti, M., Marquet, P., Aydi, Y., & Dekeyser,
J. (2010). Scalable mpnoc for massively parallel
systems–design and implementation on fpga.
Journal of Systems Architecture, pp. 278–292.

6. Bárcenas, E., Benı́tez-Guerrero, E., Benitez,
A., Calleja, D. l., J., Medina, M., et al.
(2017). Branching path planning with modal
logics. Computación y Sistemas, Vol. 21, No. 3,
pp. 407–418.

7. Bique, S., Anderson, W., Lanzagorta, M., &
Rosenberg, R. (2008). Sorting using the xilinx
virtex-4 field programmable gate arrays on the cray
xd1. Proc. Craig User Group, pp. 1–12.

8. Chen, R., Siriyal, S., & Prasanna, V. (2015).
Energy and memory efficient mapping of bito-
nic sorting on fpga. Proceedings of the 2015
ACM/SIGDA ACM International Symposium on
Field-Programmable Gate Arrays, pp. 240–249.

9. Chhugani, J., Nguyen, A., Lee, V., Macy, W.,
Hagog, M., Chen, Y., Baransi, A., Kumar, S., &
Dubey, P., . Efficient implementation of sorting on
multi-core simd cpu architecture.

10. Cong, J., Liu, B., Neuendorffer, S., Noguera, J.,
Vissers, K., & Zhang, Z. (2011). High-level synt-
hesis for fpgas: From prototyping to deployment.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, pp. 473–491.

11. Coussy, P., Gajski, D., Meredith, M., & Takach, A.
(2009). An introduction to high-level synthesis. IEEE
Design & Test of Computers, pp. 8–17.

12. Danelutto, M., De Matteis, T., Mencagli, G.,
& Torquati, M. (2016). A divide-and-conquer
parallel pattern implementation for multicores. ACM
International Workshop on Software Engineering for
Parallel Systems, pp. 10–19.

13. Dong, S., Wang, X., & Wang, X. (2009).
A novel high-speed parallel scheme for data
sorting algorithm based on fpga. IEEE International
Congress on Image and Signal Processing, pp. 1–4.

14. Fernández de Bulnes, D. R. & Maldonado,
Y. (2018). Comparación de algoritmos evolutivos
multi-objetivo para sı́ntesis de alto nivel en
dispositivos fpga. Computación y Sistemas, Vol. 22,
No. 2.

15. Figueiredo, L., Jesus, I., Machado, J., Ferreira,
J., & Martins de Carvalho, J. (2001). Towards the
development of intelligent transportation systems.
IEEE Intelligent Transportation Systems, pp. 1206–
1211.

16. Georgopoulos, K., Chrysos, G., Malakonakis,
P., Nikitakis, A., Tampouratzis, N., Dollas, A.,
Pnevmatikatos, D., & Papaefstathiou, Y. (2016).
An evaluation of vivado hls for efficient system
design. IEEE International Symposium ELMAR,
pp. 195–199.

17. Harkins, J., El-Ghazawi, T., El-Araby, E., &
Huang, M. (2005). Performance of sorting algo-
rithms on the src 6 reconfigurable computer. IEEE
International Conference on Field-Programmable
Technology, pp. 295–296.

18. Jadoon, S., Solehria, S. F., Rehman, S., & Jan, H.
(2011). Design and analysis of optimized selection
sort algorithm. International Journal of Electric &
Computer Sciences (IJECS-IJENS), pp. 16–22.

19. Jan, B., Montrucchio, B., Ragusa, C., Khan, F.,
& Khan, O. (2012). Fast parallel sorting algorithms
on gpus. AIRCC International Journal of Distributed
and Parallel Systems, pp. 107–118.

20. Jmaa, Y. B., Ali, K., Duvivier, D., Jemaa, M. B.,
& Atitallah, R. B. (2017). An efficient hardware
implementation of timsort and mergesort algorithms
using high level synthesis. IEEE International
Conference on High Performance Computing &
Simulation (HPCS), pp. 580–587.

21. Koch, D. & Torresen, J. (2011). Fpgasort: A high
performance sorting architecture exploiting run-time
reconfiguration on fpgas for large problem sorting.
Proceedings of the 19th ACM/SIGDA International
symposium on Field programmable gate arrays,
pp. 45–54.

22. Krueger, T., Gehl, C., Rieck, K., & Laskov, P.
(2008). An architecture for inline anomaly detection.
IEEE International Conference on Computer Net-
work Defense, pp. 11–18.

23. Manca, E., Manconi, A., Orro, A., Armano,
G., & Milanesi, L. (2016). Cuda-quicksort: an
improved gpu-based implementation of quicksort.
Concurrency and computation: practice and
experience, pp. 21–43.

24. Martinez, J., Cumplido, R., & Feregrino, C.
(2005). An fpga-based parallel sorting architecture
for the burrows wheeler transform. IEEE Internatio-
nal Conference on Reconfigurable Computing and
FPGAs, pp. 7–13.

25. Nikolajevic, K. (2016). Système décisionnel dy-
namique et autonome pour le pilotage d’un
hélicoptère dans une situation d’urgence. Ph.D.
thesis, Valenciennes.

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546

doi: 10.13053/CyS-23-1-2999

A Comparative Study of Sorting Algorithms with FPGA Acceleration by High Level Synthesis 229

26. Pasetto, D. & Akhriev, A. (2011). A comparative
study of parallel sort algorithms. ACM Interna-
tional conference companion on Object oriented
programming systems languages and applications
companion, pp. 203–204.

27. Purnomo, D. J., Arinaldi, A., Priyantini, D. T., Wi-
bisono, A., & Febrian, A. (2016). Implementation
of serial and parallel bubble sort on fpga. Journal
Ilmu Komputer dan Informasi, pp. 113–120.

28. Rieck, K. & Laskov, P. (2007). Language models
for detection of unknown attacks in network traffic.
Journal in Computer Virology, pp. 243–256.

29. Satish, N., Harris, M., & Garland, M. (2009).
Designing efficient sorting algorithms for manycore
gpus. IEEE International Symposium on Parallel &
Distributed Processing, pp. 1–10.

30. Shahzad, B. & Afzal, M. (2007). Enhanced shell-
sorting algorithm. computer journal of Enformatika,
pp. 66–70.

31. Sodhi, T., Kaur, S., & Kaur, S. (2013). Enhanced
insertion sort algorithm. International journal of
Computer applications.

32. Sogabe, Y. & Maruyama, T. (2014). Fpga
acceleration of short read mapping based on sort
and parallel comparison. 24th IEEE International
Conference on Field Programmable Logic and
Applications (FPL), pp. 1–4.

33. Souissi, O. (2015). Planification de chemin
d’hélicoptères sur une architecture hétérogène
CPU FPGA haute performance. Ph.D. thesis,
Valenciennes.

34. Srivastava, A., Chen, R., Prasanna, V. K.,
& Chelmis, C. (2015). A hybrid design for
high performance large-scale sorting on fpga.
IEEE International Conference on ReConFigurable
Computing and FPGAs (ReConFig), pp. 1–6.

35. Żurek, D., Pietroń, M., Wielgosz, M., & Wiatr,
K. (2013). The comparison of parallel sorting
algorithms implemented on different hardware
platforms. Computer Science, pp. 679–691.

Article received on 15/08/2018; accepted on 27/08/2018.
Corresponding author is Yomna Ben Jmaa.

Computación y Sistemas, Vol. 23, No. 1, 2019, pp. 213–230
ISSN 1405-5546
doi: 10.13053/CyS-23-1-2999

Yomna Ben Jmaa, Rabie Ben Atitallah, David Duvivier, Maher Ben Jemaa230

