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Abstract. It is considered a quantum computer
consisting of a system of quantum dots (electrons)
which are described by a Hamiltonian having rotation,
inversion, and exchange symmetries. We consider
exclusively the cases of both n = 3 and n = 4 quantum
dots. In order to neglect their mutual Coulomb-like
interactions, the electron dots are allocated very far
way one of each other. In quantum dot technologies
the figure of merit is the structure of the confinement
potential. Thus, a realistic confinement potential of
an electron dot which is composed of a very high
rectangular potential well of width approximately equal
to three orders of magnitude of the electron dot Compton
wavelength (one nanometer) is proposed here. In order
to verify the consistence of the present approach, the
times of execution of the CCNOT and CCCNOT gates
are calculated. It is found that in the case of a soft
tunneling through the walls of the potential, the times of
execution of such a gates are drastically small.

Keywords. Quantum dots, confinement potential,
execution times, CCNOT gate, CCCNOT gate.

1 Introduction

Since the arising of the original proposal of
quantum dots technology for quantum computation
[1], a number of studies on the subject testing the
consistence of the model have been made [2, 7]. It
is worth emphasizing that a relevant technological
application of quantum dots is the concerning to
revolutionary TV displays [8-9]. In order to improve
the technology it results important to study the
gates which are a basic ingredients of this one.

So far the common quantum dots studies
employed approaches have considered mainly

systems of one and two electron dots. However,
it is worth mentioning that in Refs. [5, 10] the
study of systems composed by many-electron dots
have also been included. In fact, in Ref. [5] it has
been pointed out that many-body interaction arise
when there are more than two electron spins in
a computer. Through an approach based on an
effective Hamiltonian, in Ref. [5] a system of three
and four quantum dots were considered. From
such an approach, important observations about
contributions to decoherence from the many-body
interactions have been done.

One of the main achievements of [5] is the
calculation of the exchange interaction through the
use of an harmonic oscillator confinement potential
of the electron dots. However, such a confinement
potential of an electron dot is not a realistic while in
the original quantum dot model, the quantum dot
confinement is almost complete and this includes
scarce tunneling.

On the other hand, it is worth mentioning that
the exchange interaction among three and four
electron dots induces a CCNOT (Toffoli) [11] and
CCCNOT gates respectively, however in Ref. [5]
such an gates were not considered. In the present
work we point out that the exchange interaction
among three and four electron dots induces a
CCNOT and CCCNOT gates which change one
qubit if the each one of the rest of the control qubits
have a value of one.

In order to be more realistic than Ref. [5], in
the present approach it is employed a confinement
potential of an electron dot which consist of a very
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high potential well of approximated length equal to
one nanometer1.

With such a potential, we calculate the
respective times of execution of CCNOT and
CCCNOT gates as a function of the coupling
constant between the spins. It is worth mentioning
that the present approach is both a natural
extension and refining of the work done in Ref. [5].

The Hamiltonian that we are employing is:
H =

∑n
i=1

p2
i

2m
+ V (r1, r2, ..., rn) +

∑
i<j

e2

κ|ri−rj |
,

where V (r) is the confining potential. The 2n basis
states are given by:

|Ψ(sA, sB , sC , · · · )〉 =
∑
P δPP [|AB...〉|sAsB ...〉],

where |AB...〉 refers to the orbital states of the
electrons and |sAsB ...〉 are the spin of each
electron. The sum includes all the n! permutations
being δP = 1 (−1) if the permutation is even
(odd) in such a way that the total eigenfunction
is completely antisymmetric under exchange of an
arbitrary pair of electron-dots.

If one assumes that the effective spin operator
Hamiltonian (Hspin) has rotation, inversion, and
exchange symmetry, considerable information is
extracted from it. In particular, it can be concluded
that this is a function of S2

T = (SA+SB+...)2 where
ST is the total spin. It is worth mentioning that for
a three quantum dots the following expansion of
Hspin in powers of S2

T has been essayed in [5]:

Hspin =L0 + L1S
2
T + L2(S2

T )2 + ...

=L0 +
9

4
L1 + 2L1

(
SA · SB+

SA · SC + SB · SC
)

(1)

where the expansion coefficients Li (i = 1, 2, ...)
are real constants with dimensions of energy.
The information on Li can be extracted easily by
employing the eigenstates of S2

T , that is:

H|ΨnST 〉 = ST (ST + 1)|ΨnST 〉.

1The reason why the length of the confinement potential that
we are employing here is approximately one nanometer is due
that the scales of energy of the original quantum dot model are
∼ 10 MeV [1].

If we equate the two expressions
〈Ψn

ST
|Hspin|Ψn

ST
〉 = 〈Ψn

ST
|H|Ψn

ST
〉 then it is

possible to generate a [n2 ] + 1 coupled linear
equations for the coefficients Li [5], where [n2 ] is
the greatest integer less than n

2 .

2 Proposal

2.1 Case n = 3 qubits

Through Eq. (1) and a simple manipulation of the
results of Ref. [5] it is obtained that:

L0 =
5

4
·
ε3 − ε0
p3 − p0

−
1

4
·
ε3 + 2ε0 − 3ε1

p3 + 2p0 − 3p1
, (2)

L1 =
1

3
·
ε3 + 2ε0 − 3ε1

p3 + 2p0 − 3p1
−

1

3
·
ε3 − ε0
p3 − p0

, (3)

where the coefficients εi and pi depend on the
structure of the confinement potential.

In order to estimate the time of execution of the
CCNOT (Toffoli) gate 2 it is necessary to calculate
the transition frequencies between the states | ↑↑↑〉
and | ↑↑↓〉. For the above we need to know the
following matrix elements of the Hamiltonian of
Eq. (1):

〈↑↑↑ |Hspin| ↑↑↑〉 = L0 +
9

4
L1 + 2L1〈↑↑↑ |

(SA · SB + SA · SC + SB · SC
)
| ↑↑↑〉, (4)

〈↑↑↓ |Hspin| ↑↑↓〉 = L0 +
1

4
L1 + 2L1〈↑↑↓ |

(SA · SB + SA · SC + SB · SC
)
| ↑↑↓〉. (5)

In this way, the approximation for the execution
time of the Toffoli gate is given by:

2The notation employed throughout the present work for the
qubits is the following |0〉 ≡ | ↓〉 and |1〉 ≡ | ↑〉. Thus, the Hilbert
space for the case of a 3-qubit state should be: {| ↓↓↓〉, | ↓↓↑
〉, | ↓↑↓〉, | ↑↓↓〉, | ↑↑↓〉, | ↑↓↑〉, | ↓↑↑〉, | ↑↑↑〉}. The Toffoli gate
is defined in such a way that this changes the 3-qubit state only
when the two first (control) qubits are in the state | ↑〉. That is,
CCNOT| ↑↑↓〉 → | ↑↑↑〉 and CCNOT| ↑↑↑〉 → | ↑↑↓〉, otherwise
such a gate leaves unchanged the six remaining states of the
Hilbert space.
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TCCNOT '
2πh̄

|〈↑↑↑ |Hspin| ↑↑↑〉 − 〈↑↑↓ |Hspin| ↑↑↓〉|

=
h

|2L1|

(
|2 + 〈↑↑↑ |

(
SA · SB + SA · SC + SB · SC

)
|

↑↑↑〉 − 〈↑↑↓ |
(
SA · SB + SA · SC + SB · SC

)
| ↑↑↓〉|

)−1
, (6)

where use has been made of Eqs. (4) and
(5). In order to calculate the six matrix elements
appearing in Eq. (6), we are using the well known
result that the scalar product is invariant under
rotations. The later means that Si · Sj = Szi S

z
j

which gives:

TCCNOT '
h

2L1

(
|2 + 〈↑↑↑ |

(
SzAS

z
C + SzBS

z
C

)
| ↑↑↑〉 −

〈↑↑↓ |
(
SzAS

z
C + SzBS

z
C

)
| ↑↑↓〉|

)−1

=
h

6L1
. (7)

In order to determine L1, let us consider the
following vertices of an equilateral tetrahedron
contained in the XY plane A = (0, 0, 0), B =
(`, 0, 0), C = (`, `, 0), and D = (0, `, 0) containing
a quantum dot each of them. Furthermore, we
are assuming that the present device is such that
` � 1 in such a way that the mutual Coulomb
interaction

∑
i<j

e2

κ|ri−rj | between the electron-dots
can be neglected.

From the above considerations, the Hamiltonian
turns out to be: H =

∑n
i=1

p2
i

2m
+V (ri)+

∑
i<j

e2

κ|ri−rj |
'∑n

i=1
p2
i

2m
+ V (ri).

In order to fix the structure of the confining potential
V (r) of the Hamiltonian H, we note that according
with the quantum dots model [1], an electron-dot
is almost completely confined to a circle of radius
of the order of three orders of magnitude the
electron’s Compton wavelength L ∼ 10−9 m [12].
Let us observe that the potential employed in [5]
does not account for a realistic strict confinement
of the electron-dots.

By the above reason, in the present work we are
employing a very high rectangular potential well of
longitude ∼ L which has the form:

V (r) = VA(r)VB(r)VC(r)VD(r), (8)

where

Vξ(r) =

{
0 if |r− ξ| ≤ L
1
2
mω2

0L
2 if |r− ξ| > L

, (9)

for ξ = A, B,C,D and 1
2mω

2
0L

2 is the very large
height of the potential. The respective energy
levels of each dot are Enξ = h2

8mL2 · nξ2 (nξ =
1, 2, 3, · · · ) in such a way that the total energy of
the three quantum dots is:

E(3) =
∑
ξ

Enξ =
h2

8mL2

(n2
A + n2

B + n2
C

)
≥ 3 ·

h2

8mL2
, (10)

providing that the Coulomb interaction between
the electron-dots is neglected. In the present
work, we are considering only the case E(3) <
1
2mω

2
0L

2 which accounts for the strict confinement
of the electron-dots. On the other hand,
the exchange interaction is proportional to the
magnitude of the overlap between functions
centered in different dots.

Consequently, with a confinement potential of
a very high square well potential, the exchange
interaction must be both small and proportional to
the transmission coefficient through the walls. In
other words, we are assuming that the exchange
interaction J = 2L1 is such that, it results simpler to
calculate J in this way than with the use of Eq. (3):

J = (1−R)E(3), (11)

where the reflection coefficient of the electron-dot
against the wall is [13]:

R = 1− T =

(
κ1 − κ2

)2(
κ1 + κ2

)2 , (12)

being
κ1 =

√
2mE(3)/h̄2,

κ2 =
√

2m(mω2
0L

2/2− E(3))/h̄2.

and T is the transmission coefficient of the
quantum dot electron through the walls of the
potential. It results convenient to define the
exchange energy J of Eq. (11) in units of the
height of the potential well which is 1

2mω
2
0L

2. To
assume that each electron-dot is in its ground state
and by defining the dimensionless quantity xb ≡
E(3)(nA = 1,nB = 1,nC = 1)/(mω2

0L
2/2) =

h2/(4m2ω2
0L

4) in Eqs. (11) and (12) one
obtains that:
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j ≡
J

mω2
0L

2/2
= 1− 3xb

(√
3xb −

√
3xb − 1

√
3xb +

√
3xb − 1

)2

, (13)

where 1
3 ≤ xb. In Figure 1 it is plotted the

quantity j of Eq. (13) as a function of xb in the
ground state. From such a figure one can see that
when the electron-dots become more excited (i.e.
xb → 1/3), the exchange energy is close to unit
but that if the electron-dots are approximately in
their ground state then j vanishes. In the general
case when the three electron dots are not in their
ground states, from Eqs. (7, 10, 11) one can see
that the respective values of the quantity j would
correspond to the shaded region of Figure 1.

Fig. 1. The exchange energy of Eq. (13) as a function
of xb in the range 1/3 ≤ xb. The curve corresponds to
the ground state while the shaded region to the excited
states of the three quantum dots

Substitution of (13) in (7) yields:

TCCNOT =
1

3
·
[

1− 3xb

(√
3xb +

√
3xb − 1

√
3xb −

√
3xb − 1

)2]−1

·
(

h

mω2
0L

2

)
. (14)

The above expression predicts that when the
height of the box is very high i.e. xb ∼ 1/3 and
L � `, the electron-dots are incommunicable and
consequently the time of execution of the Toffoli
gate is very large. On the contrary, if there is a

soft tunneling through the box i.e. xb ∼ 1 the
time of execution of the CCNOT gate is drastically
small. This might indicate that the presence of
an interaction between the three quantum dots is
a necessary ingredient for the execution of the
CCNOT gate.

On the other hand, in Ref. [14] it has been
suggested that the decoherence times in quantum
dots technologies are typically∼ 10−7 s. In Figure
1 is plotted TCCNOT of Eq. (14) as a function of
xb and T0 ≡ h

mω2
0L

2 in the range 1/3 ≤ xb and
0 ≤ T0 ≤ 10−7 s. From such a figure we can infer
that for a non small values of xb it is increased the
decoherence of the quantum dots, producing with
this a large values of the time of execution of the
CCNOT gate.

Fig. 2. Time of execution of the CCNOT gate as it is
given by Eq. (14) as a function of xb and T0 in the range
1/3 ≤ xb and 0 ≤ T0 ≤ 10−7 s. The region below to the
surface corresponds to the excited states of the system
of three electron dots

On the other hand for small enough values of
xb and T0, the above times of execution become
small, making then the computer more efficient for
processing the information. Ideally, one must have
that TCCNOT � 10−7 s which constrains the values
of xb and T0 appearing in Eq. (14).

The scale of time 10−7 s is the estimated
decoherence time of the electron-dots [14]. We
note from Eqs. (7, 10, 11) that in the general case
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when the three quantum dots are hyper excited i.e.
xb � 1, the values of TCCNOT would correspond to
the region below the surface of Figure 2.

The later can be explained by saying that when
the quantum dots are excited then there will be
tunneling effects allowing the necessary interaction
between the three parties for executing efficiently
the CCNOT gate diminishing with this its execution
time.

Fig. 3. Time of execution of the CCCNOT gate as it is
given by Eq. (17) as a function of xb and T0 in the range
1/4 ≤ xb and 0 ≤ T0 ≤ 10−7 s. The region below to the
surface corresponds to the excited states of the system
of four electron dots

2.2 Case n = 4 qubits

The approximated expression for the time of
execution of the CCCNOT gate 3 is related to the
transition frequencies between the states | ↑↑↑↑〉
and | ↑↑↑↓〉 in the following way:

3In this case the respective Hilbert space is the following
{| ↓, ↓, ↓, ↓〉, | ↓, ↓, ↓, ↑〉, | ↓, ↓, ↑, ↓〉, | ↓, ↓, ↑, ↑〉, | ↓, ↑, ↓, ↓〉, | ↓
, ↑, ↓, ↑〉, | ↓, ↑, ↑, ↓〉, | ↓, ↑, ↑, ↑〉, | ↑, ↓, ↓, ↓〉, | ↑, ↓, ↓, ↑〉, | ↑, ↓, ↑
, ↓〉, | ↑, ↓, ↑, ↑〉, | ↑, ↑, ↓, ↓〉, | ↑, ↑, ↓, ↑〉, | ↑, ↑, ↑, ↓〉, | ↑, ↑, ↑, ↑〉, }.
The CCCNOT gate will change the states only if the three
first (control) qubits are in the state | ↑〉 otherwise this leaves
the remaining fourteen states unchanged. Thus, one has that
CCCNOT| ↑↑↑↓〉 → | ↑↑↑↑〉 and CCCNOT| ↑↑↑↑〉 → | ↑↑↑↓〉.

TCCCNOT =
h

|〈↑↑↑↑ |Hspin| ↑↑↑↑〉 − 〈↑↑↑↓ |Hspin| ↑↑↑↓〉|

=
h

24L1

≡
h

12J ′
. (15)

where Hspin is given by Eq. (1). Thus, if both
the confinement potential of the four quantum dots
is given by Eqs. (8) and (9) and we neglect
the respective Coulomb interaction then the total
energy of the four electron-dots system is given by:

E(4) =
∑
ξ

Enξ =
h2

8mL2

(
n2
A + n2

B + n2
C + n2

D

)
≥ 4 ·

h2

8mL2
. (16)

By assuming that J ′ = (1−R)E(4) where R and
E(4) are given by Eqs. (12) and (16) respectively
then Eq. (15) yields:

TCCCNOT =
h

12(1−R)E(4)

=
1

12
·
[

1− xb

(√
4xb +

√
4xb − 1

√
4xb −

√
4xb − 1

)2]−1

·

(
h

mω2
0L

2

)
. (17)

In Figure 3 it is plotted TCCCNOT as a function
of xb and T0 in the range 1

4 < xb and 0 <
T0 < 10−7 s. As it can be seen from such
a figure, when the electron dots are excited
there is tunneling which allows the presence of
entanglement diminishing drastically the time of
execution of the TCCCNOT gate.

3 Conclusions

We have studied a systems composed of several
quantum dots within an approximated architecture
where the Coulomb-like interaction among them
can be neglected. By the characteristics of the
original electron dot model, the figure of merit
is the nature of the confining potential. It is
worth mentioning that in the original quantum
dot model, the confinement is almost total with
scarce tunneling towards outside the region of
confinement.
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For the above reason in the present work
we employ a very high rectangular potential
well. Due that the original quantum dot model
of Loss and DiVincenzo works in the range of
MeV, consequently we have assumed that the
confinement potential has a length of the order
of one nanometer. We remark that the exchange
interaction between the quantum dots induces both
CCNOT and CCCNOT gates.

Furthermore, in the present paper a soft
tunneling is accounted to consider a not very
excited states. Let us observe that a soft tunneling
is necessary in order to execute a quantum logic
gate. The above is due that with a soft tunneling
of the electron dots, they can communicate each
other through entanglement which is a necessary
ingredient for an exponential speeding up of the
processing of the information.

In such a situation the system of quantum dots
can execute efficiently the respective quantum
gates. The above argument is employed as a
basis for the calculation of the times of execution
of the CCNOT and CCCNOT gates. It is worth
mentioning that the present estimation of such a
times is not performed through the use of Eqs. (2)
and (3) which involve a cumbersome calculations.
Instead we employ both symmetry and probabilistic
considerations given by Eq. (11). We have found
that allowing a soft tunneling of the dot electrons
through the walls of the potential the times of
execution of both the CCNOT and CCCNOT gates
are drastically small.

Acknowledgments

We thank SNI-Conacyt grant.

References

1. Loss, D. & DiVincenzo, D.P. (1998).
Quantum computation with quantum dots.
Phys. Rev. A, Vol. 57, pp. 120. DOI:
10.1103/PhysRevA.57.120.

2. Lidar, D.A. & Wu, L.A. (2002).
Reducing Constraints on Quantum
Computer Design by Encoded Selective
Recoupling. Phys. Rev. Lett., Vol. 88. DOI:
10.1103/PhysRevLett.88.017905.

3. Burkard, G., Loss, D., & DiVincenzo,
D.P. (1999). Coupled quantum dots as
quantum gates. Phys.Rev. B, Vol. 59. DOI:
10.1103/PhysRevB.59.2070.

4. Burkard, G., Engel, H.A., & Loss, D. (2000).
Controlling Spin Qubits in Quantum Dots,
Fortschr. Phys., Vol. 48, pp. 965.

5. Mizel, A. & Lidar, D.A. (2004). Three-
and Four-Body Interactions in Spin-Based
Quantum Computers. Phys. Rev. Lett., Vol. 92.
DOI: 10.1103/PhysRevLett.92.077903.

6. Costi, T.A. & Zlatic, V. (2010). Thermoelectric
transport through strongly correlated
quantum dots. Phys. Rev. B, Vol. 81. DOI:
10.1103/PhysRevB.81.235127.

7. Sadovskyy, A., Lesovik, G.B.,
Jonckheere, T., & Martin, T. (2010).
Nanomechanical effects in an Andreev
quantum dot. Phys. Rev. B, Vol. 82. DOI:
10.1103/PhysRevB.82.235310.

8. Dume, B. (2019). Quantum dot display.
www.newscientist.com/article/dn13023-
quantum-dot-displays-could-outshine-their-
rivals.

9. SONY. (2019). New 55 and 65-inch 4K Ultra
HD LED TV. www.sony.com.

10. Hu, X. & Sarma, S.D. (2000). Hilbert-space
structure of a solid-state quantum computer:
Two-electron states of a double-quantum-dot
artificial molecule. Phys. Rev. A, Vol. 61. DOI:
10.1103/PhysRevA.61.062301.

11. Fredkin, E. & Toffoli, T. (1982). Conservative
logic. Int. J. of Theor. Phys., Vol. 21, pp. 219.

12. CODATA. (2006). www.codata.org.

13. Griffiths, D.J. (2004). Introduction to Quantum
Mechanics. Prentice Hall.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1241–1247
doi: 10.13053/CyS-23-4-3033

Manuel Aoki Avila1246

ISSN 2007-9737



14. Bhaktavatsala, D.D., Ravishankar, V.,
& Subrahmanyam, V. (2006). Spin
decoherence from Hamiltonian dynamics
in quantum dots. Phys. Rev. A., Vol. 74. DOI:
10.1103/PhysRevA.74.022301.

Article received on 26/09/2018; accepted on 12/04/2019.
Corresponding author is Manuel Aoki Avila.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1241–1247
doi: 10.13053/CyS-23-4-3033

Times of Execution of the CCNOT and CCCNOT Quantum Gates in a Quantum Computer... 1247

ISSN 2007-9737


